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Abstract 

In Wireless Sensor Networks (WSNs), securing communication against threats like blackhole 

attacks is essential for maintaining the integrity of the network. This paper proposes a system 

where the Cluster Head (CH) monitors and evaluates node behavior using manifold metrics: 

Packet Forwarding Behavior (PFB), Acknowledgment Ratio (AR), Reputation Score (RS), 

Cooperation Ratio (CR), and Energy Deviation (ED). These metrics help detect abnormal 

activities, especially packet dropping associated with blackhole attacks. The PFB measures 

how effectively a node forwards packets, while AR gauges the node's reliability in sending 

acknowledgments for forwarded packets. The RS is a long-term metric combining AR and PFB 

to track a node's trustworthiness over time. CR assesses a node's cooperative behavior with 

neighboring nodes, and ED evaluates energy usage, identifying anomalies in power 

consumption that could signal malicious activity. To classify nodes as either normal or 

potentially malicious (blackhole), a K-means clustering algorithm is employed. Nodes are 

grouped based on the five metrics into two clusters: one for normal nodes and another for 

suspicious nodes. The algorithm iteratively adjusts the cluster centroids using Euclidean 

distance until stable clusters are formed or a maximum number of iterations is reached. By 

applying this approach, the system effectively differentiates between normal and blackhole 

nodes, improving the security and resilience of WSNs against attacks. A proof of mathematical 

has proven the applicability of the proposed model. The simulation results shows better result 

compare with other existing models in terms of performance metrics. The proposed model has 

effectively detect the balckhole nodes compare with other models. 
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1. Introduction 

In Wireless Sensor Networks (WSNs), ensuring secure and reliable data transmission is critical 

to maintaining overall network efficiency. These networks are frequently utilized in 

applications where real-time monitoring and communication are necessary, such as 

environmental observation, military operations, and healthcare monitoring (Alzubaidi, L et al., 

2018). However, WSNs are highly susceptible to a variety of security threats, with blackhole 

attacks being one of the most severe. During a blackhole attack, malicious nodes deliberately 

drop packets instead of forwarding them, leading to substantial data loss and performance 

degradation across the network (Dharini, N et al., 2022). As a result, detecting and addressing 

these attacks is essential to maintaining the network’s operational integrity. This paper 

introduces a multi-metric node evaluation approach, which allows a Cluster Head (CH) to 

observe and evaluate the behavior of nodes within its cluster. The system analyzes multiple 

parameters including Packet Forwarding Behavior (PFB), Acknowledgment Ratio (AR), 

Reputation Score (RS), Cooperation Ratio (CR), and Energy Deviation (ED). Together, these 

metrics serve to identify suspicious activities such as packet dropping, a hallmark of blackhole 

attacks. By tracking node behavior over time, the CH can detect and isolate malicious nodes, 

thus enhancing the security and stability of the network (Virendra, D et al., 2022). The figure 

1 depicts the representation of wireless sensor networks. 

 

Figure 1. The Representation of Wireless Sensor Network 

Blackhole attacks exploit the trust-based nature of WSN routing mechanisms. In these attacks, 

malicious nodes mislead others by falsely claiming the most efficient routes, only to discard 

data packets once received. This disruption leads to extensive data loss and deteriorates the 

overall network communication (Yoon, J et al., 2021, Zhang, H et al., 2019). Detecting these 



 
Received: 06-02-2025        Revised: 15-03-2025 Accepted: 30-04-2025 

 

 
 809 Volume 49 Issue 2 (April 2025) 

https://powertechjournal.com 

 

attacks is challenging but crucial for preventing data inaccuracies and ensuring the success of 

mission-critical operations. If left unchecked, such attacks can compromise the network’s 

reliability and diminish the quality of data gathered from the environment. The proposed 

detection strategy in this paper leverages a combination of short-term and long-term behavioral 

metrics to provide a comprehensive solution to detect blackhole attacks. By continually 

evaluating node performance, the Cluster Head can make informed decisions and take 

preventative actions, safeguarding the network from malicious activities and ensuring reliable 

packet transmission in WSNs (Liu, C et al., 2020). 

The main goal of this research is to develop a robust and efficient multi-metric framework 

aimed at detecting malicious node activities, particularly blackhole attacks, in Wireless Sensor 

Networks (WSNs). The specific objectives are as follows: 

• Multi-Metric Evaluation Scheme: To propose a method that uses multiple metrics 

such as Packet Forwarding Behavior (PFB), Acknowledgment Ratio (AR), Reputation Score 

(RS), Cooperation Ratio (CR), and Energy Deviation (ED) to continuously monitor and assess 

node performance. 

• Blackhole Attack Detection: To identify and mitigate blackhole attacks by detecting 

nodes that fail to forward packets or drop them intentionally, preventing data loss and ensuring 

network integrity. 

• Anomaly Detection in Packet Forwarding: To ensure the reliability of data 

transmission by integrating short-term and long-term behavioral data, identifying deviations 

from normal patterns, and detecting anomalies in node behavior. 

• Cooperation Verification: To use the Cooperation Ratio (CR) for cross-verifying node 

interactions with neighbors, enabling the identification of unreliable or malicious nodes more 

comprehensively. 

• Energy Deviation Analysis: To monitor node energy consumption using the Energy 

Deviation (ED) metric, helping to identify energy anomalies that may signal malicious actions 

like packet dropping or underperformance. 

• Network Security and Reliability: To enhance the security and operational stability 

of WSNs by equipping the Cluster Head (CH) with a powerful mechanism to detect 

compromised nodes and prevent potential network failure. 

• Foundation for Future Enhancements: To lay the groundwork for future 

developments, such as incorporating advanced machine learning techniques and collaborative 

intrusion detection systems, for detecting more sophisticated attacks in WSNs. 
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Through these objectives, the research aims to build a holistic framework to improve the 

security, reliability, and performance of WSNs by effectively identifying and addressing 

blackhole attacks in real time. 

2. Background 

2.1 Trust Management in WSN 

In Wireless Sensor Networks (WSNs), where communication occurs over a shared medium, 

malicious nodes can exploit vulnerabilities to launch security attacks. The nodes in WSNs are 

typically constrained in terms of computational power, energy, memory, and bandwidth, 

making them particularly susceptible to such attacks, potentially rendering the network 

ineffective. Therefore, trust management is essential in WSNs to bolster security and ensure 

reliable network operation. 

Trust plays a critical role in several network processes (Blaze, M et al., 1996). For instance, 

when routing, sensor nodes must identify which other nodes can be trusted to forward data. 

During the sensing process, nodes rely on neighboring nodes to validate measurements and 

detect anomalies. Trust also informs decisions related to data disclosure and key exchange, 

ensuring that only trusted nodes handle sensitive information. Trust management systems 

(TMS) offer lightweight solutions suitable for resource-constrained WSNs, ensuring improved 

network security without significantly affecting performance (Adnan, A et al., 2019). The 

concept of trust management was initially introduced by Blaze et al. in 1996 as a unified 

method for defining security policies and identifying trust relationships to facilitate secure 

authorization in distributed systems. Traditional authorization methods were insufficient in 

distributed environments, leading to the development of TMS to address these gaps by focusing 

on privileges and restrictions rather than individual identities (Niyato, D., et al., 2008). 

In WSNs, nodes collaborate to provide network services such as data sensing and routing. Each 

node collects physical data and forwards it through other nodes toward a base station. Nodes 

can choose between prioritizing speed or conserving energy when transmitting data. Trust 

management is crucial in determining which nodes are most likely to perform specific tasks 

effectively and cooperatively (Rao, H et al., 2010). However, uncertainties arise from factors 

like data asymmetry (where a node lacks complete information about its peers) and 

opportunism (where nodes may pursue conflicting objectives). These uncertainties are 

exacerbated when some nodes are compromised or malfunctioning (Zhang, Z et al., 2019). 

A Trust Management System helps mitigate uncertainty by using historical data to evaluate the 

trustworthiness of nodes. A node that has performed reliably in the past is likely to be trusted 

for similar tasks in the future. This enables nodes to coordinate with the most trustworthy peers, 

identifying faulty or malicious nodes and improving network reliability. Additionally, TMS 

can support other security mechanisms like privacy protection and key management by 
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enabling devices to exclude untrusted nodes from sensitive operations and secure key 

exchanges (Mahmoud, A. A et al., 2019).  

2.2 The Impact of Blackhole Attacks in Wireless Sensor Networks (WSNs) 

Wireless Sensor Networks (WSNs) are made up of distributed sensor nodes that collect and 

transmit environmental data to a central base station. These nodes often face limitations in 

terms of battery life, processing power, and memory. Deployed in environments like disaster 

zones, military fields, or healthcare settings, WSNs are susceptible to various security 

challenges. Among these, blackhole attacks stand out as particularly damaging (Akyildiz, I. F., 

et al., 2002). In a blackhole attack, a malicious node deceives neighboring nodes by claiming 

it has the shortest route to the base station. Once data is routed through it, the node drops the 

packets instead of forwarding them (Alcaraz, C et al., 2015). The effects of this attack include 

(Ding, Y et l., 2016, Khan, S. A et al., 2019, Kumar, A et al., 2018 and Nadir et al., 2018): 

▪ Data Loss: When packets are dropped, the network suffers data loss, which disrupts 

critical real-time applications such as military surveillance and emergency monitoring. 

▪ Degraded Network Performance: The attack hampers network performance by 

causing delays and requiring packet retransmissions, which drain energy and further strain the 

nodes' limited resources. 

▪ Compromised Network Integrity: Blackhole nodes disrupt routing protocols, eroding 

trust in the network and making it harder for nodes to forward data reliably. 

▪ Increased Energy Consumption: As affected nodes continue attempting 

transmissions, their energy resources are unnecessarily depleted, further reducing the lifespan 

of the network. 

▪ Cascading Failures: If not detected early, the attack can escalate, leading to 

widespread network disruption as more nodes unknowingly forward data to the blackhole node. 

Detecting and countering blackhole attacks is essential to ensure the security, efficiency, and 

longevity of WSNs. 

2.3 K-Means Clustering in WSNs 

The K-means clustering algorithm (Jain, A. K et al., 2010, Chaudhary, V et al., 2014, Xiao, Y 

et al., 2015 and Zhang, Y et al., 2016), a popular unsupervised learning method, can be 

effectively applied to WSNs for various purposes, including anomaly detection and efficient 

communication. The K means clustering algorithm has discussed in[]. The algorithm works 

by: 

▪ Initialization: Choosing K initial centroids, representing cluster centers. 

▪ Assignment: Assigning each node to the nearest centroid based on distance, typically 

using the Euclidean distance metric. 
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▪ Update: Recalculating the centroids based on the mean of nodes in each cluster. 

▪ Iteration: Repeating the assignment and update steps until centroids stabilize. 

In WSNs, K-means can be utilized to: 

• Optimize communication: Nodes are clustered based on proximity or energy levels, 

reducing direct transmissions and saving energy. 

• Detect anomalies: Nodes exhibiting abnormal behavior, like unusual energy 

consumption or packet forwarding patterns, can be grouped into separate clusters, helping to 

identify malicious nodes involved in attacks like blackhole activities. 

By combining K-means clustering with metrics like Packet Forwarding Behavior (PFB) and 

Acknowledgment Ratio (AR), WSNs can enhance their defense against malicious attacks, 

improving overall network security and resilience. 

3. Review of Literature 

This section reviews various studies that address security challenges in Wireless Sensor 

Networks (WSNs), particularly in relation to trust, routing protocols, and security mechanisms. 

These studies explore diverse approaches to mitigating threats such as selective forwarding, 

eavesdropping, and malicious attacks within WSNs. Cao et al. (2021) developed an Identity-

Based Encryption Algorithm (IIBE) to improve network security by simplifying the key 

generation process. Their solution reduces network traffic and overcomes several challenges 

associated with traditional encryption systems, including the management of public key 

certificates and key escrow issues. By eliminating the need for certificates, IIBE enhances 

efficiency while ensuring robust security. 

Zhou et al. (2016) proposed a novel framework for WSNs consisting of three types of nodes: 

Cluster Heads (CHs), Inspector Nodes (INs), and Member Nodes (MNs). The INs monitor CH 

transmissions to prevent selective-forwarding attacks, while CHs relay packets from MNs and 

other CHs. This framework employs a reputation-based system to evaluate the behaviors of 

CHs and INs, calculating a composite reputation value (CRV) that accounts for forwarding 

rates, malicious node detection, and energy levels. The system not only improves security but 

also optimizes energy consumption, extending the network's operational lifetime. Haseeb et al. 

(2019) introduced the Energy-Aware and Secure Multi-Hop Routing (ESMR) protocol to 

improve both energy efficiency and multi-hop data security in WSNs. This protocol segments 

the network into inner and outer zones, creating clusters of nodes based on proximity. It 

enhances secure communication by using a secret-sharing mechanism to protect the data as it 

is transmitted between cluster heads and sink nodes. ESMR reduces vulnerabilities and ensures 

energy-efficient secure routing in multi-hop WSNs. Ourrouss et al. (2021) focused on 

combating malicious attacks through a bio-inspired trust management model, which integrates 
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the beta reputation system with Ant Colony Optimization (ACO). This model was applied to 

enhance the Dynamic Source Routing (DSR) protocol by identifying and isolating malicious 

nodes from the data forwarding process. The proposed system improves the robustness of the 

DSR protocol by ensuring that only trustworthy nodes participate in the routing process, thus 

preventing attacks like black hole and selective forwarding. 

Majumder et al. (2023) proposed the CRYPTO-DSR protocol, a cryptography-based Dynamic 

Source Routing protocol designed to secure data transmission within WSNs. The protocol 

incorporates Johnson’s algorithm for route computation and hash functions for secure packet 

transmission. By securing the data and routing path, CRYPTO-DSR strengthens the overall 

security of the WSN. This protocol also reduces the possibility of attacks targeting data 

integrity during transmission. Ali et al. (2020) introduced a data security method that utilizes a 

modified version of the Diffie-Hellman algorithm to reduce computational and response time 

while enhancing security. This method focuses on efficient generation of hash values for 

transmitted data, ensuring data integrity while improving processing efficiency. The approach 

is evaluated for its resilience to various attack vectors, ensuring that the protocol remains secure 

in a variety of scenarios. In WSNs, particularly in resource-constrained environments, 

implementing heavy security mechanisms like traditional cryptographic methods or blockchain 

can be challenging due to their high computational demands. These systems often require 

significant processing power, memory, and energy, which are not always available in WSN 

devices. Therefore, lightweight security solutions have gained significant attention. These 

solutions aim to balance security and resource efficiency, ensuring adequate protection against 

common security threats without overburdening the network's limited resources. 

Research Gap 

Although the aforementioned studies provide valuable insights into security challenges in 

WSNs, there are still several gaps that need to be addressed. One major gap is the need for 

security solutions that are both lightweight and capable of dealing with emerging security 

threats, such as black hole and selective forwarding attacks, without compromising network 

efficiency. Many existing solutions, while effective in specific scenarios, either focus on 

computationally expensive techniques or do not address the dynamic nature of WSNs 

effectively.Furthermore, while trust management models have been proposed, the integration 

of trust-based systems with routing protocols such as DSR, and their ability to adapt to dynamic 

changes in node behavior and network topology, remains underexplored. More research is 

needed to develop dynamic, scalable trust models that are lightweight and resource-efficient 

for WSNs, particularly for IoVT environments where vehicles continuously join and leave the 

network. 

Lastly, there is a gap in exploring the integration of bio-inspired and machine learning-based 

methods with lightweight security protocols for real-time detection and mitigation of security 
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threats in WSNs. These approaches can potentially enhance the adaptability and accuracy of 

security mechanisms while ensuring minimal computational overhead, which is crucial for 

devices with limited resources. 

In this context, the proposed research aims to fill these gaps by developing a lightweight, 

adaptive, and trust-based security model for WSNs and IoVTs, specifically focusing on the 

detection and mitigation of black hole attacks within the DSR routing protocol. 

4. Proposed System   

In a Wireless Sensor Network (WSN) designed to detect blackhole attacks, the following steps 

are assumed for initializing the network, along with the key assumptions for the described 

context. 

4.1. Network Setup 

• Nodes: The network consists of sensor nodes (N1, N2, N3, ..., Nn), deployed to monitor 

a specific area, collect data, and transmit it. 

• Cluster Formation: The nodes are grouped into clusters, each managed by a Cluster 

Head (CH). The CH is responsible for overseeing the nodes within its cluster and aggregating 

their data. 

• Cluster Head (CH) Responsibilities 

o Monitor the behavior of each node, including packet forwarding, 

acknowledgment, reputation score, cooperation with neighbors, and energy usage. 

o Detect abnormal behavior, such as potential blackhole attacks. 

The Cluster Head (CH) assesses several metrics—Packet Forwarding Behavior (PFB), 

Acknowledgment Ratio (AR), Reputation Score (RS), Cooperation Ratio (CR), and Energy 

Deviation (ED)—for key purposes. First, this evaluation helps identify blackhole and other 

malicious nodes by tracking packet forwarding, acknowledgment, and energy usage trends. By 

analyzing these combined metrics, the CH can perform a thorough assessment of node 

behavior, distinguishing between temporary issues and consistent malicious activities. This 

approach enables the CH to create a trust profile for each node based on both historical and 

current behavior data, ensuring reliable data transmission throughout the network. 

Additionally, monitoring multiple metrics minimizes the risk of false positives, resulting in 

more accurate decisions about node reliability. Tracking energy consumption helps identify 

abnormal patterns that may indicate packet dropping or malicious behavior. Finally, the CH 

checks node cooperation with neighbors using the Cooperation Ratio, which aids in identifying 

underperforming nodes. Overall, these evaluations help maintain the network's health by 

enabling early detection of issues and ensuring efficient, robust performance. 
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4.2 Packet Forwarding Behavior Calculation by Cluster Head 

To assess the packet forwarding behavior of a node in a Wireless Sensor Network (WSN), 

particularly in the context of a potential blackhole attack, it is essential to evaluate the node's 

reliability in forwarding received packets over time. The objective is to determine whether the 

node consistently forwards packets or drops them, which may suggest malicious activity. 

The Packet Forwarding Ratio (PFR) is calculated using the following formula: 

𝑃𝑎𝑐𝑘𝑒𝑡 𝐹𝑜𝑟𝑤𝑎𝑟𝑑𝑖𝑛𝑔 𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑢𝑟(𝑃𝐹𝑅)𝐶𝐻(𝑡𝑖) =
𝑃𝑎𝑐𝑘𝑒𝑡𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝑒𝑑(𝑡𝑖)

𝑃𝑎𝑐𝑘𝑒𝑡𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑(𝑡𝑖)
                             

(1) 

In the above equation,  

𝑃𝑎𝑐𝑘𝑒𝑡𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝑒𝑑(𝑡𝑖) be the number of packets forwarded by node i at time t 

𝑃𝑎𝑐𝑘𝑒𝑡𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑(𝑡𝑖) be the number of packets received by node i at time t. 

The PFR can already take values between 0 and 1 if the number of packets forwarded is less 

than or equal to the number of packets received, assuming that the node forwards a portion of 

the packets it receives I,e 𝑃𝑎𝑐𝑘𝑒𝑡𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝑒𝑑(𝑡𝑖) ≤ 𝑃𝑎𝑐𝑘𝑒𝑡𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑(𝑡𝑖) 

We can define the Packet Forwarding Behavior (PFB) of a node iii as measured by the cluster 

head (CH) in a normalized way. The key points are: 

• If the number of packets forwarded by a node is greater than or equal to the packets 

received, the behavior is capped at 1. 

• If the node forwards no packets, the behavior is set to 0. 

• If the node forwards half of the packets it receives, the behavior is 0.5. 

• If no packets are received, the ratio is undefined, and we set the behavior to 0. 

The Packet Forwarding Behavior (PFB) for node iii calculated by the cluster head (CH) is 

defined as 
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If the number of packets forwarded is greater than or equal to the number of packets received 

i.e Packetforwarded(ti) ≤ PacketReceived(ti) the PFR will be capped at 1: 

If Packet Forwarding BehaviourCH(ti) = 1,the node is forwarding all the packets it receives. 

Packet Forwarding BehaviourCH(ti) = min (1,
Packetforwarded(ti)

PacketReceived(ti)
 ) = 1         

If no packets are forwarded by node i Packetforwarded(ti)=0, the Packet forwarding ratio 

becomes 

Packet Forwarding BehaviourCH(ti) =
0

PacketReceived(ti)
= 0                           

This means the node is not forwarding any packets. 

Otherwise, the Packet Forwarding BehaviourCH(ti) = 0.5 

If no packets are received by node I PacketReceived(ti)=0 the ratio is undefined. In this case, a 

common approach is to set: 

Packet Forwarding BehaviourCH(ti) = 0 

By the way, a cluster head will calculate the Packet forwarding ratio of nodes which are in its 

control. 

4.3 Acknowledgment-Based Monitoring Calculated by Cluster Head 

The Acknowledgment Ratio (AR) measures the proportion of acknowledgment (ACK) packets 

received from a node in response to the data packets forwarded to it. When a cluster head (CH) 

monitors other nodes, especially in the presence of potential blackhole nodes, the AR becomes 

a key indicator of node reliability. Blackhole nodes usually drop packets and fail to send 

acknowledgments, resulting in a low AR for these nodes. Thus, a low AR can be a warning 

sign of malicious behavior, helping the CH identify unreliable or compromised nodes in the 

network. 

The Acknowledgment Ratio (AR) for node i is: 

𝐴𝑐𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑚𝑒𝑛𝑡 𝑅𝑎𝑡𝑖𝑜𝐶𝐻(𝑡𝑖) =
𝑃𝑎𝑐𝑘𝑒𝑡𝐴𝑐𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑚𝑒𝑛𝑡 (𝑡𝑖)

𝑃𝑎𝑐𝑘𝑒𝑡𝑆𝑒𝑛𝑡(𝑡𝑖)
                                                    

(3) 

The cluster head CH tracks the number of packets it sends to node i over time. This is denoted 

as𝑃𝑎𝑐𝑘𝑒𝑡𝑆𝑒𝑛𝑡(𝑡𝑖). 

The cluster head monitors how many ACK packets it receives from node iii in response to the 

packets sent. This is denoted as 𝑃𝑎𝑐𝑘𝑒𝑡𝐴𝑐𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑚𝑒𝑛𝑡 (𝑡𝑖) 
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The Acknowledgment Ratio (AR), like the previous metrics, already naturally lies between 0 

and 1 because: 

 

If no acknowledgments are received, 

𝑃𝑎𝑐𝑘𝑒𝑡𝐴𝑐𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑚𝑒𝑛𝑡 (𝑡𝑖) = 0, Resulting in 𝐴𝑐𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑚𝑒𝑛𝑡 𝑅𝑎𝑡𝑖𝑜𝐶𝐻(𝑡𝑖) = 0 

If all packets sent are acknowledged,  

𝑃𝑎𝑐𝑘𝑒𝑡𝐴𝑐𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑚𝑒𝑛𝑡 (𝑡𝑖) = 𝑃𝑎𝑐𝑘𝑒𝑡𝑆𝑒𝑛𝑡(𝑡𝑖), Resulting in 

𝐴𝑐𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑚𝑒𝑛𝑡 𝑅𝑎𝑡𝑖𝑜𝐶𝐻(𝑡𝑖) = 1 

If all packets sent are partially acknowledged,  

𝑃𝑎𝑐𝑘𝑒𝑡𝐴𝑐𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑚𝑒𝑛𝑡 (𝑡𝑖) = 0, Resulting in 𝐴𝑐𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑚𝑒𝑛𝑡 𝑅𝑎𝑡𝑖𝑜𝐶𝐻(𝑡𝑖) = 0.5 

4.4 Reputation Score (RS) by Cluster Head 

To maintain and update a normalized reputation score for each node, the cluster head (CH) can 

apply a weighted formula that integrates the node's previous reputation score with its current 

behavior score. The current behavior score is derived from key metrics such as Packet 

Forwarding Behavior (PFB) and Acknowledgment Ratio (AR). This approach allows the CH 

to track changes in node behavior over time, ensuring that the reputation score reflects both 

historical performance and recent actions, providing a balanced and up-to-date assessment of 

node reliability. 

Reputation Score𝐶𝐻(𝑖+1)(𝑖) = 𝜕 𝑋 Reputation Score𝑡(𝑖) + 𝛽 𝑋 Current Behavior Score     

(5) 

 Reputation Score𝑡(𝑖) is the reputation score at time t, 𝜕 and β are weighting factors, and the 

current behavior score is based on metrics like packet forwarding and acknowledgment ratios. 

Behavior denotes,  If a node’s score steadily decreases over time, it indicates a history of 

malicious or unreliable behavior. To maintain and update a normalized reputation score for 

each node, the cluster head (CH) can use a weighted formula that combines the node's previous 

reputation score with its current behavior score, which is based on metrics such as Packet 

Forwarding Behavior (PFB) and Acknowledgment Ratio (AR). 
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Current Behavior Score𝐶𝐻(𝑖+1)(𝑖)

= 𝑤1. 𝑃𝑎𝑐𝑘𝑒𝑡𝐴𝑐𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑚𝑒𝑛𝑡 𝐶𝐻
(𝑡𝑖)

+ 𝑤2 . 𝑃𝑎𝑐𝑘𝑒𝑡 𝐹𝑜𝑟𝑤𝑎𝑟𝑑𝑖𝑛𝑔 𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑢𝑟𝐶𝐻(𝑡𝑖)                                                 (6)  

This formula (6) can be substituted in the above formula (5).  

4.5 Cross-Verification with Neighboring Nodes by Cluster Head 

To cross-verify the historical behavior of a node in a Wireless Sensor Network (WSN), the 

cluster head (CH) can assess the node's activity by comparing it with the behavior of 

neighboring nodes. This evaluation is based on the Cooperation Ratio (CR), which measures 

how consistently a node cooperates with its neighbors. By analyzing the CR, the CH can 

identify discrepancies in node behavior, detect signs of malicious activity, and ensure that each 

node is functioning as expected in relation to the broader network. This cross-verification 

process helps improve network reliability and security. 

∆Cooperation Ratio 𝐶𝐻(𝑡𝑖) = Cooperation Ratio 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠(𝒕)-

Cooperation Ratio 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠(𝒕𝒊)                                                                                              (7) 

∆Cooperation Ratio 𝐶𝐻(𝑡𝑖)is large, node i may be underperforming or behaving maliciously 

compared to its neighbors. 

The Cooperation Ratio (CR) formula is: 

Cooperation Ratio 𝐶𝐻(𝒕𝒊) = 
𝑺𝑪(𝒕𝒊)

𝑻𝑪(𝒕𝒊)
                                                                                            (8) 

Where 0≤Cooperation Ratio 𝐶𝐻(𝑡𝑖) ≤1 and deviations from the average neighbor CR can help 

the cluster head identify abnormal behavior. 

𝑆𝐶(𝑡𝑖) refers to successful interactions or data transmissions that node i has completed with its 

neighbors (such as successful packet forwarding or acknowledgment exchanges). 

𝑇𝐶(𝑡𝑖)refers to the total number of interaction opportunities or data transmissions involving 

node i (both successful and failed). 

4.6 Energy Calculation by Cluster Head 

To identify potential blackhole attacks in a Wireless Sensor Network (WSN) through energy 

consumption analysis, the cluster head (CH) can utilize the Energy Deviation (ED) metric. This 

metric evaluates a node’s actual energy usage against the expected consumption for normal 

packet forwarding activities. If a node exhibits significantly lower energy usage than 

anticipated, it may indicate packet dropping, suggesting malicious behavior such as a blackhole 

attack. By monitoring ED, the CH can effectively detect nodes that deviate from typical energy 

patterns, helping to safeguard the network against such threats. 
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Energy Deviation 𝐶𝐻(𝑡𝑖)

= 1 −
Actual Energy(t𝑖)

Expected Energy(t𝑖)
                                                                           (9) 

Expected Energy(t𝑖), the theoretical amount of energy that node i should consume is based 

on the number of packets it is expected to forward. This can be calculated by considering the 

total number of packets forwarded and the energy cost per packet. 

Actual Energy(t𝑖) This refers to the real amount of energy consumed by node i. If the node 

forwards fewer packets than expected, its actual energy consumption will be lower than the 

theoretical value. Expected Energy(t𝑖) This refers to the real amount of energy consumed by 

node i. If the node forwards fewer packets than expected, its actual energy consumption will 

be lower than the theoretical value. This formula enables the cluster head to detect potential 

blackhole nodes by monitoring nodes that show unusually low energy consumption relative to 

their expected forwarding responsibilities. If a node consumes less energy than expected, it 

may be engaging in packet-dropping behavior, which is often associated with blackhole 

attacks. 

This formula allows the cluster head to detect potential blackhole nodes by identifying those 

with unusually low energy consumption compared to their expected packet-forwarding 

responsibilities. When a node consumes less energy than anticipated, it may be involved in 

packet-dropping behavior, which is commonly linked to blackhole attacks. The following 

figure 2 shows the architecture of proposed model. 

 

Figure 2. Architecture Diagram of the Proposed Model 
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The following algorithm depicts the calculation of various metrics by cluster head. 

Algorithm1: Evaluation of Various Metrics by Cluster Head 

 

Function evaluateNode(node): 

    # Step 1: Calculate Packet Forwarding Behavior (PFB) 

    PFB = calculatePacketForwardingBehavior(node) 

    # Step 2: Calculate Acknowledgment Ratio (AR) 

    AR = calculateAcknowledgmentRatio(node) 

    # Step 3: Update Reputation Score (RS) 

    RS = updateReputationScore(node, PFB, AR) 

    # Step 4: Calculate Cooperation Ratio (CR) 

    CR = calculateCooperationRatio(node) 

    # Step 5: Calculate Energy Deviation (ED) 

    ED = calculateEnergyDeviation(node) 

    # Step 6: Store or return the metrics for the node 

    Return (PFB, AR, RS, CR, ED) 

End Function 

Function calculatePacketForwardingBehavior(node): 

    If node.Packets_Received(t) == 0: 

        Return 0  # Undefined, set to 0 

    Else If node.Packets_Forwarded(t) >= node.Packets_Received(t): 

        Return 1  # Capped at 1 

    Else If node.Packets_Forwarded(t) == 0: 

        Return 0  # No packets forwarded 

    Else: 

        Return node.Packets_Forwarded(t) / node.Packets_Received(t) 

End Function 

Function calculateAcknowledgmentRatio(node): 
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    If node.Packets_Sent(t) == 0: 

        Return 0  # Undefined, set to 0 

    Else If node.Packets_Acknowledgment(t) >= node.Packets_Sent(t): 

        Return 1  # All packets sent acknowledged 

    Else If node.Packets_Acknowledgment(t) == 0: 

        Return 0  # No acknowledgments received 

    Else: 

        Return node.Packets_Acknowledgment(t) / node.Packets_Sent(t) 

End Function 

Function updateReputationScore(node, PFB, AR): 

    previousRS = node.ReputationScore(t)  # Previous reputation score 

    currentBehaviorScore = (w1 * AR) + (w2 * PFB)  # Current behavior score 

    newRS = alpha * previousRS + beta * currentBehaviorScore  # Update formula 

    node.ReputationScore(t + 1) = newRS  # Update the reputation score for next time 

    Return newRS 

End Function 

Function calculateCooperationRatio(node): 

    successfulInteractions = node.Successful_Interactions(t) 

    totalInteractions = node.Total_Interactions(t) 

    If totalInteractions == 0: 

        Return 0  # No interactions, set to 0 

    Return successfulInteractions / totalInteractions 

End Function 

 

Function calculateEnergyDeviation(node): 

    ActualEnergy = node.ActualEnergy(t) 
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    ExpectedEnergy = calculateExpectedEnergy(node)  # Calculate  

based  

on expected forwarding 

    If ExpectedEnergy == 0: 

        Return 0  # Avoid division by zero 

    Return 1 - (ActualEnergy / ExpectedEnergy)  # Normalize the energy deviation 

End Function 

Function calculateExpectedEnergy(node): 

    # This function calculates the expected energy based on packets expected to forward 

    packetsForwarded = node.Packets_Forwarded(t) 

    energyCostPerPacket = node.EnergyCostPerPacket 

    Return packetsForwarded * energyCostPerPacket  # Expected energy calculation 

End Function 

# Main loop for cluster head to monitor nodes 

For each node in cluster: 

    (PFB, AR, RS, CR, ED) = evaluateNode(node) 

    logNodeMetrics(node, PFB, AR, RS, CR, ED)  # Log the metrics for each node 

End For 

 

5. Identification of Black hole Attacks using K-Means Clustering Algorithms 

To identify blackhole attacks in a Wireless Sensor Network (WSN) using the K-Means 

Clustering Algorithm, we can utilize several proposed metrics as features: Packet Forwarding 

Behavior (PFB), Acknowledgment Ratio (AR), Reputation Score (RS), Cooperation Ratio 

(CR), and Energy Deviation (ED). These metrics enable the cluster head (CH) to distinguish 

between benign and malicious (blackhole) nodes by grouping the nodes according to their 

behavioral patterns. Below is a detailed explanation, accompanied by an example. 

Algorithm2: Identification of Blackhole Nodes 

Step 1. INPUT:  

   - Node data with 5 features for each node: (PFB, AR, RS, CR, ED) 

   - Number of clusters k = 2 (for Normal Nodes and Blackhole Nodes) 
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   - Maximum iterations (MAX_ITER) 

   - Convergence threshold (THRESHOLD) 

Step 2. INITIALIZATION: 

   - Randomly select two nodes as initial centroids for Cluster 1 and Cluster 2: 

     - Centroid_1 = (PFB_C1, AR_C1, RS_C1, CR_C1, ED_C1) 

     - Centroid_2 = (PFB_C2, AR_C2, RS_C2, CR_C2, ED_C2) 

The formula you mentioned is the Euclidean distance between two points in a 5-dimensional 

space. In this case, the two points represent: 

Node i with its feature values: PFB𝑖, AR𝑖, RS𝑖, 𝐶𝑅, ED𝑖 

Centroid 1 with its feature values PFB𝑐1, AR𝑐1, RS𝑐1, 𝐶𝑅𝑐1, ED𝑐1 

Step 3. REPEAT until convergence or until MAX_ITER is reached: 

   - For each node i (where i = 1 to N for N nodes): 

     - Calculate the Euclidean distance between node i and each centroid: 

Node i with its feature values: PFB𝑖, AR𝑖, RS𝑖, 𝐶𝑅, ED𝑖 

Centroid 1 with its feature values PFB𝑐1, AR𝑐1, RS𝑐1, 𝐶𝑅𝑐1, ED𝑐1 

The Euclidean distance formula between these two points is given by: 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒1=

√(𝑃𝐹𝐵𝑖 − 𝑃𝐹𝐵𝑐1)2 + (𝐴𝑅𝑖 − 𝐴𝑅𝑐1)2(𝑅𝑆𝑖 − 𝑅𝑆𝑐1)2(𝐶𝑅𝑖 − 𝐶𝑅𝑐1)2(𝐸𝐷𝑖 − 𝐸𝐷𝑐1)2 

The formula for Distance_2 follows the same structure as the one for Distance_1, but with 

respect to Centroid 2 (C2). Here's the Euclidean distance formula for Distance_2: 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒1=

√(𝑃𝐹𝐵𝑖 − 𝑃𝐹𝐵𝑐2)2 + (𝐴𝑅𝑖 − 𝐴𝑅𝑐2)2(𝑅𝑆𝑖 − 𝑅𝑆𝑐2)2(𝐶𝑅𝑖 − 𝐶𝑅𝑐2)2(𝐸𝐷𝑖 − 𝐸𝐷𝑐2)2 

     - Assign node i to the closest cluster based on the minimum distance: 

       - If Distance_1 < Distance_2, assign node i to Cluster 1 (Normal Nodes) 

       - Else assign node i to Cluster 2 (Suspicious Nodes) 

   - After all nodes are assigned to clusters: 

     - For each cluster (Cluster 1 and Cluster 2): 

       - Recalculate the centroid by taking the mean of all nodes assigned to that cluster: 
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         - Centroid_1 = (mean_PFB_Cluster1, mean_AR_Cluster1, mean_RS_Cluster1, 

mean_CR_Cluster1, mean_ED_Cluster1) 

         - Centroid_2 = (mean_PFB_Cluster2, mean_AR_Cluster2, mean_RS_Cluster2, 

mean_CR_Cluster2, mean_ED_Cluster2) 

   - Check for convergence: 

     - If the centroids' positions have not changed significantly (i.e., the change in position is less 

than THRESHOLD for both centroids), STOP. 

     - If the centroids have changed, repeat the process. 

Step 4. OUTPUT: 

   - Final cluster assignments: Nodes in Cluster 1 are considered normal nodes, and nodes in 

Cluster 2 are considered suspicious (potential blackhole attackers). 

 

6. Proof of Concept a Mathematical Example 

Let’s extend the example to 20 nodes with randomly assigned normalized feature values for 

Packet Forwarding Behavior (PFB), Acknowledgment Ratio (AR), Reputation Score (RS), 

Cooperation Ratio (CR), and Energy Deviation (ED). Here’s a table 1 showing the features of 

20 nodes.  

Table 1. Sample Dataset with 20 features 

ID PFB AR RS CR ED 

N1 0.9 0.88 0.85 0.92 0.1 

N2 0.3 0.25 0.35 0.4 0.75 

N3 0.85 0.87 0.88 0.9 0.08 

N4 0.4 0.45 0.5 0.55 0.65 

N5 0.78 0.8 0.82 0.84 0.12 

N6 0.25 0.2 0.3 0.22 0.78 

N7 0.95 0.92 0.9 0.94 0.05 

N8 0.2 0.18 0.25 0.15 0.85 

N9 0.87 0.89 0.9 0.88 0.07 

N10 0.35 0.3 0.4 0.45 0.7 

N11 0.82 0.85 0.87 0.88 0.1 

N12 0.5 0.55 0.6 0.58 0.6 

N13 0.18 0.15 0.2 0.25 0.88 

N14 0.89 0.92 0.9 0.91 0.09 
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N15 0.27 0.22 0.3 0.2 0.8 

N16 0.75 0.78 0.82 0.8 0.13 

N17 0.92 0.94 0.91 0.93 0.06 

N18 0.15 0.1 0.2 0.18 0.9 

N19 0.8 0.82 0.85 0.83 0.12 

N20 0.38 0.35 0.4 0.45 0.68 

 

Step 1: Initialize Cluster Centroids 

• Let’s randomly select two initial centroids from the dataset: 

o Centroid 1: Node N1 = (0.90, 0.88, 0.85, 0.92, 0.10) 

o Centroid 2: Node N8 = (0.20, 0.18, 0.25, 0.15, 0.85) 

Step 2: Compute Distances 

We calculate the Euclidean distance between each node and the two centroids. Using the 

formula: 

d(𝑥𝑖 − 𝑐𝑘)=√(𝑃𝐹𝐵𝑖 − 𝑃𝐹𝐵𝑘)2 + (𝐴𝑅𝑖 − 𝐴𝑅𝑘)2(𝑅𝑆𝑖 − 𝑅𝑆𝑘)2(𝐶𝑅𝑖 − 𝐶𝑅𝑘)2(𝐸𝐷𝑖 − 𝐸𝐷𝑘)2 

We can compute the distance between Node N3 and Centroid 1 as: 

d(𝑥𝑖 − 𝑐𝑘)=√(𝑃𝐹𝐵𝑖 − 𝑃𝐹𝐵𝑘)2 + (𝐴𝑅𝑖 − 𝐴𝑅𝑘)2(𝑅𝑆𝑖 − 𝑅𝑆𝑘)2(𝐶𝑅𝑖 − 𝐶𝑅𝑘)2(𝐸𝐷𝑖 − 𝐸𝐷𝑘)2 

We can compute the distance between Node N3 and Centroid 1 as: 

d(𝑁3 − 𝑐1)=√(0.85 − 0.90)2 + (0.87 − 0.88)2 + (0.88 − 0.85)2 + (0.90 − 0.92)2 +

(0.08 − 0.10)2 

                = √0.0025 + 0.0001 + 0.0009 + 0.0004 + 0.0004 

=√0.0043 

=0.0655 

Similarly, calculate the distance to Centroid 2. 

Step 3: Assign Nodes to Clusters 

Based on the computed distances, assign each node to the nearest centroid. Let’s assign the 

nodes to the clusters as follows: 

• Cluster 1 (Normal Nodes): N1, N3, N5, N7, N9, N11, N14, N16, N17, N19 

• Cluster 2 (Suspicious Nodes): N2, N4, N6, N8, N10, N12, N13, N15, N18, N20 
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Step 4: Recomputed Centroids 

Recalculate the centroids by averaging the feature values of the nodes in each cluster. 

For Cluster 1, the new centroid would be the average of the feature vectors of all nodes in the 

cluster: 

C1=
1

10
 ((0.90,088,0.85,0.92,0.10) + ⋯ + (0.80,0.82,0.85,0.83,0.12)) 

For Cluster 2, similarly average the nodes assigned to that cluster. 

Step 5: Repeat Until Convergence 

Repeat the distance calculation and reassignment of nodes until the cluster centroids stabilize, 

and the cluster memberships no longer change. 

Final Cluster Assignments 

• Cluster 1 (Normal Nodes): N1, N3, N5, N7, N9, N11, N14, N16, N17, N19. 

o These nodes have high PFB, AR, RS, and CR, with low ED. 

• Cluster 2 (Suspicious Nodes): N2, N4, N6, N8, N10, N12, N13, N15, N18, N20. 

o These nodes exhibit lower PFB, AR, RS, and CR, with higher ED, indicating 

potential blackhole activity. 

7. Trust Update Mechanism 

• Use a trust update model where nodes' behavior is continuously evaluated over time. 

Trust scores are updated based on the observations of the node’s forwarding behavior. 

o Trust Decay: Trust should decay over time if no recent interactions are recorded, 

allowing the network to quickly adapt to new conditions. 

o Trust Update Equation:  

𝑇𝑡+1(𝑖) = (1 − 𝛾)𝑋 (𝑇𝑖(𝑖) + 𝛾 + 𝑁𝑒𝑤 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠 

where 𝛾 is the trust decay factor, 𝑇𝑖(𝑖) is the trust score at time t, and New Trust Evidence is 

the score based on the latest interactions (e.g., forwarding ratios, acknowledgment). 

8. Simulation Results and Discussion 

To assess the performance of the proposed model in comparison to the traditional DSR routing 

protocol and the protocols presented by Virendra Dani et al. (2022) and N. Dharini et al. (2020), 

a detailed simulation was carried out using the NS3 Simulator tool. The evaluation focused on 

key performance metrics under varying conditions. In the simulation setup, a maximum of 100 

nodes was involved, and blackhole nodes were introduced progressively, starting from 10% 

and increasing up to 80% over the simulation period. The parameters for the simulation are 
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outlined in Table 4.The traffic type was set to Constant Bit Rate (CBR), ensuring a steady flow 

of data, while the Nakagami propagation model was used to simulate realistic wireless 

communication conditions. Nodes moved according to the Random Waypoint mobility model, 

representing random movement patterns within the network. The medium access control 

(MAC) layer followed the 802.11 standard, and the communication took place over wireless 

channels. The data payload size for each packet was 512 bytes, and the simulation area covered 

1000m x 1000m. The nodes' speed varied across several values: 5, 10, 15, 20, and 25 meters 

per second, and the data rate for transmission was set at 10.4 Mbps. These configurations 

allowed for a comprehensive analysis of the model's performance under different network 

conditions and attack scenarios. 

Packet Dropping Ratio Analysis in the Presence of Black hole Attacks 

Figure 3 depicts the effect of Black hole attacks on the packet drop rate in a Wireless Sensor 

Network (WSN). The graph clearly shows a direct relationship between the number of Black 

hole nodes and the packet drop rate, where an increasing number of attacks results in a 

corresponding rise in dropped packets. This pattern remains consistent over time, illustrating 

how Black hole attacks degrade network performance. The traditional DSR protocol, which 

lacks mechanisms to identify and defend against these attacks, is particularly vulnerable. As a 

result, the absence of security features in DSR contributes to the increased packet loss when 

Black hole nodes are present. This emphasizes the importance of incorporating advanced 

security strategies within WSNs to address these attacks. With proper detection and defense 

techniques, networks can minimize the impact of Black hole nodes, ensuring better 

performance and stability. 

 

Figure 3. Influence of Black hole Attackers under Normal DSR Routing Protocol 
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Packet Delivery Ratio Analysis vs Black hole Attackers 

Figure 4 presents a detailed analysis of how the packet delivery ratio (PDR) in a Wireless 

Sensor Network (WSN) is affected by the presence of Black hole attacks. In this study, we 

systematically increased the number of Black hole nodes at regular intervals to observe the 

corresponding changes in PDR. The results are telling: our proposed model consistently 

achieves a higher PDR compared to the traditional Dynamic Source Routing (DSR) protocol 

and the models introduced by Dharini et al. (2020) and Virendra et al. (2022). Even as the 

proportion of Black hole attackers escalates, our model maintains a significantly superior PDR, 

demonstrating its robustness against such malicious activities. This enhanced performance 

underscores the effectiveness of our approach in mitigating the adverse effects of Black hole 

attacks on packet delivery within WSNs. The key to our model's success lies in its integration 

of advanced detection and mitigation techniques. Specifically, we employ a multi-trust 

evaluation mechanism that considers a variety of Quality of Service (QoS) metrics: Packet 

Forwarding Behavior (PFB), Acknowledgment Ratio (AR), Reputation Score (RS), 

Cooperation Ratio (CR), and Energy Deviation (ED). By analyzing these metrics collectively, 

our model gains a comprehensive understanding of each node's behavior and trustworthiness. 

 

Figure 4. Packet Delivery Ratio Vs. No.of Blackhole Nodes 
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the network's PDR. In contrast, the model proposed by Dharini et al. (2020) relies on a narrower 

set of metrics—packet count, energy levels, and Z-score calculations—to assess node 

trustworthiness. While this approach does offer some level of protection, it lacks the depth 

provided by our multi-metric evaluation, leading to a lower PDR than our model but still higher 

than that of the traditional DSR protocol and the model by Virendra et al. (2022). 

Virendra et al.'s (2022) model focuses on Node Energy, Node Buffer Length, and Packet Drop 

metrics. This limited scope results in a weaker detection mechanism for Black hole attacks. 

The minimal set of parameters fails to capture the nuanced behaviors of malicious nodes fully, 

leading to a lower PDR compared to both our model and Dharini et al.'s approach. The 

traditional DSR protocol, devoid of any built-in security features, performs the worst among 

all, with a significantly reduced PDR as the number of Black hole attackers increases. Our 

model's incorporation of multiple QoS metrics and the K-means clustering algorithm facilitates 

a more nuanced and accurate evaluation of each node's reliability. For instance, PFB assesses 

how consistently a node forwards packets, while AR measures the ratio of acknowledgments 

received, indicating responsiveness. RS aggregates historical interactions to provide an overall 

trust score, CR evaluates the willingness of nodes to cooperate within the network, and ED 

monitors deviations in energy consumption that could signify malicious activity. 

By analyzing these diverse metrics, our model can detect subtle anomalies in node behavior 

that single-metric models might overlook. The use of K-means clustering enhances this 

capability by grouping nodes with similar behaviors, making it easier to identify outliers 

indicative of Black hole attacks. This comprehensive approach not only improves the detection 

rate of malicious nodes but also minimizes false positives, ensuring that legitimate nodes are 

not wrongly penalized. The superior performance of our model, as evidenced by the 

consistently higher PDR in Figure 4, highlights the importance of a multifaceted security 

strategy in WSNs. Black hole attacks pose a significant threat to network integrity by 

selectively dropping packets, which can severely disrupt communication and data transmission. 

By effectively identifying and isolating these malicious nodes, our model safeguards the 

network's performance and reliability. 

End to End Delay Analysis vs Black hole Attackers 

The proposed model achieves significantly lower end-to-end delay compared to the models by 

Dharini et al. (2020) and Virendra et al. (2022) due to its advanced detection and mitigation 

techniques for Black hole attacks in Wireless Sensor Networks (WSNs). By employing a multi-

trust evaluation mechanism using diverse Quality of Service (QoS) metrics—such as Packet 

Forwarding Behavior (PFB), Acknowledgment Ratio (AR), Reputation Score (RS), 

Cooperation Ratio (CR), and Energy Deviation (ED)—the proposed model quickly identifies 

malicious nodes, reducing packet loss and minimizing the need for retransmissions and route 

rediscoveries. In contrast, Dharini et al.’s model, which relies on simpler metrics like packet 



 
Received: 06-02-2025        Revised: 15-03-2025 Accepted: 30-04-2025 

 

 
 830 Volume 49 Issue 2 (April 2025) 

https://powertechjournal.com 

 

count, energy levels, and Z-score, and Virendra et al.'s model, which uses Node Energy, Node 

Buffer Length, and Packet Drop, both have limited detection capabilities. This results in slower 

responses to Black hole attacks, leading to more packet loss, increased route rediscovery, and 

ultimately higher end-to-end delays. Moreover, the proposed model integrates the K-means 

clustering algorithm, which further enhances its ability to classify and isolate malicious nodes 

efficiently, a feature absent in both Dharini et al.'s and Virendra et al.'s models. The result is a 

more stable and efficient network, with the proposed model maintaining optimal routing and 

packet delivery performance even as the proportion of Black hole nodes increases, whereas the 

other two models experience higher delays due to their less comprehensive detection and 

mitigation strategies. The figure 4 depicts the end to end delay. 

 

Figure 5. End to End Delay vs % Black hole Attackers 

Routing Overhead vs Black hole Attackers 

The routing overhead which is shown in figure 6 is significantly lower in the proposed model 

compared to the traditional DSR protocol and the models by Dharini et al. (2020) and Virendra 

et al. (2022) due to its more efficient detection, mitigation, and routing mechanisms in handling 

Black hole attacks in Wireless Sensor Networks (WSNs). One of the key factors contributing 

to reduced routing overhead is the proposed model's ability to quickly and accurately detect 

malicious nodes using a multi-trust evaluation system that incorporates metrics such as Packet 

Forwarding Behavior (PFB), Acknowledgment Ratio (AR), Reputation Score (RS), 

Cooperation Ratio (CR), and Energy Deviation (ED). These comprehensive metrics allow the 
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model to preemptively identify Black hole nodes, which minimizes the need for frequent route 

rediscoveries or adjustments. In contrast, models like those of Dharini et al. and Virendra et al. 

rely on fewer or more basic metrics, leading to slower detection of malicious activity and more 

reactive responses, which result in higher routing overhead due to increased route repairs and 

rediscoveries. 

Additionally, the incorporation of the K-means clustering algorithm in the proposed model 

enhances its ability to classify nodes based on behavior patterns, allowing for proactive route 

adjustments that avoid compromised nodes. This clustering approach reduces the need for 

repetitive route maintenance or updates, which traditionally contribute to routing overhead. In 

contrast, the lack of such advanced clustering in the other models results in less efficient route 

management, further increasing overhead. By maintaining stable and secure routes, the 

proposed model reduces the amount of control messages required for route discovery and 

maintenance. Since Black hole nodes are isolated more efficiently, there are fewer instances 

where packets are dropped or routes fail, leading to a lower frequency of route rediscovery 

processes, which would otherwise contribute to higher routing overhead. As a result, the overall 

communication efficiency is enhanced, keeping the routing overhead minimal while 

maintaining optimal network performance. 

 

Figure 6. Routing Overhead vs % of Black hole Attackers 

Detection Accuracy vs Black hole Attackers 

The detection accuracy which is shown in the figure 7 in the proposed model is notably high 

due to its multi-faceted approach to evaluating node behavior and identifying Black hole 
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attacks in Wireless Sensor Networks (WSNs). The model employs a comprehensive multi-trust 

evaluation mechanism that incorporates several Quality of Service (QoS) metrics—such as 

Packet Forwarding Behavior (PFB), Acknowledgment Ratio (AR), Reputation Score (RS), 

Cooperation Ratio (CR), and Energy Deviation (ED)—to assess the reliability and 

trustworthiness of nodes. This wide range of metrics allows the model to detect subtle 

deviations in node behavior that might indicate malicious activity, leading to more accurate 

identification of Black hole nodes. Unlike models by Dharini et al. (2020) and Virendra et al. 

(2022), which rely on fewer or less comprehensive parameters like packet count, energy levels, 

Node Buffer Length, and Packet Drop, the proposed model’s broader set of metrics provides a 

holistic view of node activity. By analyzing multiple aspects of node behavior, such as how 

well nodes forward packets (PFB), their acknowledgment patterns (AR), historical reputation 

(RS), willingness to cooperate (CR), and energy consumption anomalies (ED), the proposed 

model can more effectively distinguish between normal network variations and actual 

malicious behavior. This comprehensive analysis reduces false positives and false negatives, 

contributing to higher detection accuracy. 

 

Figure 7. Detection Accuracy Vs. Number of Blackhole Nodes 

Moreover, the proposed model’s use of the K-means clustering algorithm significantly 

enhances its detection accuracy. K-means clustering allows the model to group nodes based on 

behavioral patterns derived from the QoS metrics. This machine learning technique helps the 

system classify nodes more accurately by identifying clusters of nodes that exhibit similar 

behaviors, making it easier to pinpoint outliers—those nodes behaving abnormally due to Black 

hole attacks. The clustering approach increases the precision of detecting malicious nodes 
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while reducing the likelihood of misclassifying legitimate nodes as malicious. In summary, the 

high detection accuracy of the proposed model stems from its multi-metric evaluation system 

and the application of K-means clustering, which together provide a detailed and precise 

understanding of node behavior. This multifaceted approach allows for the early and accurate 

identification of Black hole nodes, ensuring better network protection and fewer disruptions 

from undetected attacks. 

9. Conclusion 

In conclusion, securing communication in Wireless Sensor Networks (WSNs) against threats 

such as blackhole attacks is crucial for preserving the integrity and functionality of the network. 

This paper presents a robust system in which the Cluster Head (CH) actively monitors and 

evaluates node behavior through a set of critical metrics: Packet Forwarding Behavior (PFB), 

Acknowledgment Ratio (AR), Reputation Score (RS), Cooperation Ratio (CR), and Energy 

Deviation (ED). These metrics work collectively to identify abnormal activities, particularly 

those related to packet dropping that signify blackhole attacks.The employment of the K-means 

clustering algorithm allows for effective classification of nodes into two distinct groups—

normal and suspicious—based on their behavior. By iteratively adjusting cluster centroids 

using Euclidean distance, the algorithm ensures accurate differentiation between benign and 

potentially malicious nodes. The mathematical proof provided demonstrates the applicability 

and validity of the proposed model, and the simulation results further highlight its superior 

performance compared to existing models.Overall, this approach enhances the security and 

resilience of WSNs by enabling timely detection and response to blackhole attacks, thereby 

ensuring more reliable communication and improved network performance. The findings 

underscore the effectiveness of using a multi-metric evaluation scheme in conjunction with 

clustering algorithms to bolster network security against evolving threats. 

Future Enhancement 

Future improvements could focus on expanding the node evaluation framework to include 

machine learning algorithms for predictive analysis, enabling more precise identification of 

emerging threats. Additionally, the implementation of real-time adaptive thresholds for 

metrics, based on the dynamics of the network, could further enhance detection efficiency. 

Expanding the system to facilitate cross-cluster cooperation and trust propagation would 

improve security across the network, allowing for distributed detection of malicious nodes in 

the WSN. Finally, incorporating energy-efficient strategies to optimize CH performance 

without sacrificing security could enhance the overall longevity and performance of the 

network. The rapid evolution of mobile computing and wireless networking technologies has 

led to a significant rise in the number of mobile users globally. This trend is central to the 

deployment of modern mobile ad-hoc networks and the provision of reliable communication 

services to users. However, ensuring dependable service is challenging due to limited resources 
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and complex network topologies. Trust protocols for mobile ad-hoc networks have emerged as 

a vital area of research in recent years, facilitating community-based mobile applications. 

Given the absence of central coordination and the shared nature of the wireless medium, 

achieving reliable communication in ad-hoc wireless networks is considerably more complex 

than in wired networks. 
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