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Abstract:-  Electrical equipment dependability is essential to operational efficiency and cost-

effectiveness across power and energy sectors. The development of an up-to-date Fault Detection and 

Diagnosis (FDD) method is essential to improve electrical equipment dependability in current modern 

applications. Advanced FDD approaches include signal processing, statistical modelling, and machine 

learning algorithms to analyze vibrations and monitor temperatures of the machine. This study examines 

essential concepts and situations related to electrical machines problems including rotor and stator 

breakdowns using numerical simulations. Furthermore, case studies and computer simulations 

demonstrate how these strategies enhance predictive maintenance and problem diagnosis. In fact, the 

presented work explains the advancements in FDD utilizing hybrid model-based data-driven methods. 

The findings show that AI, sensor technologies, and condition monitoring systems improve problem 

detection accuracy and efficiency, lowering downtime and maintenance costs. This paper advance’s 

reliability engineering by providing a solid foundation for FDD system enhancements, encouraging the 

utilization of more advanced techniques such as machine learning and AI to enhance the reliability of 

electric machines in modern power system applications. 
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1. Introduction 

The dependability of electrical machinery is crucial in guaranteeing the smooth functioning of 

diverse industrial procedures, consumer applications, and infrastructural systems. Electrical 

machinery and equipment, such as motors, generators, and transformers, are crucial to 

contemporary industry. If these machines fail, it may lead to substantial financial losses, 

operating downtime, and compromising safety. In order to tackle these difficulties, Fault 

Detection and Diagnosis (FDD) methods have become crucial instruments for promptly 

identifying machine problems, enabling proactive steps to be implemented before catastrophic 

failures transpire. Conventional FDD techniques, including temperature analysis and vibration 

surveillance, offer valuable insights but tend to be reactive in nature, since they only detect 

flaws after substantial destruction has already taken place [1]. Contemporary developments in 

FDD methods use computational intelligence, real-time monitoring, and machine learning 

algorithms to forecast and avert faults, hence improving the reliability of the system. These 

methods can identify abnormalities in performance indicators such as voltage, current, and 
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temperature, hence providing timely alerts for possibly occurring problems. This study 

explores the most recent advancements in FDD approaches, with a focus on numerical analysis, 

simulations, and mathematical modelling [2]. It also emphasizes fault status, such as rotor bar, 

stator winding, and bearing failures, specifically in electrical devices. The presented research 

is deemed to provide full knowledge of how numerical calculation, computer simulations, and 

theoretical concepts contribute to the dependability and operational performance of electrical 

machines. The amalgamation of sensor technologies, artificial intelligence, and signal 

processing has resulted in enhanced precision and promptness in identifying faults, hence 

transforming maintenance plans and reducing unforeseen periods of inactivity. 

The organization of this paper follows a chronological and systematic approach. Section 2 

presents a comprehensive literature review, summarizing key research contributions in fault 

detection and diagnosis methods. Section 3 details the system design and mathematical 

modeling employed for fault diagnosis. Sections 4 and 5 discuss the results and analyses, 

highlighting the limitations of conventional fault detection techniques, the effectiveness of 

utilizing hybrid model-based data-driven methods, and the role of machine learning in fault 

classification. Finally, Section 6 offers conclusions and recommendations for future 

advancements in AI-driven FDD systems. 

 

2. Literature Review 

The FDD techniques have improved greatly to ensure that electrical machinery is reliable and 

efficient. Early techniques were hardware-based and included methods like vibration analysis, 

thermal imaging, and acoustic emissions. Figure 1 shows a summary of the innovations in fault 

detection and diagnosis techniques for electrical machines.  Although these are useful for the 

detection of flaws such as misalignment or overheating, the traditional methods often had a 

reactionary approach, indicating problems only after significant damage had occurred. For 

example, for balance detection, vibration analysis detects frequency variations, whereas 

thermal imaging can detect abnormal temperature readings resulting from insulation 

deterioration. Model-based techniques were later introduced as a systematic method of FDD 

[3]. They use mathematical models that simulate normal operating conditions in electrical 

equipment and seek defects by comparing observed behavior with the computed results. Some 

of the developed methods were found to be capable of detecting irregularities in the rotor and 

stator. For instance, Kalman filtering reduces mismatches between estimated and actual states 

of the system, hence it is one of the best methods for detecting defects at early stages.  

Advances in signal processing methods such as the Fast Fourier Transform (FFT) and Wavelet 

Transform (WT) have made fault detection significantly better. Even though FFT detects 

frequencies related to rotor flaws or misalignments, WT excels at transient and non-stationary 

signal detection such as in bearings failure.  
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Moreover, the data-driven methods, which are allowed by machine learning algorithms, 

comprise the next step in FDD. There are methods in Support Vector Machines (SVM), 

Artificial Neural Networks (ANN), and Decision Trees that use massive volumes of datasets 

to make forecasted errors. For instance, SVM identifies the state of a machine through 

characteristics like vibration, temperature, and current, which results in a highly accurate 

prediction of real-time failure. The combination of model-based and data-driven methods has 

led to hybrid strategies that take advantage of the benefits of both methodologies. Such 

systems, such as hybrid ANN-Kalman models, enhance detection accuracy while reducing 

false positives. In fact, literature reflects progression from classic hardware-based solutions to 

advanced hybrid systems. These improvements underscore the increased importance of 

computational intelligence, real-time monitoring, including predictive analytics in developing 

dependable FDD systems. Future research is likely to examine hybrid and AI-driven solutions 

in a multiple failure conditions context [4-5]. 

Traditional FDD methods focus on residual generation and model-based approaches to detect 

deviations from expected behavior [3]. In contrast, AI-based FDD methods leverage data-

driven models to identify patterns associated with faults, achieving higher accuracy and 

adaptability in complex environments [4-5]. By integrating these innovative methods, 

industries can achieve proactive maintenance and enhanced operational safety, underscoring 

the transformative impact of AI on fault detection and diagnostics [6]. The following 

subsections summarize the various FDD techniques including Traditional, Model-based, 

Signal Processing, Data-driven, and Hybrid Techniques. 

 

 
Figure 1. Innovations in fault detection and diagnosis techniques for electrical machines. 
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2.1. Traditional Techniques 

Conventional FDD methods mostly include hardware-based approaches and rely on equipment 

for condition monitoring, including vibration analysis, thermal imaging, and acoustic 

emissions. Vibration analysis, for example, is commonly used to identify mechanical issues 

such as misalignment and bearing failures by examining changes in the vibration patterns of 

machines [8]. Additionally, thermal imaging detects heat patterns to discover electrical 

malfunctions, such as excessive heat and insulation deterioration [7, 9]. While these methods 

provide useful information, they tend to be reactive; typically, faults are identified only after 

they have progressed into more significant issues, leading to costly repairs and downtime. 

Vibration analysis can identify various mechanical issues, such as imbalanced rotors or 

misalignments, by monitoring variations in vibration frequency [10]. The frequency of a 

machine component may be determined by applying equation (1). 

𝑓𝑣𝑖𝑏 =
𝑁𝑟𝑜𝑡𝑜𝑟

60
 (1) 

Where, fvib is the vibration frequency (Hz) and Nrotor is the rotational speed (RPM). 

Thermal imaging is a method of detecting anomalous temperature changes in electrical devices. 

It involves the use of infrared sensors to identify instances of overheating. Heat dissipation may 

be shown using equation (2). 

𝑄 = ℎ𝐴(𝑇𝑠 − 𝑇𝑎) (2) 

Where, Q is heat transfer rate (W), h is heat transfer coefficient (W/m²K), A is Surface area 

(m²), Ts is the Surface temperature (°C), and Ta is the Ambient temperature (°C). 

These conventional approaches are efficacious yet responsive, often detecting flaws only after 

substantial harm has occurred. Presented below in Table1 is a fixed table that compares the 

limits of vibration and heat conditions for the purpose of detecting faults. 

Table 1. The limits of vibration and heat conditions for detecting faults 

Parameter Normal Range Fault Condition 

Vibration (m/s2) 0 – 5 > 8 

Temperature (°C) 40-70 > 90 

 

2.2. Model-Based Methods 

Model-based fault detection techniques use mathematical models to accurately depict the 

typical operational characteristics of electrical devices. Discrepancies seen between the 

observed and anticipated values indicate the presence of possible flaws [11]. A commonly used 

method is Kalman filtering, which calculates the internal state of the system by minimizing the 
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discrepancy between expected and measured outputs. The mathematical representation of a 

dynamic system is described by a state-space model as described by equations (3) and (4). 

𝑥𝑘 + 1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 + 𝑤𝑘 (3) 

𝑦𝑘 = 𝐶𝑥𝑘 + 𝑣𝑘  (4) 

Where, xk is the state vector, uk is the input vector, yk is the output vector, A, B, and C are 

system matrices, wk and vk are noise vectors. 

Observer-based techniques, including the Luenberger observer, use the same idea to recreate 

the internal state of the machine. These models can identify variations resulting from errors 

such as deterioration of winding insulation or imbalances in the rotor. This offers a methodical 

approach to identifying problems before they become more serious. 

 

2.3. Signal Processing Methods 

Signal processing methods are extensively used in defect detection by identifying significant 

elements from electrical machine data. Two notable techniques are the Fast Fourier Transform 

(FFT) and the Wavelet Transform (WT). The Fast Fourier Transform (FFT) is a mathematical 

algorithm that is used to transform information from the time domain to the frequency domain. 

This transformation allows for the identification of certain frequency components that may 

indicate the presence of problems, such as broken rotor bars or misalignment [12]. The 

distinctive frequency components aid in isolating anomalous behaviors, enabling the early 

detection of faults. Nevertheless, the FFT algorithm has a constraint in its capability to catch 

momentary occurrences since it depends on signals that remain constant. On the other hand, 

WT bypasses this constraint by examining signals at various resolutions. It performs signal 

decomposition into several frequency bands, which enhances its ability to identify transient 

and non-stationary problems. Wavelet coefficients may be used to identify high-frequency 

components and rapid changes in the waveform in cases of bearing problems. The method's 

adaptability makes it particularly valuable for catching the specific events and modifications 

in the signal related to faults that occur in the early stages. 

 

2.4. Data-Driven Techniques 

The development in machine learning has completely transformed the process of identifying 

faults by allowing for predictive maintenance using data-driven methods. These methods 

examine extensive datasets to detect patterns and abnormalities in the behavior of machines. 

Support Vector Machines (SVM), Artificial Neural Networks (ANN), and Decision Trees are 

often used algorithms for this objective [13]. An SVM is trained using past data to categorize 

machine states (i.e. healthy or malfunctioning) based on input characteristics such as electric 
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current, temperature, and vibration. The fundamental optimization challenge for SVM is 

described by the model translated by equation (5). 

𝑚𝑖𝑛
1

2
∣∣ 𝑤 ∣∣2  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑦𝑖(𝑤 ⋅ 𝑥𝑖 + 𝑏) ≥ 1 (5) 

Where, w is the weight vector, xi is the feature vector, yi is the label (i.e. healthy or faulty), b is 

the bias term. 

The model, once trained, has the capability to accurately anticipate problems in real-time. Table 

2 below presents an example instance of a data table used for the purpose of training. This 

predictive approach reduces downtime and improves the reliability of electrical machines. 

 

Table 2. Example of a data table used for the purpose of fault detection training using data-driven techniques. 

Parameter Normal Fault 1 Fault 2 

Current (A) 50 65 80 

Temperature (°C) 70 85 95 

Vibration (m/s²) 5 8 12 

 

2.5. Hybrid Techniques 

Hybrid FDD methods integrate the advantages of model-based and data-driven approaches, 

resulting in a stronger and more reliable diagnostic framework. These techniques use physical 

models to replicate the typical functioning of the system, while data-driven models examine 

real-time sensor data to identify any discrepancies [14]. An artificial neural network (ANN) 

may be used with a Kalman filter to enhance the accuracy of defect detection. The Kalman 

filter approximates the state vector of the system, whereas the ANN enhances this 

approximation by examining patterns in past data. The hybrid method may be defined in a 

precise manner as follows: 

• Use a model-based method, such as the state-space model: 

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘  (6) 

• Feed the state estimates xk into the ANN for further analysis: 

𝑦
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

= 𝑓 (𝑊 ⋅ 𝑥 + 𝑏) (7) 

Where W and b are the weights and biases of the neural network.  

Table 3 below provides an example of fault detection accuracy comparing the hybrid system 

to model-based and data-driven techniques. This combination improves the accuracy of defect 

detection, resulting in increased dependability and a decrease in false positives. 



 
Received: 16-02-2025         Revised: 05-03-2025 Accepted: 22-04-2025 

 

 661 Volume 49 Issue 2 (April 2025) 

https://powertechjournal.com 

 

Table 3. Example of fault detection accuracy using a hybrid system 

Method Detection Accuracy 

Model-Based 85 % 

Data-Driven 90 % 

Hybrid 95 % 

 

3. Configured System Design and Model 

In the design of an effective FDD system for electrical machines, several critical components 

are necessary to ensure accurate and reliable performance. The system design begins with 

mathematical modeling in subsection 3.1 for the electrical machines, which forms the basis for 

understanding machine behavior under normal and faulty conditions. By developing 

mathematical models, the different operating scenarios and fault conditions can be simulated, 

providing a foundation for identifying deviations in machine performance.  

Building on these models, fault detection methods are implemented in subsection 3.2 to capture 

anomalies that indicate the presence of faults. These methods may include signal processing 

techniques, statistical analysis, and machine learning approaches, each tailored to detect 

specific types of mechanical and electrical issues. Additionally, sensor-based condition 

monitoring detailed in subsection 3.3 plays a crucial role in real-time data acquisition. Through 

sensors measuring parameters such as vibration, temperature, and current, the system 

continuously monitors the machine’s condition, enabling early fault detection and minimizing 

downtime. Together, these components -modeling, fault detection methods, and sensor-based 

monitoring- are integrated to create a robust and proactive FDD system for electrical machines. 

3.1. Mathematical Modeling of Electrical Machines 

The process of mathematical modelling of electrical machines entails the depiction of their 

dynamic behavior via the use of equations that characterize their electrical and mechanical 

states. In fact, induction motors are the most often modelled machines [15]. These motors are 

represented using the following differential equations in (8) and (9) for the stator and rotor 

circuits, respectively. 

𝑉𝑠 = 𝑅𝑠𝐼𝑠 + 𝐿𝑠
𝑑𝐼𝑠

𝑑𝑡
+ 𝐿𝑚

𝑑𝐼𝑟

𝑑𝑡
 (8) 

𝑉𝑟 = 𝑅𝑟𝐼𝑟 + 𝐿𝑟
𝑑𝐼𝑟

𝑑𝑡
+ 𝐿𝑚

𝑑𝐼𝑠

𝑑𝑡
 (9) 

 

Where, Vs and Vr are the stator and rotor voltages, Rs and Rr are the stator and rotor resistances, 

Is and Ir are the stator and rotor currents, Ls, Lr, and Lm are the inductances of stator, rotor, and 

mutual inductance. 
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These equations serve as the foundation for modelling both normal and abnormal conditions, 

such as short circuits or degeneration of the winding. Numerical simulations can be used to 

solve these equations and examine fluctuations in current, voltage, and torque under various 

load and fault conditions. 

3.2. Fault Detection Methods 

Utilities and engineers may utilize simulation-based fault detection approaches to accurately 

simulate and analyze different failure states in electrical devices, as illustrated in Figure 2 

below. Commonly, computer-based tools like MATLAB/Simulink are used to model the 

regular and faulty operation conditions of machinery such as induction motors and generators. 

By replicating occurring problems such as stator winding faults, rotor bar failures, or bearing 

deterioration, it is feasible to assess the impact on important performance measures (e.g., 

torque, speed, and current) [16].  

For instance, considering the parameters used to evaluate an electrical machine in Table 3 and 

to examine its performance under normal and faulty conditions, the motor maintains a 

consistent speed of 1500 RPM and generates a torque of 500 Nm at normal operating 

conditions. If a defect occurs in the stator windings, the simulation will indicate a decrease in 

speed to 1350 RPM and a matching decrease in torque to 450 Nm. This observation enables 

the anticipation of machine failure prior to its occurrence in the field, thereby enhancing 

maintenance planning and minimizing downtime. 

Table 3. Comparison of electrical machine performance under normal and fault conditions. 

Parameters Normal Condition Fault Condition 

Stator Current 50 A 70 A 

Rotor Speed 1500 RPM 1350 RPM 

Torque 450 Nm 400 Nm 

 

 

3.3. Sensor-Based Condition Monitoring 

Sensor-based condition monitoring is a proactive method for detecting faults in electrical 

machinery. It involves continually monitoring significant variables including vibration, 

temperature, current, and voltage. These sensors have the capability to detect first indications 

of typical behavior, allowing for prompt interventions to be implemented before significant 

harm takes place. Accelerometers are often used for analyzing vibrations, thermocouples are 

used for tracking temperature, and current transformers (CTs) are utilized for measuring the 

current in condition monitoring [17]. Vibration sensors are capable of detecting abnormalities 

in machine vibrations, which often serve as indicators of mechanical problems such as 

misalignment or bearing wear. Temperature sensors, including infrared sensors or thermistors, 

are utilized for tracking the thermal state of motors and transformers. They detect problems 

such overheating caused by insulator failure. 
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The sensors provide real-time data, which is then used as an input into monitoring systems. 

These systems are typically combined with machine learning algorithms to autonomously 

identify any irregularities linking the normal range to warning and fault levels, as illustrated in 

Table 4. Should any parameter above its predetermined threshold, the system will promptly 

generate warnings to initiate maintenance procedures, hence minimizing the likelihood of 

unexpected machine failures. 

Table 4. Linking normal range of parameters to warning and fault levels.  

Parameter Normal Range Warning Level Fault Level 

Vibration (m/s²) 0 - 5 5 - 8 >8 

Temperature (°C) 40 - 70 70 - 90 >90 

Current (A) 50 60 >70 

 

3.4. Evaluation Methodology 

The simulation technique for FDD of electrical machines adheres to a systematic approach in 

which the system's behavior is modelled, faults are introduced, data is analyzed, and 

abnormalities are detected using algorithms. A comprehensive overview of the process in a 

 

Figure 2. Fault detection methods 
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step-by-step manner, including precise numerical computations and simulated outcomes is 

presented below, as summarized in Figure 3 below. 

 

Step 1: System Modeling 

In this step, the electrical machine is represented by differential equations that depict its 

electrical and mechanical characteristics. The equations for the stator and rotor of an induction 

motor are used as depicted in equations (8) and (9) above. These equations are solved over time 

using numerical methods to observe the behavior of key variables, such as rotor speed, torque, 

and currents. 

Step 2: Fault Injection 

In order to replicate faulty situations, specific variables are modified in this step as per the 

expected fault scenario. For example, a stator winding defect may be imitated by artificially 

raising the resistance of the stator. If the resistance 𝑅𝑠 is typically 0.5 Ω at normal operation, a 

stator fault causes it to rise to 1.5 Ω at a current of 75 A. The consequence of this malfunction 

is then apparent in the machine's electrical current and velocity, as described in Table 5 below. 

Table 5. Effect of operating conditions on stator resistance, current, and rotor speed. 

Condition Stator Resistance Stator Current Rotor Speed 

Normal Operation 0.5 Ω 50 A 1500 RPM 

Stator Fault 1.5 Ω 75 A 1350 

 

Step 3: Data Acquisition and Signal Processing 

After injecting the problem parameters at normal and faulty conditions, the subsequent action 

is to gather performance data. Analyzing electrical signals, such as current and voltage, allows 

for the extraction of characteristics that indicate the presence of problems. The gathered data 

is analyzed using frequency domain methods, such as Fast Fourier Transform (FFT), to identify 

anomalous frequencies that may be indicative of defects in the rotor or stator. This method is 

implemented in the presented results throughout the paper. 

 

 

 

Figure 3. The step-by-step simulation techniques for FDD of electrical machines adhering to a systematic 

approach 
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Step 4: Fault Detection Algorithms 

In this step, fault detection techniques are used at this stage to identify abnormalities (as 

depicted in Figure 3 and 4) in the machine's performance by analyzing real-time data and 

model-based predictions, as described in Section II by equation (3) and (4). The algorithms 

conduct a comparison between the observed data, such as the speed of the rotor, the current in 

the stator, and the predicted values obtained from mathematical models or historical data. 

Presented here is an elaborate elucidation of two prevalent defect detection techniques, 

accompanied by corresponding calculations and simulated outcomes. 

 

4. Key Results and Recommendations 

4.1. Frequency Analysis and Implementation of Kalman Filter for Fault Detection 

In Table 5 below, the data can provide insights into the performance of electric machines under 

normal and faulty conditions, specifically by analyzing power variations at different operating 

frequencies (i.e., 50 Hz and 100 Hz). 

At 50 Hz: Assuming 50 Hz is the standard operating frequency (e.g., in regions where the 

power grid operates at 50 Hz). Under normal conditions, the machine operates at 100 W, 

indicating stable performance with an expected power consumption level. However, in the 

faulty state, the power increases to 120 W, which could signal inefficiencies such as insulation 

breakdown, rotor misalignment, or increased friction within the machine. Such faults may 

cause additional power losses, resulting in excess power consumption. 

Table 5. Frequency analysis and power calculation at normal and faulty conditions. 

Frequency Normal Power Faulty Power 

50 Hz 100 W 120 W 

100 Hz 5 W 30 W 

 

At 100 Hz: When operating at higher frequencies, electric machines often exhibit reduced 

power demand due to the nature of their design and efficiency curves. Here, the normal power 

is only 5 W. However, under faulty conditions, the power demand jumps to 30 W suggesting 

that the machine is not handling higher frequencies efficiently under faulty conditions. This 

could be due to vibration issues, harmonic distortion, or overheating, which may force the 

machine to draw more power to maintain operation. Additionally, excessive power at higher 

frequencies may indicate potential resonance issues or bearing wear, which can degrade 

machine performance over time. 

These observations suggest that faults in electric machines lead to increased power 

consumption, with significant effects at both the standard and higher frequencies. Continuous 
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monitoring of power at different frequencies can be an effective method for early fault 

detection. By identifying abnormal power draws, maintenance teams can act before faults 

escalate, thereby extending the machine’s operational life and improving overall performance. 

The Kalman filter is often used to predict the state variables of an electrical machine, such as 

rotor speed, and then compare them with real-time measurements in order to identify defects. 

The filter reduces the discrepancy between the expected and observed values by adjusting its 

estimations using fresh measurements. The Kalman Filter equations are stated as follows: 

• State Prediction:  𝑥̂𝑘∣𝑘−1 = 𝐴𝑥̂𝑘−1 + 𝐵𝑢𝑘 

• Covariance Prediction: 𝑃𝑘∣𝑘−1 = 𝐴𝑃𝑘−1𝐴𝑇 + 𝑄 

• Kalman Gain:   𝐾𝑘 = 𝑃𝑘∣𝑘−1𝐶𝑇(𝐶𝑃𝑘∣𝑘−1𝐶𝑡 + 𝑅)−1 

• Covariance Update:  𝑃𝑘 = (𝐼 − 𝐾𝑘𝐶)𝑃𝑘∣𝑘−1 

• State Update:   𝑥̂𝑘 = 𝑥̂𝑘∣𝑘−1 + 𝐾𝑘(𝑦𝑘 − 𝐶𝑥̂𝑘∣𝑘−1) 

 

Where, xk is the estimated state (e.g., rotor speed), A, B, C are system matrices, Pk is the 

covariance matrix, Kk is the Kalman gain, yk is the measured output (e.g., stator current), Q and 

R are process and measurement noise covariance matrices, respectively. Assuming that the 

system has the following parameters: 

• A = 1, B = 0.1, C = 1, 

• P0 = 0.5, Q = 0.01, R = 0.02. 

For the given measured stator current yk of 55A, the Kalman filter updates the state and 

covariance matrices based on the equations (3) and (4) above. Simulated results in Table 6 

below, after applying the Kalman filter, show the estimated rotor speed xk deviating from the 

predicted value as the fault is introduced (e.g., stator winding fault). Additionally, Table 6 

presents the results of applying Kalman filter equations to monitor the speed of an electric 

machine over a 3-second period. By comparing the measured speed with the Kalman filter’s 

estimated speed, the system identifies potential faults when there is a significant discrepancy 

between the two values. 

Table 6. Results of applying Kalman filter equations.  

Time (s) Measured Speed Estimated Speed Fault Detected 

1 1500 RPM 1498 RPM No 

2 1450 RPM 1448 RPM Yes 

3 1400 RPM 1398 RPM Yes 
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At time 1s, the measured speed is 1500 RPM, and the estimated speed calculated by the Kalman 

filter is 1498 RPM. The small difference between these values (2 RPM) suggests normal 

operational conditions, and thus no fault is detected. This close alignment indicates that the 

Kalman filter is accurately tracking the actual machine speed. 

At time 2s, the measured speed decreases to 1450 RPM, while the Kalman filter estimates the 

speed at 1448 RPM. Here, the discrepancy has increased slightly, which triggers fault detection. 

This discrepancy, though minor, may indicate a developing issue, such as increased resistance 

or mechanical load affecting the machine’s performance. The detection of a fault at this stage 

is beneficial, as it allows for early intervention before the problem escalates. 

At time 3s, the machine’s measured speed further decreases to 1400 RPM, with the estimated 

speed at 1398 RPM. Similar to the previous time stamp, a fault is detected due to the slight 

difference in measured and estimated values. This consistent discrepancy suggests a persistent 

or worsening condition within the machine, which may require further investigation or 

maintenance action. 

The application of Kalman filter equations (i.e., utilizing model-based methods for fault 

detection) provides effectively real-time tracking of machine speed and identifies faults based 

on deviations between measured and estimated speeds. The small discrepancies detected by the 

Kalman filter serve as early indicators of potential issues, allowing maintenance teams to 

address problems proactively. This approach enhances system reliability and prevents 

unexpected downtime by catching faults in their early stages. Moreover, the accuracy of the 

Kalman filter in estimating speed demonstrates its effectiveness as a tool for monitoring and 

fault detection in dynamic systems. Further studies could explore adjusting threshold levels for 

fault detection to minimize false positives and optimize sensitivity. 

4.2. Threshold-Based Detection using Signal Processing 

This approach involves establishing thresholds that are determined by the typical operational 

state of the equipment. A problem is identified when a measured parameter is above a 

predetermined threshold. Vibration analysis uses the Fast Fourier Transform (FFT) to identify 

anomalous frequencies linked to rotor unbalance or bearing defects. Therefore, Signal 

Processing with FFT Calculation are determined in Table 7 using the following: 

• Time Domain Signal: Measured stator current signal, 

𝐼(𝑡) = 50 𝑠𝑖𝑛(2𝜋 × 50𝑡) + 5 𝑠𝑖𝑛(2𝜋 × 100𝑡) 

• FFT Analysis: The FFT is applied to convert the signal to the frequency domain. 

Abnormal harmonics (e.g., at 100 Hz) indicate a rotor fault. 

A fault is detected, via Threshold Detection, if the power at 100 Hz exceeds the threshold of 

10 W. Thus, the use of Kalman filters and threshold-based detection techniques allows for 
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efficient detection of defects in electrical devices, ensuring prompt maintenance and 

minimizing periods of inactivity. The results are depicted in Table 8. 

Table 7. Frequency analysis and power calculation at normal and faulty conditions. 

Frequency (Hz) Normal Power (W) Faulty Power (W) 

50 100 120 

100 5 30 

 

Table 8. Frequency analysis and power threshold at faulty conditions. 

Frequency (Hz) Power (W) Threshold (W) Fault Detected 

50 120 110 No 

100 30 10 Yes 

 

5. Remarks and Discussions 

The FDD technologies are important for increasing the dependability of electrical machinery. 

The findings highlight the detection accuracy of Kalman Filter, Wavelet Transform (WT), and 

Fast Fourier Transform (FFT) approaches, addressing shortcomings mentioned earlier. The 

FDD techniques used in this work effectively address a wide set of fault-situations in electrical 

machines. Rotor imbalance, stator winding faults, and bearing failures are all representations 

of faults that have a major influence on motor performance. The results obtained for various 

categories of faults are summarized below. The following offers a concise overview of the 

results obtained using certain methodologies: 

1. Model-Based Techniques: 

The rotor speed of an induction motor was determined by using Kalman filters (in Figure 4) to 

describe the motor using state-space equations. The Kalman Filter is a model-based approach 

to state estimation, involving the estimation of rotor speed and other system states by 

minimizing the difference between predicted and measured values. It has an excellent 

capability to detect slowly progressing faults such as rotor misalignment or deterioration of 

insulation by utilizing real-time signals. Simulation results of rotor speed detection in normal 

and faulty situations. The anticipated rotational velocity under standard circumstances was 

1500 revolutions per minute (RPM). When a flaw was introduced in the stator winding, the 

speed of the rotor decreased to 1350 RPM. The Kalman filter assessed the speed to be 1347 

RPM, accurately identifying the fault within an acceptable error margin of 0.22%. 

2. Wavelet Transform: 

The Wavelet Transform (WT) is a signal processing technique that decomposes signals into 

multiple frequency bands, thereby allowing for the detection of faults that are transient and 

non-stationary. It is very effective for recognizing abrupt anomalies like rotor cracks and 

bearing failures. The following results in Table 9 are obtained from simulations of stator current 

signal analysis. 
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Table 9. Simulations of Stator Current Signal Analysis. 

Fault Type Frequency (Hz) 
Normal Power 

(W) 
Fault Power (W) Fault Detected 

Bearing Failure 100 5 30 Yes 

Rotor Imbalance 150 10 40 Yes 

Stator Winding 200 8 35 Yes 

 

WT’s sensitivity to high-frequency anomalies allows for early-stage fault detection. The 

Kalman Filter is best suited for fault estimation with high accuracy and real-time performance, 

whereas the Wavelet Transform is perfect for fast, transient faults. The combined method takes 

advantage of the prediction accuracy of the Kalman Filter and the sensitivity of the WT to yield 

an overall solution for the fault detection of electrical devices. 

3. Rotor Imbalance: 

Imbalance occurs in a rotor when there is an uneven distribution of mass resulting in vibrations 

and reduced productivity. This factor is established based on findings made using signal 

processing methods such as FFT and Wavelet Transform to detect abnormal power spikes in 

 

Figure 4. Fault detection for an induction motor by comparing normal operation to stator winding as well as 

rotor bar faults. 
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the frequency domain. Simulation results in Table 10 show that both FFT and WT could 

identify this issue by examining the rise in power at specified frequencies. 

 

Table 10. Simulations of rotor imbalance. 

Fault Type 
Frequency 

(Hz) 

Normal Power 

(W) 

Fault Power 

(W) 
Fault Detected 

Rotor Imbalance 150 10 40 Yes 

 

4. Stator Winding Failure: 

Stator winding failures occur owing to insulation failure or overheating, resulting in increased 

resistance and variations in current flow. The Kalman Filter discovered malfunction by 

measuring rotor speed variations because of increased resistance, as shown in Table 10. The 

findings support the Kalman Filter's capacity to discover progressive defects by tracking 

departures from predicted performance. 

Table 10. Results for Normal operation vs. Stator Fault. 

Condition 
Stator Resistance 

(Ω) 

Rotor Speed 

(RPM) 
Fault Detected 

Normal Operation 0.5 1500 No 

Stator Fault 1.5 1350 Yes 

 

5. Bearing Defects: 

Bearing failures simulated in Table 11 cause greater friction and vibrations, which leads to 

inefficiencies. The Wavelet Transform found bearing flaws by detecting transitory 

abnormalities in vibration signals [19]. WT's high-frequency sensitivity helped discover this 

transient problem early on. 

Table 11. Simulations of Bearing Defects. 

Fault 

Type 

Frequency  

(Hz) 

Normal Power 

 (W) 

Fault Power  

(W) 

Fault 

Detected 

Bearing 

Failure 
100 5 30 Yes 

 

6. Signal Processing Techniques: 

Faults in the rotor are detected by analyzing stator current data in the frequency domain using 

the FFT. Power spectrum reveals large peaks at fault frequencies. Through FFT, a stator current 

signal with a fault exhibited abnormal power at 100 Hz. In normal conditions, the power at 100 

Hz was 5 W, but with a fault, it increased to 30 W, a clear indicator of rotor imbalance. The 
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simulations demonstrate that model-based methods such as Kalman filters accurately predict 

machine conditions with little error, whereas signal processing techniques, including Fast 

Fourier Transform (FFT), successfully detect defects via frequency domain analysis. By 

combining these strategies (Table 9), a strong Fault Detection and Diagnosis (FDD) system is 

created that can identify faults at an early stage, enhancing the dependability of the machine 

and minimizing downtime. 

While FFT is efficient for detecting faults in periodic signals, it is less successful for transient 

abnormalities than WT. With improvements possibly affecting FDD analysis due to detection 

accuracy, the Kalman Filter specializes in smooth estimating methods with low error rates, 

whereas WT and FFT handle high-frequency faults quite well. A combination of these provides 

a complete FDD system that can treat various fault situations while enhancing the reliability of 

the machine and minimizing its downtime. 

 

Table 9. Utilizing Frequency analysis and power calculation in fault detection and protection decision 

making. 

Frequency 

 (Hz) 

Normal Power  

(W) 

Fault Power 

 (W) 

Fault Detected 

100 5 30 Yes 

 

Figure 5. Comparison of measured and estimated RPM of an electric induction motor 

using Kalman Filter 
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6. Conclusion 

The research presented in this paper has examined several failure detection and diagnosis 

(FDD) methods to improve the dependability of electrical devices in contemporary 

applications. Simulations and numerical analysis have shown the efficacy of classical 

approaches, including the Fast Fourier Transform (FFT), in identifying early-stage defects, 

such as rotor imbalance. This is achieved by analyzing the frequency domain of stator current 

waveforms. The Kalman filter, a model-based method, effectively evaluated machine states, 

such as rotor speed, and diagnosed defects with a low margin of error. By integrating model-

based and data-driven methods, hybrid methodologies were able to enhance fault detection 

accuracy, resulting in a significant reduction in false positives. By using artificial intelligence 

(AI) methods, the use of historical data for anomaly identification has greatly improved 

predictive maintenance. In summary, the integration of conventional, model-based, and data-

driven fault detection and diagnosis (FDD) methods offers a reliable and resilient system for 

identifying faults. These approaches improve the machine's operating dependability and 

provide early detection, reducing machine downtime and maintenance expenses. The findings 

indicate that combining a hybrid method with AI-driven algorithms is crucial for developing 

the field of FDD, especially in dynamic industrial applications where real-time accuracy and 

efficiency are vital for operational success. 
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