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Abstract

In Wireless Sensor Networks (WSNs), securing communication against threats like blackhole
attacks is essential for maintaining the integrity of the network. This paper proposes a system
where the Cluster Head (CH) monitors and evaluates node behavior using manifold metrics:
Packet Forwarding Behavior (PFB), Acknowledgment Ratio (AR), Reputation Score (RS),
Cooperation Ratio (CR), and Energy Deviation (ED). These metrics help detect abnormal
activities, especially packet dropping associated with blackhole attacks. The PFB measures
how effectively a node forwards packets, while AR gauges the node's reliability in sending
acknowledgments for forwarded packets. The RS is a long-term metric combining AR and PFB
to track a node's trustworthiness over time. CR assesses a node's cooperative behavior with
neighboring nodes, and ED evaluates energy usage, identifying anomalies in power
consumption that could signal malicious activity. To classify nodes as either normal or
potentially malicious (blackhole), a K-means clustering algorithm is employed. Nodes are
grouped based on the five metrics into two clusters: one for normal nodes and another for
suspicious nodes. The algorithm iteratively adjusts the cluster centroids using Euclidean
distance until stable clusters are formed or a maximum number of iterations is reached. By
applying this approach, the system effectively differentiates between normal and blackhole
nodes, improving the security and resilience of WSNs against attacks. A proof of mathematical
has proven the applicability of the proposed model. The simulation results shows better result
compare with other existing models in terms of performance metrics. The proposed model has
effectively detect the balckhole nodes compare with other models.
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1. Introduction

In Wireless Sensor Networks (WSNSs), ensuring secure and reliable data transmission is critical
to maintaining overall network efficiency. These networks are frequently utilized in
applications where real-time monitoring and communication are necessary, such as
environmental observation, military operations, and healthcare monitoring (Alzubaidi, L et al.,
2018). However, WSNs are highly susceptible to a variety of security threats, with blackhole
attacks being one of the most severe. During a blackhole attack, malicious nodes deliberately
drop packets instead of forwarding them, leading to substantial data loss and performance
degradation across the network (Dharini, N et al., 2022). As a result, detecting and addressing
these attacks is essential to maintaining the network’s operational integrity. This paper
introduces a multi-metric node evaluation approach, which allows a Cluster Head (CH) to
observe and evaluate the behavior of nodes within its cluster. The system analyzes multiple
parameters including Packet Forwarding Behavior (PFB), Acknowledgment Ratio (AR),
Reputation Score (RS), Cooperation Ratio (CR), and Energy Deviation (ED). Together, these
metrics serve to identify suspicious activities such as packet dropping, a hallmark of blackhole
attacks. By tracking node behavior over time, the CH can detect and isolate malicious nodes,
thus enhancing the security and stability of the network (Virendra, D et al., 2022). The figure
1 depicts the representation of wireless sensor networks.
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Figure 1. The Representation of Wireless Sensor Network

Blackhole attacks exploit the trust-based nature of WSN routing mechanisms. In these attacks,
malicious nodes mislead others by falsely claiming the most efficient routes, only to discard
data packets once received. This disruption leads to extensive data loss and deteriorates the
overall network communication (Yoon, J et al., 2021, Zhang, H et al., 2019). Detecting theg
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attacks is challenging but crucial for preventing data inaccuracies and ensuring the success of
mission-critical operations. If left unchecked, such attacks can compromise the network’s
reliability and diminish the quality of data gathered from the environment. The proposed
detection strategy in this paper leverages a combination of short-term and long-term behavioral
metrics to provide a comprehensive solution to detect blackhole attacks. By continually
evaluating node performance, the Cluster Head can make informed decisions and take
preventative actions, safeguarding the network from malicious activities and ensuring reliable
packet transmission in WSNs (Liu, C et al., 2020).

The main goal of this research is to develop a robust and efficient multi-metric framework
aimed at detecting malicious node activities, particularly blackhole attacks, in Wireless Sensor
Networks (WSNSs). The specific objectives are as follows:

o Multi-Metric Evaluation Scheme: To propose a method that uses multiple metrics
such as Packet Forwarding Behavior (PFB), Acknowledgment Ratio (AR), Reputation Score
(RS), Cooperation Ratio (CR), and Energy Deviation (ED) to continuously monitor and assess
node performance.

o Blackhole Attack Detection: To identify and mitigate blackhole attacks by detecting
nodes that fail to forward packets or drop them intentionally, preventing data loss and ensuring
network integrity.

o Anomaly Detection in Packet Forwarding: To ensure the reliability of data
transmission by integrating short-term and long-term behavioral data, identifying deviations
from normal patterns, and detecting anomalies in node behavior.

o Cooperation Verification: To use the Cooperation Ratio (CR) for cross-verifying node
interactions with neighbors, enabling the identification of unreliable or malicious nodes more
comprehensively.

o Energy Deviation Analysis: To monitor node energy consumption using the Energy
Deviation (ED) metric, helping to identify energy anomalies that may signal malicious actions
like packet dropping or underperformance.

o Network Security and Reliability: To enhance the security and operational stability
of WSNs by equipping the Cluster Head (CH) with a powerful mechanism to detect
compromised nodes and prevent potential network failure.

o Foundation for Future Enhancements: To lay the groundwork for future
developments, such as incorporating advanced machine learning techniques and collaborative
intrusion detection systems, for detecting more sophisticated attacks in WSNS.
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Through these objectives, the research aims to build a holistic framework to improve the
security, reliability, and performance of WSNs by effectively identifying and addressing
blackhole attacks in real time.

2. Background
2.1  Trust Management in WSN

In Wireless Sensor Networks (WSNSs), where communication occurs over a shared medium,
malicious nodes can exploit vulnerabilities to launch security attacks. The nodes in WSNs are
typically constrained in terms of computational power, energy, memory, and bandwidth,
making them particularly susceptible to such attacks, potentially rendering the network
ineffective. Therefore, trust management is essential in WSNs to bolster security and ensure
reliable network operation.

Trust plays a critical role in several network processes (Blaze, M et al., 1996). For instance,
when routing, sensor nodes must identify which other nodes can be trusted to forward data.
During the sensing process, nodes rely on neighboring nodes to validate measurements and
detect anomalies. Trust also informs decisions related to data disclosure and key exchange,
ensuring that only trusted nodes handle sensitive information. Trust management systems
(TMS) offer lightweight solutions suitable for resource-constrained WSNSs, ensuring improved
network security without significantly affecting performance (Adnan, A et al., 2019). The
concept of trust management was initially introduced by Blaze et al. in 1996 as a unified
method for defining security policies and identifying trust relationships to facilitate secure
authorization in distributed systems. Traditional authorization methods were insufficient in
distributed environments, leading to the development of TMS to address these gaps by focusing
on privileges and restrictions rather than individual identities (Niyato, D., et al., 2008).

In WSNs, nodes collaborate to provide network services such as data sensing and routing. Each
node collects physical data and forwards it through other nodes toward a base station. Nodes
can choose between prioritizing speed or conserving energy when transmitting data. Trust
management is crucial in determining which nodes are most likely to perform specific tasks
effectively and cooperatively (Rao, H et al., 2010). However, uncertainties arise from factors
like data asymmetry (where a node lacks complete information about its peers) and
opportunism (where nodes may pursue conflicting objectives). These uncertainties are
exacerbated when some nodes are compromised or malfunctioning (Zhang, Z et al., 2019).

A Trust Management System helps mitigate uncertainty by using historical data to evaluate the
trustworthiness of nodes. A node that has performed reliably in the past is likely to be trusted
for similar tasks in the future. This enables nodes to coordinate with the most trustworthy peers,
identifying faulty or malicious nodes and improving network reliability. Additionally, TMS
can support other security mechanisms like privacy protection and key management
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enabling devices to exclude untrusted nodes from sensitive operations and secure key
exchanges (Mahmoud, A. A et al., 2019).

2.2 The Impact of Blackhole Attacks in Wireless Sensor Networks (WSNs)

Wireless Sensor Networks (WSNSs) are made up of distributed sensor nodes that collect and
transmit environmental data to a central base station. These nodes often face limitations in
terms of battery life, processing power, and memory. Deployed in environments like disaster
zones, military fields, or healthcare settings, WSNs are susceptible to various security
challenges. Among these, blackhole attacks stand out as particularly damaging (Akyildiz, I. F.,
et al., 2002). In a blackhole attack, a malicious node deceives neighboring nodes by claiming
it has the shortest route to the base station. Once data is routed through it, the node drops the
packets instead of forwarding them (Alcaraz, C et al., 2015). The effects of this attack include
(Ding, Y et 1., 2016, Khan, S. A et al., 2019, Kumar, A et al., 2018 and Nadir et al., 2018):

. Data Loss: When packets are dropped, the network suffers data loss, which disrupts
critical real-time applications such as military surveillance and emergency monitoring.
" Degraded Network Performance: The attack hampers network performance by

causing delays and requiring packet retransmissions, which drain energy and further strain the
nodes' limited resources.

. Compromised Network Integrity: Blackhole nodes disrupt routing protocols, eroding
trust in the network and making it harder for nodes to forward data reliably.
. Increased Energy Consumption: As affected nodes continue attempting

transmissions, their energy resources are unnecessarily depleted, further reducing the lifespan
of the network.

. Cascading Failures: If not detected early, the attack can escalate, leading to
widespread network disruption as more nodes unknowingly forward data to the blackhole node.

Detecting and countering blackhole attacks is essential to ensure the security, efficiency, and
longevity of WSNSs.

2.3  K-Means Clustering in WSNs

The K-means clustering algorithm (Jain, A. K et al., 2010, Chaudhary, V et al., 2014, Xiao, Y
et al., 2015 and Zhang, Y et al., 2016), a popular unsupervised learning method, can be
effectively applied to WSNs for various purposes, including anomaly detection and efficient
communication. The K means clustering algorithm has discussed in[]. The algorithm works

by:
. Initialization: Choosing K initial centroids, representing cluster centers.
. Assignment: Assigning each node to the nearest centroid based on distance, typically

using the Euclidean distance metric.
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" Update: Recalculating the centroids based on the mean of nodes in each cluster.
" Iteration: Repeating the assignment and update steps until centroids stabilize.

In WSNs, K-means can be utilized to:

. Optimize communication: Nodes are clustered based on proximity or energy levels,
reducing direct transmissions and saving energy.

. Detect anomalies: Nodes exhibiting abnormal behavior, like unusual energy
consumption or packet forwarding patterns, can be grouped into separate clusters, helping to
identify malicious nodes involved in attacks like blackhole activities.

By combining K-means clustering with metrics like Packet Forwarding Behavior (PFB) and
Acknowledgment Ratio (AR), WSNs can enhance their defense against malicious attacks,
improving overall network security and resilience.

3. Review of Literature

This section reviews various studies that address security challenges in Wireless Sensor
Networks (WSNSs), particularly in relation to trust, routing protocols, and security mechanisms.
These studies explore diverse approaches to mitigating threats such as selective forwarding,
eavesdropping, and malicious attacks within WSNs. Cao et al. (2021) developed an Identity-
Based Encryption Algorithm (IIBE) to improve network security by simplifying the key
generation process. Their solution reduces network traffic and overcomes several challenges
associated with traditional encryption systems, including the management of public key
certificates and key escrow issues. By eliminating the need for certificates, 1IBE enhances
efficiency while ensuring robust security.

Zhou et al. (2016) proposed a novel framework for WSNs consisting of three types of nodes:
Cluster Heads (CHs), Inspector Nodes (INs), and Member Nodes (MNs). The INs monitor CH
transmissions to prevent selective-forwarding attacks, while CHs relay packets from MNs and
other CHs. This framework employs a reputation-based system to evaluate the behaviors of
CHs and INs, calculating a composite reputation value (CRV) that accounts for forwarding
rates, malicious node detection, and energy levels. The system not only improves security but
also optimizes energy consumption, extending the network's operational lifetime. Haseeb et al.
(2019) introduced the Energy-Aware and Secure Multi-Hop Routing (ESMR) protocol to
improve both energy efficiency and multi-hop data security in WSNs. This protocol segments
the network into inner and outer zones, creating clusters of nodes based on proximity. It
enhances secure communication by using a secret-sharing mechanism to protect the data as it
is transmitted between cluster heads and sink nodes. ESMR reduces vulnerabilities and ensures
energy-efficient secure routing in multi-hop WSNs. Ourrouss et al. (2021) focused on
combating malicious attacks through a bio-inspired trust management model, which integrat
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the beta reputation system with Ant Colony Optimization (ACO). This model was applied to
enhance the Dynamic Source Routing (DSR) protocol by identifying and isolating malicious
nodes from the data forwarding process. The proposed system improves the robustness of the
DSR protocol by ensuring that only trustworthy nodes participate in the routing process, thus
preventing attacks like black hole and selective forwarding.

Majumder et al. (2023) proposed the CRYPTO-DSR protocol, a cryptography-based Dynamic
Source Routing protocol designed to secure data transmission within WSNs. The protocol
incorporates Johnson’s algorithm for route computation and hash functions for secure packet
transmission. By securing the data and routing path, CRYPTO-DSR strengthens the overall
security of the WSN. This protocol also reduces the possibility of attacks targeting data
integrity during transmission. Ali et al. (2020) introduced a data security method that utilizes a
modified version of the Diffie-Hellman algorithm to reduce computational and response time
while enhancing security. This method focuses on efficient generation of hash values for
transmitted data, ensuring data integrity while improving processing efficiency. The approach
is evaluated for its resilience to various attack vectors, ensuring that the protocol remains secure
in a variety of scenarios. In WSNSs, particularly in resource-constrained environments,
implementing heavy security mechanisms like traditional cryptographic methods or blockchain
can be challenging due to their high computational demands. These systems often require
significant processing power, memory, and energy, which are not always available in WSN
devices. Therefore, lightweight security solutions have gained significant attention. These
solutions aim to balance security and resource efficiency, ensuring adequate protection against
common security threats without overburdening the network's limited resources.

Research Gap

Although the aforementioned studies provide valuable insights into security challenges in
WSNSs, there are still several gaps that need to be addressed. One major gap is the need for
security solutions that are both lightweight and capable of dealing with emerging security
threats, such as black hole and selective forwarding attacks, without compromising network
efficiency. Many existing solutions, while effective in specific scenarios, either focus on
computationally expensive techniques or do not address the dynamic nature of WSNSs
effectively.Furthermore, while trust management models have been proposed, the integration
of trust-based systems with routing protocols such as DSR, and their ability to adapt to dynamic
changes in node behavior and network topology, remains underexplored. More research is
needed to develop dynamic, scalable trust models that are lightweight and resource-efficient
for WSNs, particularly for loVT environments where vehicles continuously join and leave the
network.

Lastly, there is a gap in exploring the integration of bio-inspired and machine learning-based
methods with lightweight security protocols for real-time detection and mitigation of secug
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threats in WSNs. These approaches can potentially enhance the adaptability and accuracy of
security mechanisms while ensuring minimal computational overhead, which is crucial for
devices with limited resources.

In this context, the proposed research aims to fill these gaps by developing a lightweight,
adaptive, and trust-based security model for WSNs and 1oVTs, specifically focusing on the
detection and mitigation of black hole attacks within the DSR routing protocol.

4. Proposed System

In a Wireless Sensor Network (WSN) designed to detect blackhole attacks, the following steps
are assumed for initializing the network, along with the key assumptions for the described
context.

4.1. Network Setup

. Nodes: The network consists of sensor nodes (N1, N2, N3, ..., Nn), deployed to monitor
a specific area, collect data, and transmit it.

. Cluster Formation: The nodes are grouped into clusters, each managed by a Cluster
Head (CH). The CH is responsible for overseeing the nodes within its cluster and aggregating
their data.

. Cluster Head (CH) Responsibilities

o Monitor the behavior of each node, including packet forwarding,
acknowledgment, reputation score, cooperation with neighbors, and energy usage.

o Detect abnormal behavior, such as potential blackhole attacks.

The Cluster Head (CH) assesses several metrics—Packet Forwarding Behavior (PFB),
Acknowledgment Ratio (AR), Reputation Score (RS), Cooperation Ratio (CR), and Energy
Deviation (ED)—for key purposes. First, this evaluation helps identify blackhole and other
malicious nodes by tracking packet forwarding, acknowledgment, and energy usage trends. By
analyzing these combined metrics, the CH can perform a thorough assessment of node
behavior, distinguishing between temporary issues and consistent malicious activities. This
approach enables the CH to create a trust profile for each node based on both historical and
current behavior data, ensuring reliable data transmission throughout the network.

Additionally, monitoring multiple metrics minimizes the risk of false positives, resulting in
more accurate decisions about node reliability. Tracking energy consumption helps identify
abnormal patterns that may indicate packet dropping or malicious behavior. Finally, the CH
checks node cooperation with neighbors using the Cooperation Ratio, which aids in identifying
underperforming nodes. Overall, these evaluations help maintain the network's health by
enabling early detection of issues and ensuring efficient, robust performance.
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4.2  Packet Forwarding Behavior Calculation by Cluster Head

To assess the packet forwarding behavior of a node in a Wireless Sensor Network (WSN),
particularly in the context of a potential blackhole attack, it is essential to evaluate the node's
reliability in forwarding received packets over time. The objective is to determine whether the
node consistently forwards packets or drops them, which may suggest malicious activity.

The Packet Forwarding Ratio (PFR) is calculated using the following formula:

PaCketforwarded (t)
Packetpeceived(ti)

Packet Forwarding Behaviour(PFR)qy(t;) =
1)
In the above equation,

Packetsorwaraea(ti) be the number of packets forwarded by node i at time t

Packetgeceivea(t;)  be the number of packets received by node i at time t.

The PFR can already take values between 0 and 1 if the number of packets forwarded is less
than or equal to the number of packets received, assuming that the node forwards a portion of
the packets it receives l,e Packetrorwaraea(ti) < Packetpeceivea(ti)

We can define the Packet Forwarding Behavior (PFB) of a node iii as measured by the cluster
head (CH) in a normalized way. The key points are:

. If the number of packets forwarded by a node is greater than or equal to the packets
received, the behavior is capped at 1.

. If the node forwards no packets, the behavior is set to 0.
. If the node forwards half of the packets it receives, the behavior is 0.5.
. If no packets are received, the ratio is undefined, and we set the behavior to 0.

The Packet Forwarding Behavior (PFB) for node iii calculated by the cluster head (CH) is
defined as

T-Tf PaCkEtforwarded(ti) = PaCkEtRecer;ved(ti)

Packet Forwarding Behaviour 4(t;)= 0, if Packetsopyardea(t:) = 0 and Packetpaeipea(t:) = 0_(2)

M Pﬂd‘:'gtfm'wm'dsd l:t:'
Packetgeceived(ti)
PaCk'BtRecerlved(ti)

Jr if 0 < PaCkEtforwarded(ti) <

01 lf Pac;‘etﬂece:'ved(tf] =0

—
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If the number of packets forwarded is greater than or equal to the number of packets received
i.e Packetsyrwarded (ti) < Packetgeceivea(ti) the PFR will be capped at 1:

If Packet Forwarding Behaviourcy(t;) = 1,the node is forwarding all the packets it receives.

PaCketforwarded(ti)) =1

Packet Forwarding Behaviourqy(t;) = min (1,
J CH( 1) Packetgreceived(ti)

If no packets are forwarded by node i Packetsywardeq(ti)=0, the Packet forwarding ratio
becomes

Packet Forwarding Behaviourcy (t;) = — 0 o= 0
Received\ti

This means the node is not forwarding any packets.
Otherwise, the Packet Forwarding Behaviourcy(t;) = 0.5

If no packets are received by node | Packetgeceiveq(ti)=0 the ratio is undefined. In this case, a
common approach is to set:

Packet Forwarding Behaviourcy(t;) =0

By the way, a cluster head will calculate the Packet forwarding ratio of nodes which are in its
control.

4.3  Acknowledgment-Based Monitoring Calculated by Cluster Head

The Acknowledgment Ratio (AR) measures the proportion of acknowledgment (ACK) packets
received from a node in response to the data packets forwarded to it. When a cluster head (CH)
monitors other nodes, especially in the presence of potential blackhole nodes, the AR becomes
a key indicator of node reliability. Blackhole nodes usually drop packets and fail to send
acknowledgments, resulting in a low AR for these nodes. Thus, a low AR can be a warning
sign of malicious behavior, helping the CH identify unreliable or compromised nodes in the
network.

The Acknowledgment Ratio (AR) for node i is:

Packet gcknowledgment (ti)
Packetsent(t;)

Acknowledgment Ratiocy(t;) =

®)
The cluster head CH tracks the number of packets it sends to node i over time. This is denoted
asPacketgon: (t;).

The cluster head monitors how many ACK packets it receives from node iii in response to the
packets sent. This is denoted as Packetycknowieagment (ti)
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The Acknowledgment Ratio (AR), like the previous metrics, already naturally lies between 0
and 1 because:

l: if Pac;cefﬁcknowiedgmenr (ti) = Pa":ketsgnr(ti]

Packet 4cpnowiedgment (£1)
Packetgenslt)

0: if PaCkEtAcknawEsdgmsnt (fi] = 0 and PaCkEtSant(t:'] =0
0. 1f Packetg . (t;) =0

Pa'ckerﬂcknawisdgmsnt CH(f:']z = if 0< PaCkEfAcknowiedgmenr (ti) = Pac'kEtSsnr(ti]

4)
If no acknowledgments are received,
Packetycknowieagment (ti) = 0, Resulting in Acknowledgment Ratiocy(t;) = 0
If all packets sent are acknowledged,
Packetcknowieagment (ti) = Packetsen,(t;), Resulting in

Acknowledgment Ratiocy(t;) = 1

If all packets sent are partially acknowledged,

Packetcknowieagment (ti) = 0, Resulting in Acknowledgment Ratiocy(t;) = 0.5
4.4  Reputation Score (RS) by Cluster Head

To maintain and update a normalized reputation score for each node, the cluster head (CH) can
apply a weighted formula that integrates the node's previous reputation score with its current
behavior score. The current behavior score is derived from key metrics such as Packet
Forwarding Behavior (PFB) and Acknowledgment Ratio (AR). This approach allows the CH
to track changes in node behavior over time, ensuring that the reputation score reflects both
historical performance and recent actions, providing a balanced and up-to-date assessment of
node reliability.

Reputation Scorecy;+1)(i) = 0 X Reputation Score,(i) + f X Current Behavior Score
(5)

Reputation Score, (i) is the reputation score at time t, d and B are weighting factors, and the
current behavior score is based on metrics like packet forwarding and acknowledgment ratios.
Behavior denotes, If a node’s score steadily decreases over time, it indicates a history of
malicious or unreliable behavior. To maintain and update a normalized reputation score for
each node, the cluster head (CH) can use a weighted formula that combines the node's previous
reputation score with its current behavior score, which is based on metrics such as Packet
Forwarding Behavior (PFB) and Acknowledgment Ratio (AR).
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Current Behavior Scorecy ;1) (i)

= Ws. PaCketAcknowledgment CH(ti)
+ w, . Packet Forwarding Behaviourcy(t;) (6)

This formula (6) can be substituted in the above formula (5).
4.5 Cross-Verification with Neighboring Nodes by Cluster Head

To cross-verify the historical behavior of a node in a Wireless Sensor Network (WSN), the
cluster head (CH) can assess the node's activity by comparing it with the behavior of
neighboring nodes. This evaluation is based on the Cooperation Ratio (CR), which measures
how consistently a node cooperates with its neighbors. By analyzing the CR, the CH can
identify discrepancies in node behavior, detect signs of malicious activity, and ensure that each
node is functioning as expected in relation to the broader network. This cross-verification
process helps improve network reliability and security.

ACooperation Ratio ¢y (t;) = Cooperation Ratio ye;gnpours(t)-

Cooperation Ratio neignpours(¢i) (7
ACooperation Ratio o4 (t;)is large, node i may be underperforming or behaving maliciously
compared to its neighbors.

The Cooperation Ratio (CR) formula is:

SC(t;)
TC(ty) ®)

Cooperation Ratio -4 (t;) =

Where 0<Cooperation Ratio .4 (t;) <1 and deviations from the average neighbor CR can help
the cluster head identify abnormal behavior.

SC(t;) refers to successful interactions or data transmissions that node i has completed with its
neighbors (such as successful packet forwarding or acknowledgment exchanges).

TC(t;)refers to the total number of interaction opportunities or data transmissions involving
node i (both successful and failed).

4.6 Energy Calculation by Cluster Head

To identify potential blackhole attacks in a Wireless Sensor Network (WSN) through energy
consumption analysis, the cluster head (CH) can utilize the Energy Deviation (ED) metric. This
metric evaluates a node’s actual energy usage against the expected consumption for normal
packet forwarding activities. If a node exhibits significantly lower energy usage than
anticipated, it may indicate packet dropping, suggesting malicious behavior such as a blackhole
attack. By monitoring ED, the CH can effectively detect nodes that deviate from typical energy
patterns, helping to safeguard the network against such threats.
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Energy Deviation .y (t;)

Actual Energy(t;)

=1- 9
Expected Energy(t;) ®

Expected Energy(t;), the theoretical amount of energy that node i should consume is based
on the number of packets it is expected to forward. This can be calculated by considering the
total number of packets forwarded and the energy cost per packet.

Actual Energy(t;) This refers to the real amount of energy consumed by node i. If the node
forwards fewer packets than expected, its actual energy consumption will be lower than the
theoretical value. Expected Energy(t;) This refers to the real amount of energy consumed by
node i. If the node forwards fewer packets than expected, its actual energy consumption will
be lower than the theoretical value. This formula enables the cluster head to detect potential
blackhole nodes by monitoring nodes that show unusually low energy consumption relative to
their expected forwarding responsibilities. If a node consumes less energy than expected, it
may be engaging in packet-dropping behavior, which is often associated with blackhole
attacks.

This formula allows the cluster head to detect potential blackhole nodes by identifying those
with unusually low energy consumption compared to their expected packet-forwarding
responsibilities. When a node consumes less energy than anticipated, it may be involved in
packet-dropping behavior, which is commonly linked to blackhole attacks. The following
figure 2 shows the architecture of proposed model.

Aurhentic Sensor nodes,”
well defined resources

yeiopdop
MESM TFRIS]

— ]

E-Means Clhustering Algorithms

/\

Black hole nodes Trusted
Modes

Figure 2. Architecture Diagram of the Proposed Model
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The following algorithm depicts the calculation of various metrics by cluster head.

Algorithml: Evaluation of Various Metrics by Cluster Head

Function evaluateNode(node):
# Step 1: Calculate Packet Forwarding Behavior (PFB)
PFB = calculatePacketForwardingBehavior(node)
# Step 2: Calculate Acknowledgment Ratio (AR)
AR = calculateAcknowledgmentRatio(node)
# Step 3: Update Reputation Score (RS)
RS = updateReputationScore(node, PFB, AR)
# Step 4: Calculate Cooperation Ratio (CR)
CR = calculateCooperationRatio(node)
# Step 5: Calculate Energy Deviation (ED)
ED = calculateEnergyDeviation(node)
# Step 6: Store or return the metrics for the node
Return (PFB, AR, RS, CR, ED)
End Function
Function calculatePacketForwardingBehavior(node):
If node.Packets_Received(t) == 0:
Return O # Undefined, setto O
Else If node.Packets_Forwarded(t) >= node.Packets Received(t):
Return 1 # Capped at 1
Else If node.Packets_Forwarded(t) == 0:
Return 0 # No packets forwarded
Else:
Return node.Packets_Forwarded(t) / node.Packets_Received(t)
End Function

Function calculateAcknowledgmentRatio(node):
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If node.Packets_Sent(t) == 0:
Return 0 # Undefined, setto 0
Else If node.Packets_Acknowledgment(t) >= node.Packets_Sent(t):
Return 1 # All packets sent acknowledged
Else If node.Packets Acknowledgment(t) == 0:
Return 0 # No acknowledgments received
Else:
Return node.Packets_Acknowledgment(t) / node.Packets_Sent(t)
End Function
Function updateReputationScore(node, PFB, AR):
previousRS = node.ReputationScore(t) # Previous reputation score
currentBehaviorScore = (w1 * AR) + (w2 * PFB) # Current behavior score
newRS = alpha * previousRS + beta * currentBehaviorScore # Update formula
node.ReputationScore(t + 1) = newRS # Update the reputation score for next time
Return newRS
End Function
Function calculateCooperationRatio(node):
successfullnteractions = node.Successful_Interactions(t)
totalInteractions = node.Total_Interactions(t)
If totalInteractions == 0:
Return O # No interactions, set to 0
Return successfullnteractions / totalInteractions

End Function

Function calculateEnergyDeviation(node):

ActualEnergy = node.ActualEnergy(t)
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ExpectedEnergy = calculateExpectedEnergy(node) # Calculate
based

on expected forwarding

If ExpectedEnergy == 0:

Return 0 # Avoid division by zero

Return 1 - (ActualEnergy / ExpectedEnergy) # Normalize the energy deviation
End Function
Function calculateExpectedEnergy(node):

# This function calculates the expected energy based on packets expected to forward

packetsForwarded = node.Packets_Forwarded(t)

energyCostPerPacket = node.EnergyCostPerPacket

Return packetsForwarded * energyCostPerPacket # Expected energy calculation
End Function
# Main loop for cluster head to monitor nodes
For each node in cluster:

(PFB, AR, RS, CR, ED) = evaluateNode(node)

logNodeMetrics(node, PFB, AR, RS, CR, ED) # Log the metrics for each node
End For

5. Identification of Black hole Attacks using K-Means Clustering Algorithms

To identify blackhole attacks in a Wireless Sensor Network (WSN) using the K-Means
Clustering Algorithm, we can utilize several proposed metrics as features: Packet Forwarding
Behavior (PFB), Acknowledgment Ratio (AR), Reputation Score (RS), Cooperation Ratio
(CR), and Energy Deviation (ED). These metrics enable the cluster head (CH) to distinguish
between benign and malicious (blackhole) nodes by grouping the nodes according to their
behavioral patterns. Below is a detailed explanation, accompanied by an example.

Algorithm2: Identification of Blackhole Nodes

Step 1. INPUT:
- Node data with 5 features for each node: (PFB, AR, RS, CR, ED)

- Number of clusters k = 2 (for Normal Nodes and Blackhole Nodes)
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- Maximum iterations (MAX_ITER)
- Convergence threshold (THRESHOLD)
Step 2. INITIALIZATION:
- Randomly select two nodes as initial centroids for Cluster 1 and Cluster 2:
- Centroid_1 = (PFB_C1, AR_C1, RS C1, CR_C1, ED _C1)
- Centroid_2 = (PFB_C2, AR_C2, RS _C2, CR_C2, ED _C2)

The formula you mentioned is the Euclidean distance between two points in a 5-dimensional
space. In this case, the two points represent:

Node i with its feature values: PFB;, AR;, RS;, CR, ED;
Centroid 1 with its feature values PFB.;, AR.;, RS, CR.1, ED
Step 3. REPEAT until convergence or until MAX_ITER is reached:

- For each node i (where i =1 to N for N nodes):

- Calculate the Euclidean distance between node i and each centroid:

Node i with its feature values: PFB;, AR;, RS;, CR, ED;
Centroid 1 with its feature values PFB.;, AR.;, RS.;, CR.1, ED
The Euclidean distance formula between these two points is given by:

Distance,=
V(PFB; — PFB1)? + (AR; — AR¢1)?(RS; — RS¢1)?(CR; — CR¢1)?(ED; — ED.1)?

The formula for Distance_2 follows the same structure as the one for Distance_1, but with
respect to Centroid 2 (C2). Here's the Euclidean distance formula for Distance_2:

Distance,=
V(PFB; — PFB.;)? + (AR; — AR:2)?(RS; — RS:2)%(CR; — CR2)*(ED; — ED,;)?

- Assign node i to the closest cluster based on the minimum distance:
- If Distance_1 < Distance_2, assign node i to Cluster 1 (Normal Nodes)
- Else assign node i to Cluster 2 (Suspicious Nodes)
- After all nodes are assigned to clusters:

- For each cluster (Cluster 1 and Cluster 2):

- Recalculate the centroid by taking the mean of all nodes assigned to that cluster:
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- Centroid 1 = (mean_PFB_Clusterl, mean AR _Clusterl, mean RS Clusterl,
mean_CR_Clusterl, mean_ED_Clusterl)

- Centroid_ 2 = (mean_PFB_Cluster2, mean_AR_Cluster2, mean_ RS Cluster2,
mean_CR_Cluster2, mean_ED_Cluster2)

- Check for convergence:

- If the centroids' positions have not changed significantly (i.e., the change in position is less
than THRESHOLD for both centroids), STOP.

- If the centroids have changed, repeat the process.
Step 4. OUTPUT:

- Final cluster assignments: Nodes in Cluster 1 are considered normal nodes, and nodes in
Cluster 2 are considered suspicious (potential blackhole attackers).

6. Proof of Concept a Mathematical Example

Let’s extend the example to 20 nodes with randomly assigned normalized feature values for
Packet Forwarding Behavior (PFB), Acknowledgment Ratio (AR), Reputation Score (RS),
Cooperation Ratio (CR), and Energy Deviation (ED). Here’s a table 1 showing the features of
20 nodes.

Table 1. Sample Dataset with 20 features

ID PFB AR RS CR ED
N1 0.9 0.88 0.85 0.92 0.1
N2 0.3 0.25 0.35 0.4 0.75
N3 0.85 0.87 0.88 0.9 0.08
N4 0.4 0.45 0.5 0.55 0.65
N5 0.78 0.8 0.82 0.84 0.12
NG 0.25 0.2 0.3 0.22 0.78
N7 0.95 0.92 0.9 0.94 0.05
N8 0.2 0.18 0.25 0.15 0.85
N9 0.87 0.89 0.9 0.88 0.07
N10 0.35 0.3 0.4 0.45 0.7
N11 0.82 0.85 0.87 0.88 0.1
N12 0.5 0.55 0.6 0.58 0.6
N13 0.18 0.15 0.2 0.25 0.88
N14 0.89 0.92 0.9 0.91 0.09
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N15 0.27 0.22 0.3 0.2 0.8
N16 0.75 0.78 0.82 0.8 0.13
N17 0.92 0.94 0.91 0.93 0.06
N18 0.15 0.1 0.2 0.18 0.9
N19 0.8 0.82 0.85 0.83 0.12
N20 0.38 0.35 0.4 0.45 0.68

Step 1: Initialize Cluster Centroids

. Let’s randomly select two initial centroids from the dataset:
o Centroid 1: Node N1 = (0.90, 0.88, 0.85, 0.92, 0.10)
o Centroid 2: Node N8 = (0.20, 0.18, 0.25, 0.15, 0.85)

Step 2: Compute Distances

We calculate the Euclidean distance between each node and the two centroids. Using the
formula:

d(xl‘ — Ck):\/(PFBi - PFBk)Z + (ARL — ARk)Z(RSl - RSk)Z(CRl - CRk)Z(EDl — EDk)z

We can compute the distance between Node N3 and Centroid 1 as:

d(x; — Ck)Z\/(PFBi — PFBy)? + (AR; — AR)?(RS; — RS,)?(CR; — CR,)?*(ED; — EDy)?

We can compute the distance between Node N3 and Centroid 1 as:

d(N3 — ¢1)=y/(0-85 — 0.90)2 + (0.87 — 0.88)2 + (0.88 — 0.85)% + (0.90 — 0.92)2 +
(0.08 — 0.10)2

=+/0.0025 + 0.0001 + 0.0009 + 0.0004 + 0.0004

=1/0.0043

=0.0655

Similarly, calculate the distance to Centroid 2.
Step 3: Assign Nodes to Clusters

Based on the computed distances, assign each node to the nearest centroid. Let’s assign the
nodes to the clusters as follows:

. Cluster 1 (Normal Nodes): N1, N3, N5, N7, N9, N11, N14, N16, N17, N19
. Cluster 2 (Suspicious Nodes): N2, N4, N6, N8, N10, N12, N13, N15, N18, N20
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Step 4: Recomputed Centroids
Recalculate the centroids by averaging the feature values of the nodes in each cluster.

For Cluster 1, the new centroid would be the average of the feature vectors of all nodes in the
cluster:

Clz% ((0.90,088,0.85,0.92,0.10) + --- + (0.80,0.82,0.85,0.83,0.12))
For Cluster 2, similarly average the nodes assigned to that cluster.

Step 5: Repeat Until Convergence

Repeat the distance calculation and reassignment of nodes until the cluster centroids stabilize,
and the cluster memberships no longer change.

Final Cluster Assignments

. Cluster 1 (Normal Nodes): N1, N3, N5, N7, N9, N11, N14, N16, N17, N19.

o These nodes have high PFB, AR, RS, and CR, with low ED.
. Cluster 2 (Suspicious Nodes): N2, N4, N6, N8, N10, N12, N13, N15, N18, N20.
o These nodes exhibit lower PFB, AR, RS, and CR, with higher ED, indicating

potential blackhole activity.
7. Trust Update Mechanism

. Use a trust update model where nodes' behavior is continuously evaluated over time.
Trust scores are updated based on the observations of the node’s forwarding behavior.

o Trust Decay: Trust should decay over time if no recent interactions are recorded,
allowing the network to quickly adapt to new conditions.

o Trust Update Equation:
Ti41() = (1 —y)X (T;(i) + y + New Classification of nodes
where y is the trust decay factor, T;(i) is the trust score at time t, and New Trust Evidence is
the score based on the latest interactions (e.g., forwarding ratios, acknowledgment).
8. Simulation Results and Discussion

To assess the performance of the proposed model in comparison to the traditional DSR routing
protocol and the protocols presented by Virendra Dani et al. (2022) and N. Dharini et al. (2020),
a detailed simulation was carried out using the NS3 Simulator tool. The evaluation focused on
key performance metrics under varying conditions. In the simulation setup, a maximum of 100
nodes was involved, and blackhole nodes were introduced progressively, starting from 10%,
and increasing up to 80% over the simulation period. The parameters for the simulation
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outlined in Table 4.The traffic type was set to Constant Bit Rate (CBR), ensuring a steady flow
of data, while the Nakagami propagation model was used to simulate realistic wireless
communication conditions. Nodes moved according to the Random Waypoint mobility model,
representing random movement patterns within the network. The medium access control
(MAC) layer followed the 802.11 standard, and the communication took place over wireless
channels. The data payload size for each packet was 512 bytes, and the simulation area covered
1000m x 1000m. The nodes' speed varied across several values: 5, 10, 15, 20, and 25 meters
per second, and the data rate for transmission was set at 10.4 Mbps. These configurations
allowed for a comprehensive analysis of the model's performance under different network
conditions and attack scenarios.

Packet Dropping Ratio Analysis in the Presence of Black hole Attacks

Figure 3 depicts the effect of Black hole attacks on the packet drop rate in a Wireless Sensor
Network (WSN). The graph clearly shows a direct relationship between the number of Black
hole nodes and the packet drop rate, where an increasing number of attacks results in a
corresponding rise in dropped packets. This pattern remains consistent over time, illustrating
how Black hole attacks degrade network performance. The traditional DSR protocol, which
lacks mechanisms to identify and defend against these attacks, is particularly vulnerable. As a
result, the absence of security features in DSR contributes to the increased packet loss when
Black hole nodes are present. This emphasizes the importance of incorporating advanced
security strategies within WSNs to address these attacks. With proper detection and defense
techniques, networks can minimize the impact of Black hole nodes, ensuring better
performance and stability.

100

90 4 '\ DSR Routing Protocol |
— ]
<]
S 80
=
£
g 70+
o
[=)) [ |
£ 60 TR
: .
O 50
9]
4
S 404
o
30 [ ]

T T T T T T T T 1
0 10 20 30 40 50 60 70 8 90
Number of Blackhole nodes in (%)

Figure 3. Influence of Black hole Attackers under Normal DSR Routing Protocol
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Packet Delivery Ratio Analysis vs Black hole Attackers

Figure 4 presents a detailed analysis of how the packet delivery ratio (PDR) in a Wireless
Sensor Network (WSN) is affected by the presence of Black hole attacks. In this study, we
systematically increased the number of Black hole nodes at regular intervals to observe the
corresponding changes in PDR. The results are telling: our proposed model consistently
achieves a higher PDR compared to the traditional Dynamic Source Routing (DSR) protocol
and the models introduced by Dharini et al. (2020) and Virendra et al. (2022). Even as the
proportion of Black hole attackers escalates, our model maintains a significantly superior PDR,
demonstrating its robustness against such malicious activities. This enhanced performance
underscores the effectiveness of our approach in mitigating the adverse effects of Black hole
attacks on packet delivery within WSNs. The key to our model's success lies in its integration
of advanced detection and mitigation techniques. Specifically, we employ a multi-trust
evaluation mechanism that considers a variety of Quality of Service (QoS) metrics: Packet
Forwarding Behavior (PFB), Acknowledgment Ratio (AR), Reputation Score (RS),
Cooperation Ratio (CR), and Energy Deviation (ED). By analyzing these metrics collectively,
our model gains a comprehensive understanding of each node's behavior and trustworthiness.
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Figure 4. Packet Delivery Ratio Vs. No.of Blackhole Nodes

To further refine the detection process, we utilize the K-means clustering algorithm. This
unsupervised machine learning technique groups nodes based on the evaluated QoS metrics,
effectively distinguishing between normal and malicious behavior. As a result, Black hole
nodes are identified and isolated more efficiently, which significantly reduces their impact g
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the network's PDR. In contrast, the model proposed by Dharini et al. (2020) relies on a narrower
set of metrics—packet count, energy levels, and Z-score calculations—to assess node
trustworthiness. While this approach does offer some level of protection, it lacks the depth
provided by our multi-metric evaluation, leading to a lower PDR than our model but still higher
than that of the traditional DSR protocol and the model by Virendra et al. (2022).

Virendra et al.'s (2022) model focuses on Node Energy, Node Buffer Length, and Packet Drop
metrics. This limited scope results in a weaker detection mechanism for Black hole attacks.
The minimal set of parameters fails to capture the nuanced behaviors of malicious nodes fully,
leading to a lower PDR compared to both our model and Dharini et al.'s approach. The
traditional DSR protocol, devoid of any built-in security features, performs the worst among
all, with a significantly reduced PDR as the number of Black hole attackers increases. Our
model's incorporation of multiple QoS metrics and the K-means clustering algorithm facilitates
a more nuanced and accurate evaluation of each node's reliability. For instance, PFB assesses
how consistently a node forwards packets, while AR measures the ratio of acknowledgments
received, indicating responsiveness. RS aggregates historical interactions to provide an overall
trust score, CR evaluates the willingness of nodes to cooperate within the network, and ED
monitors deviations in energy consumption that could signify malicious activity.

By analyzing these diverse metrics, our model can detect subtle anomalies in node behavior
that single-metric models might overlook. The use of K-means clustering enhances this
capability by grouping nodes with similar behaviors, making it easier to identify outliers
indicative of Black hole attacks. This comprehensive approach not only improves the detection
rate of malicious nodes but also minimizes false positives, ensuring that legitimate nodes are
not wrongly penalized. The superior performance of our model, as evidenced by the
consistently higher PDR in Figure 4, highlights the importance of a multifaceted security
strategy in WSNs. Black hole attacks pose a significant threat to network integrity by
selectively dropping packets, which can severely disrupt communication and data transmission.
By effectively identifying and isolating these malicious nodes, our model safeguards the
network's performance and reliability.

End to End Delay Analysis vs Black hole Attackers

The proposed model achieves significantly lower end-to-end delay compared to the models by
Dharini et al. (2020) and Virendra et al. (2022) due to its advanced detection and mitigation
techniques for Black hole attacks in Wireless Sensor Networks (WSNs). By employing a multi-
trust evaluation mechanism using diverse Quality of Service (QoS) metrics—such as Packet
Forwarding Behavior (PFB), Acknowledgment Ratio (AR), Reputation Score (RS),
Cooperation Ratio (CR), and Energy Deviation (ED)—the proposed model quickly identifies
malicious nodes, reducing packet loss and minimizing the need for retransmissions and route
rediscoveries. In contrast, Dharini et al.’s model, which relies on simpler metrics like pac
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count, energy levels, and Z-score, and Virendra et al.'s model, which uses Node Energy, Node
Buffer Length, and Packet Drop, both have limited detection capabilities. This results in slower
responses to Black hole attacks, leading to more packet loss, increased route rediscovery, and
ultimately higher end-to-end delays. Moreover, the proposed model integrates the K-means
clustering algorithm, which further enhances its ability to classify and isolate malicious nodes
efficiently, a feature absent in both Dharini et al.'s and Virendra et al.'s models. The result is a
more stable and efficient network, with the proposed model maintaining optimal routing and
packet delivery performance even as the proportion of Black hole nodes increases, whereas the
other two models experience higher delays due to their less comprehensive detection and
mitigation strategies. The figure 4 depicts the end to end delay.
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Figure 5. End to End Delay vs % Black hole Attackers
Routing Overhead vs Black hole Attackers

The routing overhead which is shown in figure 6 is significantly lower in the proposed model
compared to the traditional DSR protocol and the models by Dharini et al. (2020) and Virendra
etal. (2022) due to its more efficient detection, mitigation, and routing mechanisms in handling
Black hole attacks in Wireless Sensor Networks (WSNSs). One of the key factors contributing
to reduced routing overhead is the proposed model's ability to quickly and accurately detect
malicious nodes using a multi-trust evaluation system that incorporates metrics such as Packet
Forwarding Behavior (PFB), Acknowledgment Ratio (AR), Reputation Score (RS),
Cooperation Ratio (CR), and Energy Deviation (ED). These comprehensive metrics allow
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model to preemptively identify Black hole nodes, which minimizes the need for frequent route
rediscoveries or adjustments. In contrast, models like those of Dharini et al. and Virendra et al.
rely on fewer or more basic metrics, leading to slower detection of malicious activity and more
reactive responses, which result in higher routing overhead due to increased route repairs and
rediscoveries.

Additionally, the incorporation of the K-means clustering algorithm in the proposed model
enhances its ability to classify nodes based on behavior patterns, allowing for proactive route
adjustments that avoid compromised nodes. This clustering approach reduces the need for
repetitive route maintenance or updates, which traditionally contribute to routing overhead. In
contrast, the lack of such advanced clustering in the other models results in less efficient route
management, further increasing overhead. By maintaining stable and secure routes, the
proposed model reduces the amount of control messages required for route discovery and
maintenance. Since Black hole nodes are isolated more efficiently, there are fewer instances
where packets are dropped or routes fail, leading to a lower frequency of route rediscovery
processes, which would otherwise contribute to higher routing overhead. As a result, the overall
communication efficiency is enhanced, keeping the routing overhead minimal while
maintaining optimal network performance.
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Figure 6. Routing Overhead vs % of Black hole Attackers

Detection Accuracy vs Black hole Attackers

The detection accuracy which is shown in the figure 7 in the proposed model is notably high
due to its multi-faceted approach to evaluating node behavior and identifying Black hol
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attacks in Wireless Sensor Networks (WSNs). The model employs a comprehensive multi-trust
evaluation mechanism that incorporates several Quality of Service (QoS) metrics—such as
Packet Forwarding Behavior (PFB), Acknowledgment Ratio (AR), Reputation Score (RS),
Cooperation Ratio (CR), and Energy Deviation (ED)—to assess the reliability and
trustworthiness of nodes. This wide range of metrics allows the model to detect subtle
deviations in node behavior that might indicate malicious activity, leading to more accurate
identification of Black hole nodes. Unlike models by Dharini et al. (2020) and Virendra et al.
(2022), which rely on fewer or less comprehensive parameters like packet count, energy levels,
Node Buffer Length, and Packet Drop, the proposed model’s broader set of metrics provides a
holistic view of node activity. By analyzing multiple aspects of node behavior, such as how
well nodes forward packets (PFB), their acknowledgment patterns (AR), historical reputation
(RS), willingness to cooperate (CR), and energy consumption anomalies (ED), the proposed
model can more effectively distinguish between normal network variations and actual
malicious behavior. This comprehensive analysis reduces false positives and false negatives,
contributing to higher detection accuracy.
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Figure 7. Detection Accuracy Vs. Number of Blackhole Nodes

Moreover, the proposed model’s use of the K-means clustering algorithm significantly
enhances its detection accuracy. K-means clustering allows the model to group nodes based on
behavioral patterns derived from the QoS metrics. This machine learning technique helps the
system classify nodes more accurately by identifying clusters of nodes that exhibit similar
behaviors, making it easier to pinpoint outliers—those nodes behaving abnormally due to Black
hole attacks. The clustering approach increases the precision of detecting malicious no
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while reducing the likelihood of misclassifying legitimate nodes as malicious. In summary, the
high detection accuracy of the proposed model stems from its multi-metric evaluation system
and the application of K-means clustering, which together provide a detailed and precise
understanding of node behavior. This multifaceted approach allows for the early and accurate
identification of Black hole nodes, ensuring better network protection and fewer disruptions
from undetected attacks.

9. Conclusion

In conclusion, securing communication in Wireless Sensor Networks (WSNSs) against threats
such as blackhole attacks is crucial for preserving the integrity and functionality of the network.
This paper presents a robust system in which the Cluster Head (CH) actively monitors and
evaluates node behavior through a set of critical metrics: Packet Forwarding Behavior (PFB),
Acknowledgment Ratio (AR), Reputation Score (RS), Cooperation Ratio (CR), and Energy
Deviation (ED). These metrics work collectively to identify abnormal activities, particularly
those related to packet dropping that signify blackhole attacks. The employment of the K-means
clustering algorithm allows for effective classification of nodes into two distinct groups—
normal and suspicious—based on their behavior. By iteratively adjusting cluster centroids
using Euclidean distance, the algorithm ensures accurate differentiation between benign and
potentially malicious nodes. The mathematical proof provided demonstrates the applicability
and validity of the proposed model, and the simulation results further highlight its superior
performance compared to existing models.Overall, this approach enhances the security and
resilience of WSNs by enabling timely detection and response to blackhole attacks, thereby
ensuring more reliable communication and improved network performance. The findings
underscore the effectiveness of using a multi-metric evaluation scheme in conjunction with
clustering algorithms to bolster network security against evolving threats.

Future Enhancement

Future improvements could focus on expanding the node evaluation framework to include
machine learning algorithms for predictive analysis, enabling more precise identification of
emerging threats. Additionally, the implementation of real-time adaptive thresholds for
metrics, based on the dynamics of the network, could further enhance detection efficiency.
Expanding the system to facilitate cross-cluster cooperation and trust propagation would
improve security across the network, allowing for distributed detection of malicious nodes in
the WSN. Finally, incorporating energy-efficient strategies to optimize CH performance
without sacrificing security could enhance the overall longevity and performance of the
network. The rapid evolution of mobile computing and wireless networking technologies has
led to a significant rise in the number of mobile users globally. This trend is central to the
deployment of modern mobile ad-hoc networks and the provision of reliable communication
services to users. However, ensuring dependable service is challenging due to limited resour;
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and complex network topologies. Trust protocols for mobile ad-hoc networks have emerged as
a vital area of research in recent years, facilitating community-based mobile applications.
Given the absence of central coordination and the shared nature of the wireless medium,
achieving reliable communication in ad-hoc wireless networks is considerably more complex
than in wired networks.
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