

An Analytical Model to Identify Cervical Conditions using Digital Colposcopy Images and Convolutional Neural Network Algorithms

M Suleman Basha¹ A Annapurna² W Pranay Kumar Reddy³ M Sai Lakshmi⁴ B Bhavana⁵

^{1,2}Department of Computer Science and Engineering (Data Science) Rajeev Gandhi Memorial College of Engineering & Technology (Autonomous) Nandyal, India .

^{3,4,5}Student, Department of Computer Science and Engineering (Data Science), RGM College of Engineering &Technology, Nandyal, Andhra Pradesh, India.

¹suleman.ndl@gmail.com ²arikatlaannapurna@gmail.com

³pranaykumarreddyw@gmail.com ⁴musalireddygarisailakshmi@gmail.com

⁵bachubhavana13@gmail.com

Abstract:-

Cervical diseases, including cervical cancer (CC), present a significant global health challenge, emphasizing the critical need for accurate early detection methods. Current solutions face limitations due to equipment constraints and the nature of medical detection tests employed. This paper proposes a predictive model utilizing deep learning algorithms and colposcopy images to detect various classes and stages of cervical diseases. Leveraging Convolutional Neural Networks (CNNs) and diverse models such as EfficientNetB0, VGG16, ResNet50, and more, the study aims to surpass the 90% accuracy achieved by VGG16 in detecting cervical diseases. By exploring alternative techniques like Xception, InceptionV3, the goal is to achieve a superior accuracy rate of 95% or higher. Additionally, the project extends to building a user-friendly front end using the Flask framework, facilitating user testing with authentication. Through these efforts, the research seeks to significantly enhance the effectiveness of cervical disease detection, offering a promising avenue for improving healthcare outcomes and saving lives globally.

Keywords: Cervical Diseases, Deep Learning, CNNs, Colposcopy Images, VGG16, ResNet50, Xception, InceptionV3, Medical AI, Detection Accuracy, Flask.

1. Introduction

Artificial Intelligence (AI) and its development, particularly Deep Learning (DL), have advanced significantly in various areas, particularly natural language processing and image processing.. The emergence of DL has revolutionized many fields, offering unprecedented

Received: 06-11-2024

Revised: 15-12-2024

Accepted: 05-01-2025

performance improvements in tasks such as pattern recognition and data analysis. However, as ML technologies are increasingly integrated into critical domains like healthcare, the demand for transparency and interpretability becomes paramount. This is particularly crucial in medical research and practice, where decisions directly impact patient outcomes and safety [1].

Medical domains require a high level of accountability and clarity in AI-based systems due to the complexity and stakes involved in healthcare decisions. Understanding and interpreting the outputs of ML models in medical contexts is essential for clinicians and experts to trust and effectively utilize these technologies. Therefore, there is a growing need to categorize and evaluate the Regarding the lecturer, the DL model helps to understand complicated patterns and supports wise decision-making [1].

Medical diagnostics, with their several domains including biomedicine, magnetic resonance image (MRI) analysis and health information science, find great use for DL. Region of interest (ROI) using DL methods addresses physical division, diagnosis, classification, prediction and detection. One such an application is the CAD system for computer assistance (CAD), which enables medical practitioners to comprehend and interpret complicated medical data [2].

Usually spurred on human papillomavirus (HPV), cervical cancer is a major public health concern globally. Although it is still one of the primary causes of women's deaths worldwide, cervical cancer is fast to be halted with screening through vaccine. Particularly the difficulties presented by cervical cancer, cervical illnesses highlight the need of more efficient identification and treatment plans [3].

Current methods of cervical illness detection mostly depend on the kinds of equipment and the kinds of medical identification tests applied. These limits lead to underperf results and delayed diagnosis as well as impede correct identification of the early phases of cervical illnesses. To solve these problems that profit from modern technologies like deep learning [4] a fresh strategy is needed.

To address these issues, our research suggests creating a predictive model for the identification of various cervical disease classifications and stages using deep learning algorithms and digital colposcopy images. This model seeks to improve the accuracy and efficiency of cervical disease diagnosis by utilizing deep learning to overcome the constraints of existing detection techniques. Initial identification and intervention are made easier by the more accurate and thorough examination that digital colposcopy images enable [5].

The tone for the remainder of the work is established by this introduction, which provides background information on the importance of interpretation in artificial intelligence, the applications of deep learning in medical diagnosis, the worldwide health concern of cervical

Received: 06-11-2024

Revised: 15-12-2024

Accepted: 05-01-2025

cancer, and the limitations of current detection methods. The second half will address the role, results, and discussions of the proposed future model and highlight its probable role in identifying cervical diseases and improving patient treatment.

2. LITERATURE SURVEY

Deep learning (DL) particularly artificial intelligence (AI) has drawn a number of hobby in many specific fields as it plays so remarkably in obligations such photo processing and natural language interpretation. clinical makes use of of DL techniques, along with prognosis and disease detection, have over the years generated more pleasure. This literature evaluation aims to provide an outline of great research findings and improvements in DL-based medical applications, that have given particular cognizance to identify cervical most cancers.

One fundamental thing of deploying AI in scientific settings is making sure interpretability and transparency. Tjoa and Guan talk the importance of Explainable artificial Intelligence (XAI) inside healthcare environments and the want for interpretable deep getting to know fashions [1]. They spotlight the demanding situations and opportunities in growing XAI strategies tailor-made to scientific packages, that could enhance clinicians' agree with and understanding of AI-driven diagnostic structures.

Liu et al. [2] a meta-evaluation and systematic assessment supposed to evaluate performance of deep learning models in opposition to healthcare professionals in disease detection with the resource of scientific imaging. Their findings endorse that DL algorithms exhibit comparable or advanced overall performance to human specialists in diverse medical imaging responsibilities. This underscores the capability of DL as a treasured tool for clinical diagnostics, together with the detection of cervical cancer from imaging facts.

Deep learning techniques have pushed performance in lots of medical picture fashions, such as chest x-rays. Engineer [3] Enríquez using X-ray pix, the Chest Presentes an extensive gaining knowledge of technique to detect Pneumonia suggests DL's efficacy inside the correct identification of pathological situations from clinical photos. at the same time as Enríquez's observe specializes in pneumonia detection, the method and insights gleaned may be implemented to cervical cancer detection duties concerning clinical imaging.

Emphasizing advances, difficulties, and future directions in the subject, Baks and Radosav [4] offer a thorough overview of literature on intensive learning and medical diagnosis. They discuss the potential of DL techniques to revolutionize medical diagnostics by enabling automated disease detection and classification from various data modalities. The review underscores the need for robust DL models tailored to specific medical applications, including cervical cancer diagnosis.

In medical image analysis, Suganyadevi et al. [5] present a detailed overview of deep learning methods used in the area. They discuss the state-of-the-art DL architectures and

Received: 06-11-2024

Revised: 15-12-2024

Accepted: 05-01-2025

methodologies for tasks such as segmentation, classification, and detection in medical images. Relevant to the detection of cervical cancer using Colposcopy pictures, the reviews offer insight on the strength and limits of the DL technique in medical imaging.

Colposcopy is an excellent diagnostic modality for detection of cervical lesion and abnormality. Bai et al. [6] Based on the functional reaction, propose a technique to identify areas of cervical wounds using Colpic pictures. Their research shows how functional elections and machine learning methods could be used to raise cervical wound identification from Colposcopy pictures' accuracy.

Invasive cervical cancer remains a significant health concern globally, emphasizing the importance of early detection and intervention. Newton and Mould [7] provide insights into the epidemiology and clinical aspects of invasive cervical cancer, highlighting the challenges in diagnosis and treatment. Their review underscores the importance of advancing diagnostic technologies, such as DL-based approaches, to improve early detection rates and patient outcomes.

Youneszade et al. [8] Examine deep learning potential for cervical cancer diagnosis; examine architectural concepts, prospects, and open research issues. They emphasize the need for developing robust DL models capable of accurately detecting cervical abnormalities from various imaging modalities. The review provides a roadmap for future research directions in DL-based cervical cancer diagnosis, aiming to bridge the gap between technological advancements and clinical practice.

In summary, the literature survey highlights the significant strides made in leveraging deep learning techniques for medical applications, particularly in cervical cancer detection. While DL shows promise in improving diagnostic accuracy and efficiency, there remain challenges related to interpretability, Quality of data and clinical integration. Strong DL models must be developed to fit certain medical references in order to tackle these issues by cooperative efforts among researchers, doctors, and technologists.

3. ALGORITHMS

a. EfficientNetB0

A convolutional neural network architecture known as EfficientNetB0 [13] By striking a mix between size and computation efficiency, the model performs better in image classifications. It employs a composite scaling technique to simultaneously widen, deepen, and dissolve the network, therefore producing better representation with low parameters. It can be utilized as a deductible or a stand-alone classification model in the suggested project aiming at cervical cancer detection. Using your good architecture, effective NetB0 may help with accurate detection and classification of various stages of cervical illnesses, help to eliminate discriminatory functions from colposcopic images, so save computation resources.

b. VGG16

Simple and efficient fixed neural network architecture well-known in image categorization characteristics is VGG16 [14]. There are sixteen layers in the model, with max basin layers and a fully linked layer every other.

In the proposed project for cervical cancer detection, VGG16 serves as a deep learning model for feature extraction and classification. by way of analyzing functions extracted from colposcopy pictures, VGG16[14] can efficiently pick out patterns indicative of different stages of cervical disease. Its deep architecture and capacity to seize problematic image functions make VGG16 a precious component of the challenge's algorithmic framework, contributing to correct and dependable disorder detection.

c. ResNet50

Reset50 represents a very powerful neural network because it uses the residual learning structure [15]. The model features 50 layers together with skipped connections which simplify deep network training and enable better management of the fading shield issue. The suggested cervical cancer detection project employs Reset50 as its functional extractor along with classification function [15]. The recreational 50 performs efficiently to detect the micromanic pattern of cervical illness progression through analyzing functions extracted from colposcopic images. The components of deep architecture combined with residual connections in ResNet50 [15] help the model identify complicated connections between the data which leads to superior accuracy and robustness.

d. VGG19

As a highly deep corporate nerve network model VGG19 carries 19 layers which separate it from VGG16. Before getting to fully connected layers VGG19 includes numerous fixed and maximum pool layers which makes it famous due to its straightforward design along with high efficiency in picture classification tasks. VGG19 performs feature extraction and classification in the proposed project which detects cervical cancer as its core model component. VGG19 uses extracted features in colposcopy images to detect precise patterns which indicate various cervical disease stages. The project benefits from VGG19 [16] due to its extensive network structure which extracts delicate image characteristics to boost precise disease identification.

e. CYENET (CNN-Modified)

The customized CNN-Modified architecture referred to as CYENET performs detection of cervical cancer [17]. The network implements adjusted CNN building blocks which improve its performance during colposcopy image processing. The proposed project utilizes CYENET [17] as its own dedicated model both for extraction of features and classification. The

Received: 06-11-2024

Revised: 15-12-2024

Accepted: 05-01-2025

extracted features from colposcopy images allow CYENET to detect obscure patterns which indicate varied cervical disease progression stages. It achieves its purpose through a specialized design that enables capturing cervical cancer detector-specific features to build an accurate and reliable predictive model for this specific project.

f. DenseNet

Itsnet [18] presents itself through a network structure which establishes dense interlayer connections to build up its design. The system enables convenience reuse while increasing security performance through direct layer-to-layer connections between teams that work forwardly. This density structure functions as an effective model for extracting functional

identification in the proposed cervical cancer detection platform. The DenseNet system evaluates colposcopy image features to detect advanced patterns found in cervical disease stages. The dense connectivity structure of DenseNet allows information to spread between multiple layers thus enabling the model to recognize subtle data relations which enhances its diagnostic precision.

4. METHODOLOGY

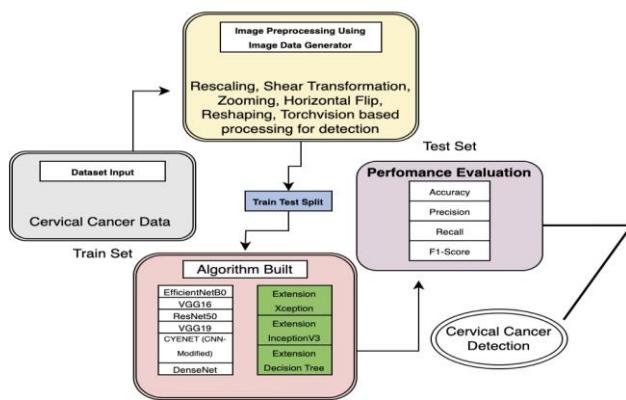
a. Proposed work:

Proposed work presents a future statement model to identify the stages of various classes and cervical illnesses. It employs digital colposcopy images and deep learning techniques, particularly convolutional Neural Network (CNN). By use of colposcopy image analysis, CNN [12] model based on structure aims to detect cervical disease. Apart from the CNN technique, deep teaching models as "Xception" and "InceptionV3" help to find extensions. Furthermore, the inclusion of a user-friendly flight interface with safe authentication raises system safety during testing and offers a natural experience to input the data and assess the performance.

b. System Architecture:

The suggested system architecture starts with a dataset input including colposcopic images to identify cervical cancer. Using an imaging datagenerator, such as to enlarge and standardize them, guarantees stability and strengthens the model by means of these images undergoing preresses. Training and testing the highest partition the dataset so that model training and evaluation may be conducted.

Using three deep learning algorithms— IE VGG16, Resanet50, and VGG19—a future worrying model to detect cervical cancer is developed. Every algorithm learns the patterns of cervical illnesses, removes functions, and handles independently pre-measured images.



Received: 06-11-2024

Revised: 15-12-2024

Accepted: 05-01-2025

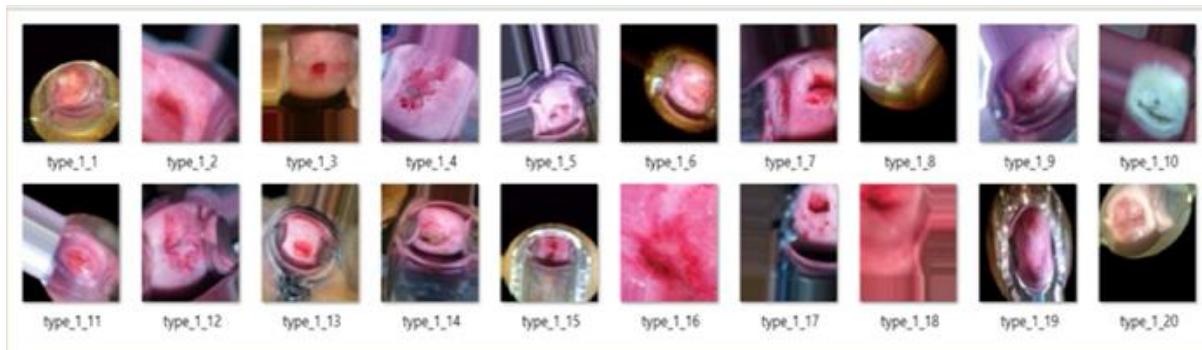

Performance evaluation uses matrix as accuracy, accurate, recall and F1 score to find that every model diagnoses cervical cancer. System architecture helps to select the most efficient method to detect cervical cancer and facilitates the comparison and analysis of the performance of many algorithms.

Fig 1 Proposed Architecture

c.Dataset collection:

Using balanced datasets, machine learning, and deep learning approaches, cervical cancer present on curly is a useful tool for detection. Extensive data sets allow researchers to construct and refine future -food - Future models, therefore offering a well-known stage for science and artificial intelligence study. There are 11,874 marked photos in total in this dataset, arranged methodically into three acres: 2,411 for verification, 1,804 for testing, and 7,659 for training. Every soul has images that symbolize three phases of cervical cancer: CIN1 (type 1), CIN2 (type 2), and CIN3 (type 3). The methodical way the data is distributed helps to ensure balanced learning, correct classification and stage detection of cervical cancer. Using this dataset will help researchers to improve medical imaging and automatic cervix screening as well as raise clinical accuracy.

Fig 2 Data set

d.Image processing:

The data processing pipeline begins with the utilization of the ImageDataGenerator to preprocess the cervical images. In order to expand the dataset and boost model robustness, a number of transformations, such as rescaling, shear transformation, zooming, and horizontal flipping, are required. Additionally, the images undergo reshaping to ensure uniform dimensions for compatibility with deep learning models.

For feature extraction, the processed images are read, resized, and color-converted as per model requirements. The images are then appended with their corresponding labels, forming input-output pairs for training. To speed up processing, the image-label pairs are turned into numpy arrays. Label encoding is performed to convert categorical labels into numerical representations suitable for model training.

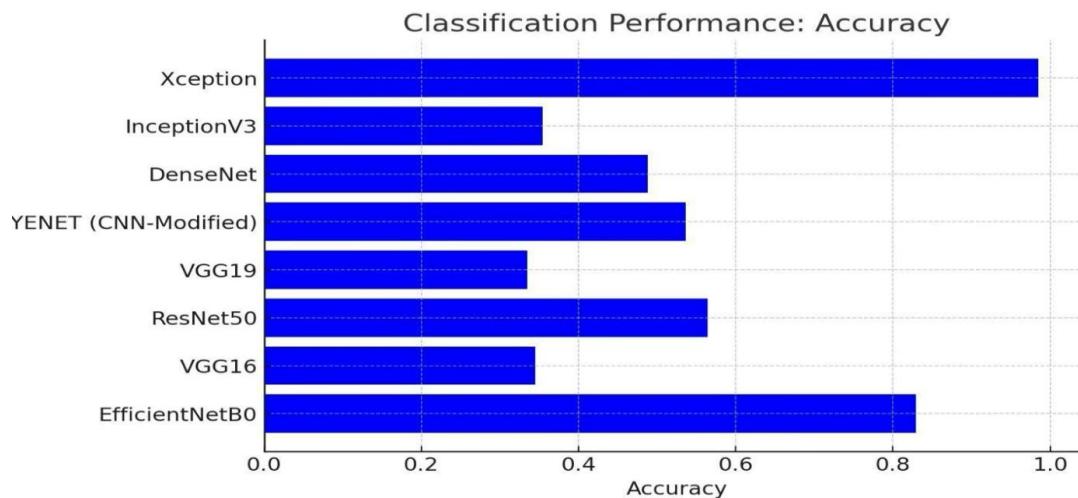
This extensive data processing pipeline ensures that the cervical images are properly formatted and prepared for the feature extraction and model training phases that follow, making it easier to identify and classify cervical cancer stages accurately.

e.Proposed Algorithms:

InceptionV3 Pro

InceptionV3[19] is a deep convolutional neural network architecture known for its efficient use of computational resources and superior performance on image recognition tasks. It incorporates multi-scale processing through the use of parallel convolutional pathways, including 1x1, 3x3, and 5x5 convolutions, as well as max-pooling operations. In the proposed project for cervical cancer detection, InceptionV3[19] serves as a feature extractor and classifier. By analyzing features extracted from colposcopy images, InceptionV3 accurately identifies patterns indicative of different stages of cervical diseases. Its multi-scale processing capabilities allow it to capture diverse features within the images, enhancing the accuracy of disease classification.

Xception Pro


Convolutional neural network architecture Xception[20] introduces depthwise separable convolutions to improve the efficiency and performance of deep learning models. By separating spatial and channel-wise operations, this architecture preserves representational power while simultaneously reducing the number of parameters and computational costs. In the proposed project for cervical cancer detection, Xception[20] is employed as a feature extractor and classifier. By analyzing features extracted from colposcopy images, Xception accurately identifies patterns associated with different stages of cervical diseases. Its efficient architecture enables Xception to effectively capture intricate details within the images, contributing to precise and reliable disease detection.

5. EXPERIMENTAL RESULTS

Accuracy: The accuracy of a test is its capacity to correctly differentiate between patient and healthy cases. The proportion of true positives and true negatives in all of the cases that were evaluated should be calculated in order to get an idea of a test's accuracy. This can be stated mathematically as:

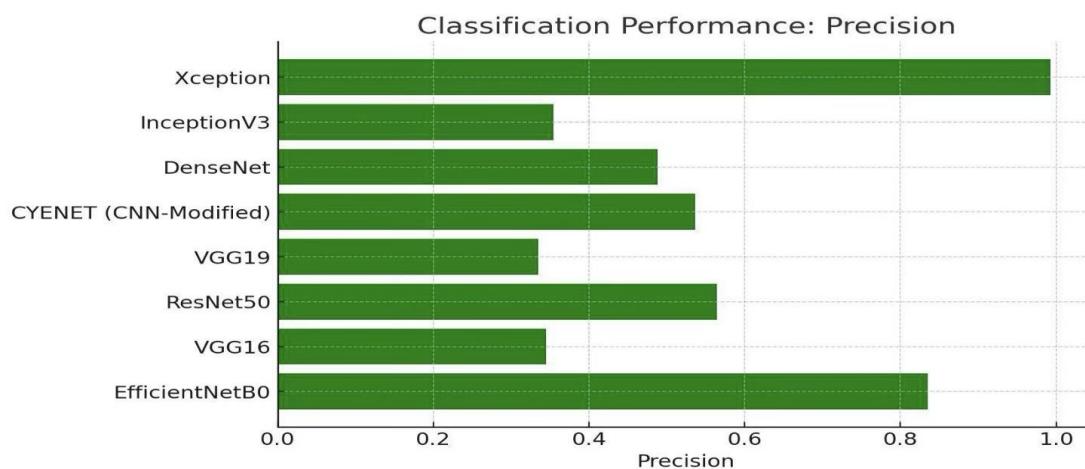
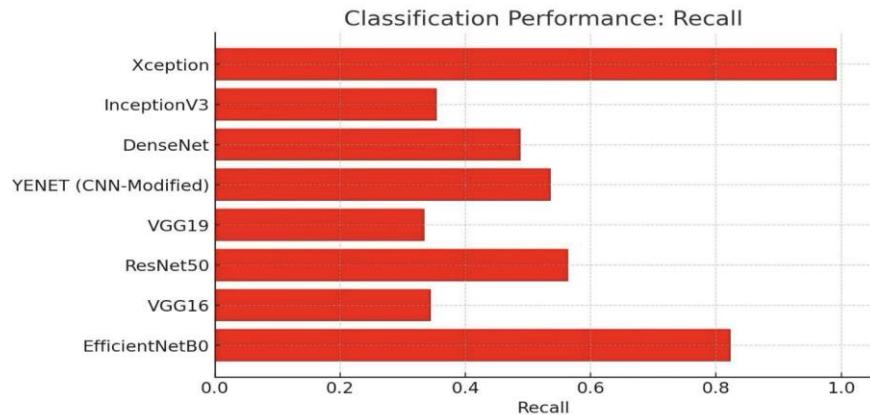

$$\text{Accuracy} = \frac{\text{TP} + \text{TN}}{\text{TP} + \text{TN} + \text{FP} + \text{FN}}$$

Fig 3 Accuracy Comparison Graph

Precision: Precision calculates the proportion of the instances or samples correctly classified among the ones tagged as positive. Therefore, the formula used in calculating precision is provided as follows:

$$\text{Precision} = \frac{\text{True positives}}{\text{True positives} + \text{False positives}} = \frac{\text{TP}}{\text{TP} + \text{FP}}$$

Fig 3 Precision Comparison Graph


Received: 06-11-2024

Revised: 15-12-2024

Accepted: 05-01-2025

Recall: Recall in machine learning is defined as a metric for how good a model is at identifying all the instances of a particular class that are actually relevant. Recall is the percentage of actual positive observations correctly predicted over the actual positives, indicating how complete a model is at identifying instances of a particular class.

$$\text{Recall} = \frac{\text{TP}}{\text{TP} + \text{FN}}$$

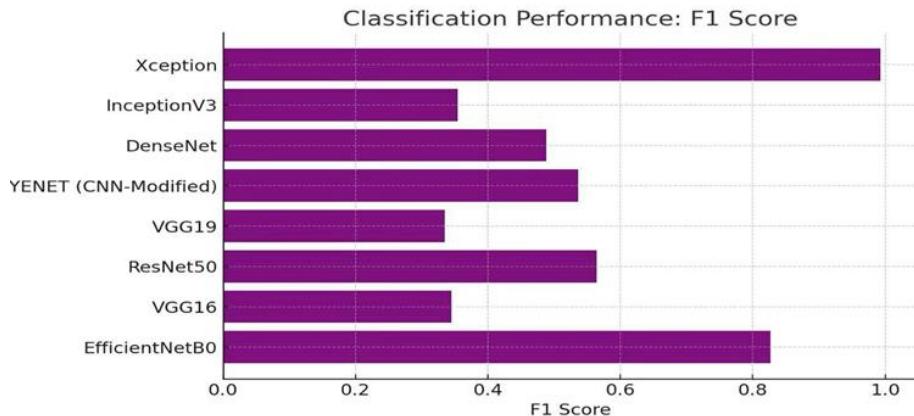


Fig 5 Recall Comparison Graph

F1-Score: In machine learning, the F1 score is a way of evaluation gauging model accuracy. It recalls the score and blends the precision of a model. Accuracy metrically computes, over the dataset, how often a model has forecast accurately.

$$\text{F1 Score} = \frac{2}{\left(\frac{1}{\text{Precision}} + \frac{1}{\text{Recall}} \right)}$$

$$\text{F1 Score} = \frac{2 \times \text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}}$$

Fig 6 F1 Score Comparison Graph

6. CONCLUSION

At last, employing digital colposcopy images and extensive instructional strategies, the suggested forecast model exhibits amazing effectiveness in identifying various classes and phases. cervical diseases, including cervical cancer. By enabling early-stage diagnosis through rapid and sensitive screening, the project significantly contributes to the medical sector, offering a reliable tool for combating cervical diseases and potentially reducing associated mortality rates. The integration of advanced models such as "Xception" and "InceptionV3". Moreover, extending the project with a Flask-based front end ensures a seamless and secure testing environment, easy test and validation tools including integrated authentication. The experiment shows overall notable improvement in the identification of cervical illness, which will influence patient outcomes and medical procedures.

7. FUTURE SCOPE

Digital colposcopic images and the convolutional neural network (CNN) method incorporate the future model scope of the plant to identify cervical illnesses. First, the model seeks to extract broad features from digital colposcopy images, so capturing visual characteristics related with various classifications and stages of cervical illnesses, including cervical cancer. This covers traffic strategies including imaging, form and increase to raise the diversity and quality of input data. Second, the model condition comprises Art - art - CNN Architecture including DenseNet to efficiently train and extract discriminating characteristics from photos and VGG16 and Resnet50. To maximize pre-informed CNN models for improved performance, the model also employs cutting-edge methods including learning and fine adjustment. At last, the degree of the model is ubiquitous calculations and techniques of performance analysis, which offers insightful analysis of clinical decision-making and patient therapy in the proper diagnosis and categorization of cervical illnesses.

REFERENCES

- [1] E. Tjoa and C. Guan, "A survey on explainable artificial intelligence (XAI): Toward medical XAI," *IEEE Trans. Neural Netw. Learn. Syst.*, vol. 32, no. 11, pp. 4793–4813, Nov. 2021, doi: 10.1109/TNNLS.2020.3027314.
- [2] M. Suleman Basha, "A Review on High-Utility Itemset Algorithms" published in the International Journal of Recent Technology & Engineering (IJRTE), ISSN: 2277-3878, Vol. 7 Issue: ICETESM, March-2019.
- [3] M. Bakator and D. Radosav, "Deep learning and medical diagnosis: A review of literature," *Multimodal Technol. Interact.*, vol. 2, no. 3, p. 47, Aug. 2018, doi: 10.3390/mti2030047.

Received: 06-11-2024

Revised: 15-12-2024

Accepted: 05-01-2025

- [4] S. Suganyadevi, V. Seethalakshmi, and K. Balasamy, “A review on deep learning in medical image analysis,” *Int. J. Multimedia Inf. Retr.*, vol. 11, no. 1, pp. 19–38, Mar. 2022.
- [5] M. Suleman Basha, K. Rajendra Prasad, SK Mouleeswarrn., “Multi-disease detection system with X-ray images using deep learning techniques”. published in the *Journal of Information & Optimization Sciences*, Volume 45, Issue 5, ISSN: 0252-2667, pp:1379-1388 (2024)
- [6] C. L. Newton and T. A. Mould, “Invasive cervical cancer,” *Obstetrics, Gynaecol. Reproductive Med.*, vol. 27, no. 1, pp. 7–13, Jan. 2017, doi: 10.1016/j.ogrm.2016.11.002.
- [7] N. Youneszade, M. Marjani, and C. P. Pei, “Deep learning in cervical cancer diagnosis: Architecture, opportunities, and open research challenges,” *IEEE Access*, vol. 11, pp. 6133–6149, 2023, doi: 10.1109/ACCESS.2023.3235833.
- [8] Z. Alyafeai and L. Ghouti, “A fully-automated deep learning pipeline for cervical cancer classification,” *Expert Syst. Appl.*, vol. 141, Mar. 2020, Art. no. 112951, doi: 10.1016/j.eswa.2019.112951.
- [9] K. Rajendra Prasad, M. Suleman Basha, M. Kalyan Kumar, K. Shivaram Reddy, G. Jaya Prakash, G. Lokesh; Develop extended visual methods for an effective clusters assessment of large datasets. *AIP Conf. Proc.* 21 November 2023; 2821 (1): 020021. <https://doi.org/10.1063/5.0159995>
- [10] Suleman Basha, M., Mouleeswaran, S.K. & Rajendra Prasad, K. Hybrid visual computing models to discover the clusters assessment of high dimensional big data. *Soft Computing*, Springer, 27, 4249– 4262 (2023), ISSN: 1433-7479
- [11] K. D. Shrivastav, A. M. Das, and H. Singh, “Classification of colposcopic cervigrams using EMD in R,” in *Advances in Signal Processing and Intelligent Recognition Systems*, vol. 1. Singapore: Springer, 2019.
- [12] P. Guo, S. Singh, Z. Xue, R. Long, and S. Antani, “Deep learning for assessing image focus for automated cervical cancer screening,” in *Proc. IEEE EMBS Int. Conf. Biomed. Health Informat. (BHI)*, May 2019, pp. 1–4, doi: 10.1109/BHI.2019.8834495.
- [13] Y. Tanaka, Y. Ueda, R. Kakubari, M. Kakuda, S. Kubota, S. Matsuzaki, A. Okazawa, T. Egawa-Takata, S. Matsuzaki, E. Kobayashi, and T. Kimura, “Histologic correlation between smartphone and colposcopic findings in patients with abnormal cervical cytology: Experiences in a tertiary referral hospital,” *Amer. J. Obstetrics Gynecol.*, vol. 221, no. 3, pp. 241.e1–241.e6, Sep. 2019, doi: 10.1016/j.ajog.2019.04.039.

Received: 06-11-2024

Revised: 15-12-2024

Accepted: 05-01-2025

- [14] P. Elayaraja and M. Suganthi, “Automatic approach for cervical cancer detection and segmentation using neural network classifier,” *Asian Pacific J. Cancer Prevention*, vol. 19, no. 12, pp. 3571–3580, Dec. 2018, doi: 10.31557/APJCP.2018.19.12.3571.
- [15] V. Kudva, K. Prasad, and S. Guruvare, “Automation of detection of cervical cancer using convolutional neural networks,” *Crit. Rev. Biomed. Eng.*, vol. 46, no. 2, pp. 135–145, 2018, doi: 10.1615/CritRevBiome dEng.2018026019.
- [16] M. Suleman Basha, S.K Mouleeswaran, K. Rajendra Prasad, “Sampling Based Visual Assessment Methods for Efficient Social Data Clustering”, *The Journal of supercomputing*, Volume 77, pp: 80138037, ISSN: 0920-8542, Springer, Impact Factor: 2.32, <https://doi.org/10.1007/s11227-021-03618-6>
- [17] B. K. Jaya and S. S. Kumar, “Image registration based cervical cancer detection and segmentation using ANFIS classifier,” *Asian Pacific J. Cancer Prevention*, vol. 19, no. 11, pp. 3203–3209, Nov. 2018, doi: 10.31557/APJCP.2018.19.11.3203.
- [18] K. Gutiérrez-Fragoso, H. G. Acosta-Mesa, N. Cruz-Ramírez, and R. Hernández-Jiménez, “Optimization of classification strategies of ace to white temporal patterns towards improving diagnostic performance of colposcopy,” *Comput. Math. Methods Med.*, vol. 2017, pp. 1–10, Jul. 2017.
- [19] Y. Miyagi, K. Takehara, Y. Nagayasu, and T. Miyake, “Application of deep learning to the classification of uterine cervical squamous epithelial lesion from colposcopy images combined with HPV types,” *Oncol. Lett.*, vol. 19, no. 2, pp. 1602–1610, Dec. 2019, doi: 10.3892/ol.2019.11214.
- [20] K Subba Reddy, K Rajendra Prasad, M Suleman Basha, “Classification of X-ray Images Insight for Finding Infection of Coronavirus Disease” published in the international journal of Solid-State Technology, Volume. 63, issue:5, Dec-2020, ISSN: 0038-111X, pp:8680-8684.