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Abstract:- Electrical equipment dependability is essential to operational efficiency and cost-
effectiveness across power and energy sectors. The development of an up-to-date Fault Detection and
Diagnosis (FDD) method is essential to improve electrical equipment dependability in current modern
applications. Advanced FDD approaches include signal processing, statistical modelling, and machine
learning algorithms to analyze vibrations and monitor temperatures of the machine. This study examines
essential concepts and situations related to electrical machines problems including rotor and stator
breakdowns using numerical simulations. Furthermore, case studies and computer simulations
demonstrate how these strategies enhance predictive maintenance and problem diagnosis. In fact, the
presented work explains the advancements in FDD utilizing hybrid model-based data-driven methods.
The findings show that Al, sensor technologies, and condition monitoring systems improve problem
detection accuracy and efficiency, lowering downtime and maintenance costs. This paper advance’s
reliability engineering by providing a solid foundation for FDD system enhancements, encouraging the
utilization of more advanced techniques such as machine learning and Al to enhance the reliability of
electric machines in modern power system applications.
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1. Introduction

The dependability of electrical machinery is crucial in guaranteeing the smooth functioning of
diverse industrial procedures, consumer applications, and infrastructural systems. Electrical
machinery and equipment, such as motors, generators, and transformers, are crucial to
contemporary industry. If these machines fail, it may lead to substantial financial losses,
operating downtime, and compromising safety. In order to tackle these difficulties, Fault
Detection and Diagnosis (FDD) methods have become crucial instruments for promptly
identifying machine problems, enabling proactive steps to be implemented before catastrophic
failures transpire. Conventional FDD techniques, including temperature analysis and vibration
surveillance, offer valuable insights but tend to be reactive in nature, since they only detect
flaws after substantial destruction has already taken place [1]. Contemporary developments in
FDD methods use computational intelligence, real-time monitoring, and machine learning
algorithms to forecast and avert faults, hence improving the reliability of the system. These
methods can identify abnormalities in performance indicators such as voltage, current,
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temperature, hence providing timely alerts for possibly occurring problems. This study
explores the most recent advancements in FDD approaches, with a focus on numerical analysis,
simulations, and mathematical modelling [2]. It also emphasizes fault status, such as rotor bar,
stator winding, and bearing failures, specifically in electrical devices. The presented research
is deemed to provide full knowledge of how numerical calculation, computer simulations, and
theoretical concepts contribute to the dependability and operational performance of electrical
machines. The amalgamation of sensor technologies, artificial intelligence, and signal
processing has resulted in enhanced precision and promptness in identifying faults, hence
transforming maintenance plans and reducing unforeseen periods of inactivity.

The organization of this paper follows a chronological and systematic approach. Section 2
presents a comprehensive literature review, summarizing key research contributions in fault
detection and diagnosis methods. Section 3 details the system design and mathematical
modeling employed for fault diagnosis. Sections 4 and 5 discuss the results and analyses,
highlighting the limitations of conventional fault detection techniques, the effectiveness of
utilizing hybrid model-based data-driven methods, and the role of machine learning in fault
classification. Finally, Section 6 offers conclusions and recommendations for future
advancements in Al-driven FDD systems.

2. Literature Review

The FDD techniques have improved greatly to ensure that electrical machinery is reliable and
efficient. Early techniques were hardware-based and included methods like vibration analysis,
thermal imaging, and acoustic emissions. Figure 1 shows a summary of the innovations in fault
detection and diagnosis techniques for electrical machines. Although these are useful for the
detection of flaws such as misalignment or overheating, the traditional methods often had a
reactionary approach, indicating problems only after significant damage had occurred. For
example, for balance detection, vibration analysis detects frequency variations, whereas
thermal imaging can detect abnormal temperature readings resulting from insulation
deterioration. Model-based techniques were later introduced as a systematic method of FDD
[3]. They use mathematical models that simulate normal operating conditions in electrical
equipment and seek defects by comparing observed behavior with the computed results. Some
of the developed methods were found to be capable of detecting irregularities in the rotor and
stator. For instance, Kalman filtering reduces mismatches between estimated and actual states
of the system, hence it is one of the best methods for detecting defects at early stages.

Advances in signal processing methods such as the Fast Fourier Transform (FFT) and Wavelet
Transform (WT) have made fault detection significantly better. Even though FFT detects
frequencies related to rotor flaws or misalignments, WT excels at transient and non-stationary
signal detection such as in bearings failure.
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Moreover, the data-driven methods, which are allowed by machine learning algorithms,
comprise the next step in FDD. There are methods in Support Vector Machines (SVM),
Acrtificial Neural Networks (ANN), and Decision Trees that use massive volumes of datasets
to make forecasted errors. For instance, SVM identifies the state of a machine through
characteristics like vibration, temperature, and current, which results in a highly accurate
prediction of real-time failure. The combination of model-based and data-driven methods has
led to hybrid strategies that take advantage of the benefits of both methodologies. Such
systems, such as hybrid ANN-Kalman models, enhance detection accuracy while reducing
false positives. In fact, literature reflects progression from classic hardware-based solutions to
advanced hybrid systems. These improvements underscore the increased importance of
computational intelligence, real-time monitoring, including predictive analytics in developing
dependable FDD systems. Future research is likely to examine hybrid and Al-driven solutions
in a multiple failure conditions context [4-5].

Traditional FDD methods focus on residual generation and model-based approaches to detect
deviations from expected behavior [3]. In contrast, Al-based FDD methods leverage data-
driven models to identify patterns associated with faults, achieving higher accuracy and
adaptability in complex environments [4-5]. By integrating these innovative methods,
industries can achieve proactive maintenance and enhanced operational safety, underscoring
the transformative impact of Al on fault detection and diagnostics [6]. The following
subsections summarize the various FDD techniques including Traditional, Model-based,
Signal Processing, Data-driven, and Hybrid Techniques.

Electrical Machine System

Electrical Machine

|

Monitors
Performance

- - Provides Datal
Fault Detection Techniques ]

Traditional Method Hybrid Method Singal Processing

Vibration Thermal Model- Data- FET Wavelet
An}alysis Imaging Based Driven Transform
. Observer- Machine Predictive
Kalman Filter Based Learning Maintenance

Figure 1. Innovations in fault detection and diagnosis techniques for electrical machines.
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2.1. Traditional Techniques

Conventional FDD methods mostly include hardware-based approaches and rely on equipment
for condition monitoring, including vibration analysis, thermal imaging, and acoustic
emissions. Vibration analysis, for example, is commonly used to identify mechanical issues
such as misalignment and bearing failures by examining changes in the vibration patterns of
machines [8]. Additionally, thermal imaging detects heat patterns to discover electrical
malfunctions, such as excessive heat and insulation deterioration [7, 9]. While these methods
provide useful information, they tend to be reactive; typically, faults are identified only after
they have progressed into more significant issues, leading to costly repairs and downtime.
Vibration analysis can identify various mechanical issues, such as imbalanced rotors or
misalignments, by monitoring variations in vibration frequency [10]. The frequency of a
machine component may be determined by applying equation (1).

NTO or
foiv = =2+ 1)
Where, fuip is the vibration frequency (Hz) and Nrotor is the rotational speed (RPM).

Thermal imaging is a method of detecting anomalous temperature changes in electrical devices.
It involves the use of infrared sensors to identify instances of overheating. Heat dissipation may
be shown using equation (2).

Q =hA(Ts — T,) (2)

Where, Q is heat transfer rate (W), h is heat transfer coefficient (W/m2K), A is Surface area
(m2), Ts is the Surface temperature (°C), and Ta is the Ambient temperature (°C).

These conventional approaches are efficacious yet responsive, often detecting flaws only after
substantial harm has occurred. Presented below in Tablel is a fixed table that compares the
limits of vibration and heat conditions for the purpose of detecting faults.

Table 1. The limits of vibration and heat conditions for detecting faults

Parameter Normal Range Fault Condition
Vibration (m/s?) 0-5 >8
Temperature (°C) 40-70 >90

2.2. Model-Based Methods

Model-based fault detection techniques use mathematical models to accurately depict the
typical operational characteristics of electrical devices. Discrepancies seen between the
observed and anticipated values indicate the presence of possible flaws [11]. A commonly used
method is Kalman filtering, which calculates the internal state of the system by minimizing the
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discrepancy between expected and measured outputs. The mathematical representation of a
dynamic system is described by a state-space model as described by equations (3) and (4).

xk+1=Axk+Buk+Wk (3)
Vi = Cxp + v (4)

Where, Xk is the state vector, uk is the input vector, yx is the output vector, A, B, and C are
system matrices, wk and vk are noise vectors.

Observer-based techniques, including the Luenberger observer, use the same idea to recreate
the internal state of the machine. These models can identify variations resulting from errors
such as deterioration of winding insulation or imbalances in the rotor. This offers a methodical
approach to identifying problems before they become more serious.

2.3. Signal Processing Methods

Signal processing methods are extensively used in defect detection by identifying significant
elements from electrical machine data. Two notable techniques are the Fast Fourier Transform
(FFT) and the Wavelet Transform (WT). The Fast Fourier Transform (FFT) is a mathematical
algorithm that is used to transform information from the time domain to the frequency domain.
This transformation allows for the identification of certain frequency components that may
indicate the presence of problems, such as broken rotor bars or misalignment [12]. The
distinctive frequency components aid in isolating anomalous behaviors, enabling the early
detection of faults. Nevertheless, the FFT algorithm has a constraint in its capability to catch
momentary occurrences since it depends on signals that remain constant. On the other hand,
WT bypasses this constraint by examining signals at various resolutions. It performs signal
decomposition into several frequency bands, which enhances its ability to identify transient
and non-stationary problems. Wavelet coefficients may be used to identify high-frequency
components and rapid changes in the waveform in cases of bearing problems. The method's
adaptability makes it particularly valuable for catching the specific events and modifications
in the signal related to faults that occur in the early stages.

2.4. Data-Driven Techniques

The development in machine learning has completely transformed the process of identifying
faults by allowing for predictive maintenance using data-driven methods. These methods
examine extensive datasets to detect patterns and abnormalities in the behavior of machines.
Support Vector Machines (SVM), Artificial Neural Networks (ANN), and Decision Trees are
often used algorithms for this objective [13]. An SVM is trained using past data to categorize
machine states (i.e. healthy or malfunctioning) based on input characteristics such as electric
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current, temperature, and vibration. The fundamental optimization challenge for SVM is
described by the model translated by equation (5).

min% Il wll?> subjecttoy;(w-x;+b)=1 (5

Where, w is the weight vector, X is the feature vector, yi is the label (i.e. healthy or faulty), b is
the bias term.

The model, once trained, has the capability to accurately anticipate problems in real-time. Table
2 below presents an example instance of a data table used for the purpose of training. This
predictive approach reduces downtime and improves the reliability of electrical machines.

Table 2. Example of a data table used for the purpose of fault detection training using data-driven techniques.

Parameter Normal Fault 1 Fault 2

Current (A) 50 65 80
Temperature (°C) 70 85 95
Vibration (m/s?) 5 8 12

2.5. Hybrid Techniques

Hybrid FDD methods integrate the advantages of model-based and data-driven approaches,
resulting in a stronger and more reliable diagnostic framework. These techniques use physical
models to replicate the typical functioning of the system, while data-driven models examine
real-time sensor data to identify any discrepancies [14]. An artificial neural network (ANN)
may be used with a Kalman filter to enhance the accuracy of defect detection. The Kalman
filter approximates the state vector of the system, whereas the ANN enhances this
approximation by examining patterns in past data. The hybrid method may be defined in a
precise manner as follows:

e Use a model-based method, such as the state-space model:
Xg+1 = Axy + Buy, (6)
e Feed the state estimates xx into the ANN for further analysis:

ypredicted = f (W X+ b) (7)

Where W and b are the weights and biases of the neural network.

Table 3 below provides an example of fault detection accuracy comparing the hybrid system
to model-based and data-driven techniques. This combination improves the accuracy of defect
detection, resulting in increased dependability and a decrease in false positives.
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Table 3. Example of fault detection accuracy using a hybrid system

Method Detection Accuracy
Model-Based 85 %
Data-Driven 90 %

Hybrid 95 %

3. Configured System Design and Model

In the design of an effective FDD system for electrical machines, several critical components
are necessary to ensure accurate and reliable performance. The system design begins with
mathematical modeling in subsection 3.1 for the electrical machines, which forms the basis for
understanding machine behavior under normal and faulty conditions. By developing
mathematical models, the different operating scenarios and fault conditions can be simulated,
providing a foundation for identifying deviations in machine performance.

Building on these models, fault detection methods are implemented in subsection 3.2 to capture
anomalies that indicate the presence of faults. These methods may include signal processing
techniques, statistical analysis, and machine learning approaches, each tailored to detect
specific types of mechanical and electrical issues. Additionally, sensor-based condition
monitoring detailed in subsection 3.3 plays a crucial role in real-time data acquisition. Through
sensors measuring parameters such as vibration, temperature, and current, the system
continuously monitors the machine’s condition, enabling early fault detection and minimizing
downtime. Together, these components -modeling, fault detection methods, and sensor-based
monitoring- are integrated to create a robust and proactive FDD system for electrical machines.

3.1. Mathematical Modeling of Electrical Machines

The process of mathematical modelling of electrical machines entails the depiction of their
dynamic behavior via the use of equations that characterize their electrical and mechanical
states. In fact, induction motors are the most often modelled machines [15]. These motors are
represented using the following differential equations in (8) and (9) for the stator and rotor
circuits, respectively.

%
dt

dl, di
V;‘:err_i'l'rg +Lmd_: (9)

dly

Vs = Rslg + Lg + LmE (8)

Where, Vs and V; are the stator and rotor voltages, Rs and R are the stator and rotor resistances,
Is and Ir are the stator and rotor currents, Ls, Ly, and Ly, are the inductances of stator, rotor, and
mutual inductance.
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These equations serve as the foundation for modelling both normal and abnormal conditions,
such as short circuits or degeneration of the winding. Numerical simulations can be used to
solve these equations and examine fluctuations in current, voltage, and torque under various
load and fault conditions.

3.2. Fault Detection Methods

Utilities and engineers may utilize simulation-based fault detection approaches to accurately
simulate and analyze different failure states in electrical devices, as illustrated in Figure 2
below. Commonly, computer-based tools like MATLAB/Simulink are used to model the
regular and faulty operation conditions of machinery such as induction motors and generators.
By replicating occurring problems such as stator winding faults, rotor bar failures, or bearing
deterioration, it is feasible to assess the impact on important performance measures (e.g.,
torque, speed, and current) [16].

For instance, considering the parameters used to evaluate an electrical machine in Table 3 and
to examine its performance under normal and faulty conditions, the motor maintains a
consistent speed of 1500 RPM and generates a torque of 500 Nm at normal operating
conditions. If a defect occurs in the stator windings, the simulation will indicate a decrease in
speed to 1350 RPM and a matching decrease in torque to 450 Nm. This observation enables
the anticipation of machine failure prior to its occurrence in the field, thereby enhancing
maintenance planning and minimizing downtime.

Table 3. Comparison of electrical machine performance under normal and fault conditions.

Parameters Normal Condition Fault Condition
Stator Current 50 A 70A
Rotor Speed 1500 RPM 1350 RPM
Torque 450 Nm 400 Nm

3.3. Sensor-Based Condition Monitoring

Sensor-based condition monitoring is a proactive method for detecting faults in electrical
machinery. It involves continually monitoring significant variables including vibration,
temperature, current, and voltage. These sensors have the capability to detect first indications
of typical behavior, allowing for prompt interventions to be implemented before significant
harm takes place. Accelerometers are often used for analyzing vibrations, thermocouples are
used for tracking temperature, and current transformers (CTs) are utilized for measuring the
current in condition monitoring [17]. Vibration sensors are capable of detecting abnormalities
in machine vibrations, which often serve as indicators of mechanical problems such as
misalignment or bearing wear. Temperature sensors, including infrared sensors or thermistors,
are utilized for tracking the thermal state of motors and transformers. They detect problem
such overheating caused by insulator failure.
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The sensors provide real-time data, which is then used as an input into monitoring systems.
These systems are typically combined with machine learning algorithms to autonomously
identify any irregularities linking the normal range to warning and fault levels, as illustrated in
Table 4. Should any parameter above its predetermined threshold, the system will promptly
generate warnings to initiate maintenance procedures, hence minimizing the likelihood of
unexpected machine failures.

Operates machine Process Initiation Runs simulations
L A 4
Electrical Machine System Analysis Simulation Environment
Fault Detection Algorithm = Compf-mson B Simulated Fault Injection
Engine
Receives Data 1 Introduce Faults J'
Electrical Machine Diagnostic Simulated Electrical Machine
Report
Monitors 1 Provides l Virtual data
Parameters Reports Fault l simulated data

Simulated Sensors

Sensors q Operator

Figure 2. Fault detection methods

Table 4. Linking normal range of parameters to warning and fault levels.

Parameter Normal Range Warning Level Fault Level
Vibration (m/s?) 0-5 5-8 >8
Temperature (°C) 40-70 70-90 >90

Current (A) 50 60 >70

3.4. Evaluation Methodology

The simulation technique for FDD of electrical machines adheres to a systematic approach in
which the system's behavior is modelled, faults are introduced, data is analyzed, and
abnormalities are detected using algorithms. A comprehensive overview of the process in
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step-by-step manner, including precise numerical computations and simulated outcomes is
presented below, as summarized in Figure 3 below.

System Fault
Modelling Injection

Figure 3. The step-by-step simulation techniques for FDD of electrical machines adhering to a systematic
approach

Step 1: System Modeling

In this step, the electrical machine is represented by differential equations that depict its
electrical and mechanical characteristics. The equations for the stator and rotor of an induction
motor are used as depicted in equations (8) and (9) above. These equations are solved over time
using numerical methods to observe the behavior of key variables, such as rotor speed, torque,
and currents.

Step 2: Fault Injection

In order to replicate faulty situations, specific variables are modified in this step as per the
expected fault scenario. For example, a stator winding defect may be imitated by artificially
raising the resistance of the stator. If the resistance Rs is typically 0.5 Q at normal operation, a
stator fault causes it to rise to 1.5 Q at a current of 75 A. The consequence of this malfunction
is then apparent in the machine's electrical current and velocity, as described in Table 5 below.

Table 5. Effect of operating conditions on stator resistance, current, and rotor speed.

Condition Stator Resistance Stator Current Rotor Speed
Normal Operation 0.5Q 50 A 1500 RPM
Stator Fault 15Q 75 A 1350

Step 3: Data Acquisition and Signal Processing

After injecting the problem parameters at normal and faulty conditions, the subsequent action
is to gather performance data. Analyzing electrical signals, such as current and voltage, allows
for the extraction of characteristics that indicate the presence of problems. The gathered data
is analyzed using frequency domain methods, such as Fast Fourier Transform (FFT), to identify
anomalous frequencies that may be indicative of defects in the rotor or stator. This method is
implemented in the presented results throughout the paper.
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Step 4: Fault Detection Algorithms

In this step, fault detection techniques are used at this stage to identify abnormalities (as
depicted in Figure 3 and 4) in the machine's performance by analyzing real-time data and
model-based predictions, as described in Section Il by equation (3) and (4). The algorithms
conduct a comparison between the observed data, such as the speed of the rotor, the current in
the stator, and the predicted values obtained from mathematical models or historical data.
Presented here is an elaborate elucidation of two prevalent defect detection techniques,
accompanied by corresponding calculations and simulated outcomes.

4. Key Results and Recommendations
4.1. Frequency Analysis and Implementation of Kalman Filter for Fault Detection

In Table 5 below, the data can provide insights into the performance of electric machines under
normal and faulty conditions, specifically by analyzing power variations at different operating
frequencies (i.e., 50 Hz and 100 Hz).

At 50 Hz: Assuming 50 Hz is the standard operating frequency (e.g., in regions where the
power grid operates at 50 Hz). Under normal conditions, the machine operates at 100 W,
indicating stable performance with an expected power consumption level. However, in the
faulty state, the power increases to 120 W, which could signal inefficiencies such as insulation
breakdown, rotor misalignment, or increased friction within the machine. Such faults may
cause additional power losses, resulting in excess power consumption.

Table 5. Frequency analysis and power calculation at normal and faulty conditions.

Frequency Normal Power Faulty Power
50 Hz 100 W 120 W
100 Hz 5W 30W

At 100 Hz: When operating at higher frequencies, electric machines often exhibit reduced
power demand due to the nature of their design and efficiency curves. Here, the normal power
is only 5 W. However, under faulty conditions, the power demand jumps to 30 W suggesting
that the machine is not handling higher frequencies efficiently under faulty conditions. This
could be due to vibration issues, harmonic distortion, or overheating, which may force the
machine to draw more power to maintain operation. Additionally, excessive power at higher
frequencies may indicate potential resonance issues or bearing wear, which can degrade
machine performance over time.

These observations suggest that faults in electric machines lead to increased power
consumption, with significant effects at both the standard and higher frequencies. Continug
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monitoring of power at different frequencies can be an effective method for early fault
detection. By identifying abnormal power draws, maintenance teams can act before faults
escalate, thereby extending the machine’s operational life and improving overall performance.

The Kalman filter is often used to predict the state variables of an electrical machine, such as
rotor speed, and then compare them with real-time measurements in order to identify defects.
The filter reduces the discrepancy between the expected and observed values by adjusting its
estimations using fresh measurements. The Kalman Filter equations are stated as follows:

e State Prediction: Xpk—1 = AXy—1 + Buy,

e Covariance Prediction: P11 = AP, AT +Q

e Kalman Gain: Ki = Pijie—1CT(CPypp—1Ct + R)?

e Covariance Update: Py = (I = KxC)Pyj—1

e State Update: 5(.'\]( = fklk—l + Kk(yk — C5C\k|k—1)

Where, X is the estimated state (e.g., rotor speed), A, B, C are system matrices, Px is the
covariance matrix, K is the Kalman gain, yk is the measured output (e.g., stator current), Q and
R are process and measurement noise covariance matrices, respectively. Assuming that the
system has the following parameters:

e A=1,B=01C=1,
e Po=050Q=0.01,R=0.02.

For the given measured stator current yx of 55A, the Kalman filter updates the state and
covariance matrices based on the equations (3) and (4) above. Simulated results in Table 6
below, after applying the Kalman filter, show the estimated rotor speed xx deviating from the
predicted value as the fault is introduced (e.g., stator winding fault). Additionally, Table 6
presents the results of applying Kalman filter equations to monitor the speed of an electric
machine over a 3-second period. By comparing the measured speed with the Kalman filter’s
estimated speed, the system identifies potential faults when there is a significant discrepancy
between the two values.

Table 6. Results of applying Kalman filter equations.

Time (s) Measured Speed Estimated Speed Fault Detected
1 1500 RPM 1498 RPM No
2 1450 RPM 1448 RPM Yes
3 1400 RPM 1398 RPM Yes

Volume 49 Issue 2 (April 2025)
https://powertechjournal.com




- Power System Technology

/Y I1SSN:1000-3673

Received: 16-02-2025 Revised: 05-03-2025 Accepted: 22-04-2025

At time 1s, the measured speed is 1500 RPM, and the estimated speed calculated by the Kalman
filter is 1498 RPM. The small difference between these values (2 RPM) suggests normal
operational conditions, and thus no fault is detected. This close alignment indicates that the
Kalman filter is accurately tracking the actual machine speed.

At time 2s, the measured speed decreases to 1450 RPM, while the Kalman filter estimates the
speed at 1448 RPM. Here, the discrepancy has increased slightly, which triggers fault detection.
This discrepancy, though minor, may indicate a developing issue, such as increased resistance
or mechanical load affecting the machine’s performance. The detection of a fault at this stage
is beneficial, as it allows for early intervention before the problem escalates.

At time 3s, the machine’s measured speed further decreases to 1400 RPM, with the estimated
speed at 1398 RPM. Similar to the previous time stamp, a fault is detected due to the slight
difference in measured and estimated values. This consistent discrepancy suggests a persistent
or worsening condition within the machine, which may require further investigation or
maintenance action.

The application of Kalman filter equations (i.e., utilizing model-based methods for fault
detection) provides effectively real-time tracking of machine speed and identifies faults based
on deviations between measured and estimated speeds. The small discrepancies detected by the
Kalman filter serve as early indicators of potential issues, allowing maintenance teams to
address problems proactively. This approach enhances system reliability and prevents
unexpected downtime by catching faults in their early stages. Moreover, the accuracy of the
Kalman filter in estimating speed demonstrates its effectiveness as a tool for monitoring and
fault detection in dynamic systems. Further studies could explore adjusting threshold levels for
fault detection to minimize false positives and optimize sensitivity.

4.2. Threshold-Based Detection using Signal Processing

This approach involves establishing thresholds that are determined by the typical operational
state of the equipment. A problem is identified when a measured parameter is above a
predetermined threshold. Vibration analysis uses the Fast Fourier Transform (FFT) to identify
anomalous frequencies linked to rotor unbalance or bearing defects. Therefore, Signal
Processing with FFT Calculation are determined in Table 7 using the following:

e Time Domain Signal: Measured stator current signal,

I(t) = 50 sin(2m X 50t) + 5 sin(2m X 100t)

e FFT Analysis: The FFT is applied to convert the signal to the frequency domain.
Abnormal harmonics (e.g., at 100 Hz) indicate a rotor fault.

A fault is detected, via Threshold Detection, if the power at 100 Hz exceeds the threshold of
10 W. Thus, the use of Kalman filters and threshold-based detection techniques allows
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efficient detection of defects in electrical devices, ensuring prompt maintenance and
minimizing periods of inactivity. The results are depicted in Table 8.

Table 7. Frequency analysis and power calculation at normal and faulty conditions.

Frequency (Hz) Normal Power (W) Faulty Power (W)
50 100 120
100 5 30
Table 8. Frequency analysis and power threshold at faulty conditions.
Frequency (Hz) Power (W) Threshold (W) Fault Detected
50 120 110 No
100 30 10 Yes

5. Remarks and Discussions

The FDD technologies are important for increasing the dependability of electrical machinery.
The findings highlight the detection accuracy of Kalman Filter, Wavelet Transform (WT), and
Fast Fourier Transform (FFT) approaches, addressing shortcomings mentioned earlier. The
FDD techniques used in this work effectively address a wide set of fault-situations in electrical
machines. Rotor imbalance, stator winding faults, and bearing failures are all representations
of faults that have a major influence on motor performance. The results obtained for various
categories of faults are summarized below. The following offers a concise overview of the
results obtained using certain methodologies:

1. Model-Based Techniques:

The rotor speed of an induction motor was determined by using Kalman filters (in Figure 4) to
describe the motor using state-space equations. The Kalman Filter is a model-based approach
to state estimation, involving the estimation of rotor speed and other system states by
minimizing the difference between predicted and measured values. It has an excellent
capability to detect slowly progressing faults such as rotor misalignment or deterioration of
insulation by utilizing real-time signals. Simulation results of rotor speed detection in normal
and faulty situations. The anticipated rotational velocity under standard circumstances was
1500 revolutions per minute (RPM). When a flaw was introduced in the stator winding, the
speed of the rotor decreased to 1350 RPM. The Kalman filter assessed the speed to be 1347
RPM, accurately identifying the fault within an acceptable error margin of 0.22%.

2. Wavelet Transform:

The Wavelet Transform (WT) is a signal processing technique that decomposes signals into
multiple frequency bands, thereby allowing for the detection of faults that are transient and
non-stationary. It is very effective for recognizing abrupt anomalies like rotor cracks and
bearing failures. The following results in Table 9 are obtained from simulations of stator curren
signal analysis.
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Figure 4. Fault detection for an induction motor by comparing normal operation to stator winding as well as
rotor bar faults.

Table 9. Simulations of Stator Current Signal Analysis.

Fault Type Frequency (Hz) Norm(%lvl):’ower Fault Power (W) Fault Detected
Bearing Failure 100 5 30 Yes
Rotor Imbalance 150 10 40 Yes
Stator Winding 200 8 35 Yes

WT’s sensitivity to high-frequency anomalies allows for early-stage fault detection. The
Kalman Filter is best suited for fault estimation with high accuracy and real-time performance,
whereas the Wavelet Transform is perfect for fast, transient faults. The combined method takes
advantage of the prediction accuracy of the Kalman Filter and the sensitivity of the WT to yield
an overall solution for the fault detection of electrical devices.

3. Rotor Imbalance:

Imbalance occurs in a rotor when there is an uneven distribution of mass resulting in vibrations
and reduced productivity. This factor is established based on findings made using signal
processing methods such as FFT and Wavelet Transform to detect abnormal power spikes in
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the frequency domain. Simulation results in Table 10 show that both FFT and WT could
identify this issue by examining the rise in power at specified frequencies.

Table 10. Simulations of rotor imbalance.

Fault Type Fre(q|_l|JZe)ncy Norm(%lvl):’ower Faul(tVC;Jwer Fault Detected
Rotor Imbalance 150 10 40 Yes

4. Stator Winding Failure:

Stator winding failures occur owing to insulation failure or overheating, resulting in increased
resistance and variations in current flow. The Kalman Filter discovered malfunction by
measuring rotor speed variations because of increased resistance, as shown in Table 10. The
findings support the Kalman Filter's capacity to discover progressive defects by tracking
departures from predicted performance.

Table 10. Results for Normal operation vs. Stator Fault.

. Stator Resistance Rotor Speed
Condition Q) (RPM) Fault Detected
Normal Operation 0.5 1500 No
Stator Fault 15 1350 Yes

5. Bearing Defects:

Bearing failures simulated in Table 11 cause greater friction and vibrations, which leads to
inefficiencies. The Wavelet Transform found bearing flaws by detecting transitory
abnormalities in vibration signals [19]. WT's high-frequency sensitivity helped discover this
transient problem early on.

Table 11. Simulations of Bearing Defects.

Fault Frequency Normal Power Fault Power Fault

Type (Hz) (W) (W) Detected
Bearing 100 5 30 Yes
Failure

6. Signal Processing Techniques:

Faults in the rotor are detected by analyzing stator current data in the frequency domain using
the FFT. Power spectrum reveals large peaks at fault frequencies. Through FFT, a stator current
signal with a fault exhibited abnormal power at 100 Hz. In normal conditions, the power at 10
Hz was 5 W, but with a fault, it increased to 30 W, a clear indicator of rotor imbalance.
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simulations demonstrate that model-based methods such as Kalman filters accurately predict
machine conditions with little error, whereas signal processing techniques, including Fast
Fourier Transform (FFT), successfully detect defects via frequency domain analysis. By
combining these strategies (Table 9), a strong Fault Detection and Diagnosis (FDD) system is
created that can identify faults at an early stage, enhancing the dependability of the machine
and minimizing downtime.

While FFT is efficient for detecting faults in periodic signals, it is less successful for transient
abnormalities than WT. With improvements possibly affecting FDD analysis due to detection
accuracy, the Kalman Filter specializes in smooth estimating methods with low error rates,
whereas WT and FFT handle high-frequency faults quite well. A combination of these provides
a complete FDD system that can treat various fault situations while enhancing the reliability of
the machine and minimizing its downtime.

Table 9. Utilizing Frequency analysis and power calculation in fault detection and protection decision

making.
Frequency Normal Power Fault Power Fault Detected
(Hz) (W) (W)
100 5 30 Yes

1550

1500

1450
1400
1350
- I I
1250
1 2 3

W Measured Speed (RPM) M Estimated Speed (RPM)

Figure 5. Comparison of measured and estimated RPM of an electric induction motor
using Kalman Filter
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6. Conclusion

The research presented in this paper has examined several failure detection and diagnosis
(FDD) methods to improve the dependability of electrical devices in contemporary
applications. Simulations and numerical analysis have shown the efficacy of classical
approaches, including the Fast Fourier Transform (FFT), in identifying early-stage defects,
such as rotor imbalance. This is achieved by analyzing the frequency domain of stator current
waveforms. The Kalman filter, a model-based method, effectively evaluated machine states,
such as rotor speed, and diagnosed defects with a low margin of error. By integrating model-
based and data-driven methods, hybrid methodologies were able to enhance fault detection
accuracy, resulting in a significant reduction in false positives. By using artificial intelligence
(Al) methods, the use of historical data for anomaly identification has greatly improved
predictive maintenance. In summary, the integration of conventional, model-based, and data-
driven fault detection and diagnosis (FDD) methods offers a reliable and resilient system for
identifying faults. These approaches improve the machine's operating dependability and
provide early detection, reducing machine downtime and maintenance expenses. The findings
indicate that combining a hybrid method with Al-driven algorithms is crucial for developing
the field of FDD, especially in dynamic industrial applications where real-time accuracy and
efficiency are vital for operational success.
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