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Abstract 

The high rate of progress in digital technologies in power systems has led to specific 

cybersecurity risks, primarily in control areas of SCADA and ICS. Current modern threats to 

security, including data injection, masquerading, and replay attacks, have gotten ahead of the 

capability of the old perimeter defences. The proposed cybersecurity architecture in this 

research is resilient, including layered defence, machine learning for intrusion detection, and a 

rule-based alert system based on SIEM methodologies. The architecture is deployed with 

distinct layers for the physical, communication, monitoring, and control to support defence-in-

depth and to allow flexible responses to faults. A Random Forest model was built and evaluated 

on the Power System Intrusion Dataset retrieved from Kaggle, with a full-scale recordation of 

all sensors and temporal operation. Accuracy was 97%, and F1-scores were high throughout 

all classes, demonstrating the model's robustness amid imbalance. The probabilistic outcomes 

produced by the classifier were passed along to a rule-based alert system emulating SIEM 

functionality, and firing alerts as the estimated fault probability exceeded 0.5. Systems 

effectiveness was confirmed by critical evaluation indicators such as ROC-AUC 0.93, 

confusion matrices, and thorough alert tables. The designed architecture favours 

interpretability, responsiveness, and adaptability for SCADA systems, avoiding the tricky and 

obscure aspect of deep learning approaches. It bridges the gap between the academic theories 

of machine learning and the functionality needs of operational cybersecurity and provides an 

architectural framework to support smart grid resilience. Possible future improvements may 

include the addition of temporal modelling, adaptive alert thresholding, and real-time edge 

deployment. 

Keywords: Smart Grid Security, SCADA, Intrusion Detection, Random Forest, SIEM, Critical 

Infrastructure, Cyber Resilience, Zero Trust, Machine Learning, Power System Monitoring 

1. INTRODUCTION 

Digital transformations in power systems have entirely transformed the mechanisms of energy 

generation, transmission, distribution, and monitoring [1]. Traditional, isolated power networks 

are being replaced by systems that understand and embrace cutting-edge sensing, networking, 

and automated controls. This shift that enhances operational efficiency and facilitates dynamic 

decision-making generates new cybersecurity risks. As the SCADA systems and ICS become 
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an intrinsic part of power grids, their systems are exposed to the risks inherent in IP-based and 

open systems. This advance necessitates a radical rethinking of cybersecurity strategy in the 

energy sector [1]. 

Cyber threats have experienced significant transformation as the merging of OT with IT in 

critical infrastructure systems has accelerated [2]. Before integrating IP-based technologies, 

power systems secured themselves with isolated networks and specialised communication 

techniques. Nowadays, smart grid infrastructure is exposed to multiple attack vectors such as 

remote unauthorised access, insider threats, and dangerous malware risks that compromise 

network communications and physical infrastructure functions [3]. The 2015 Ukraine power 

grid attack is a shining example of these weaknesses, demonstrating how attackers could use 

spear-phishing and malware (BlackEnergy) to shut down substations and cause massive power 

outages. Similarly, the 2021 Colonial Pipeline ransomware attack became an example of the 

degree of cyber-episode that can cause havoc in national economies and weaken public 

confidence in digital infrastructure [3]. 

These cases emphasise the need for cybersecurity architectures beyond conventional firewalls 

and access control measures. The solution must ensure security and the capacity to quickly 

react to threats, reduce downtime, and provide quick recovery after incidents [4]. In this case, 

resilience has to be the first in order of priority as a fundamental pillar of the design of 

cybersecurity. Cybersecurity systems whose design includes resilience capabilities should 

include anomaly detection, automatic incident handling, threat intelligence integration, and 

recovery from system failure that is secure. Such resilience is critical in power systems where 

such disruptions by malicious actors or unplanned downtime would cause serious harm to 

public safety and economic health [3]. 

To address the need, our research involves designing and testing a lightweight, data-driven, 

and resilient cybersecurity framework that is domain-specific to the power system domains. 

This study combines a traditional machine learning technique for intrusion detection and a 

simulated alerting component that reflects the functionalities of SIEM. A Random Forest 

Classifier, a proposed approach, is trained using a realistic example in the Power System 

Intrusion Dataset from Kaggle; both normal and fault activities are included in the observed 

simulated power system. Supervised learning methods let the system identify subtle differences 

in activity and produce reliable differences between legitimate situations and potential hazards. 

Furthermore, this study also applies a novel SIEM alert generation simulation that is being used 

in conjunction with the machine learning element. By basing the system on replicating 

industry-triggered mechanisms using rules, the transition from raw data classifications to 

actionable alerts becomes easily accomplished. When estimated chances of an incident exceed 

a predetermined value, alerts are generated, allowing operators to focus on major incidents and 

reduce unwarranted notifications. Such logic is essential for timely situational awareness and 
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prompt remediation in the high-paced operational environment familiar to power grid control 

rooms. 

One of the key results of this work is that it is compatible with Zero Trust methods, which 

encourage identity validation, reduced permissions, and perpetual surveillance. While the 

current implementation does not use network-level Zero Trust controls, it promotes security by 

designing the detection and alerting system on the premise that every component and actor can 

be untrusted. Therefore, the system embraces Zero Trust principles, i.e., continual validation, 

flexible security requirements, and systematic reliance on decision-making on data. 

Contrary to cumbersome, cloud-based security systems that may not be cost-effective for 

systems with low-latency requirements, this solution aims at streamlined processing and on-

weighted decisions at the decentralised point. Using Random Forest models finds the balance 

between sophisticated modelling and lucid explainability, ensuring that the solution will stay 

effective and transparent for system administrators. Designed for edge computing scenarios, 

this model makes locating the solution in a substation controller or an observing gateway 

possible. 

The suggested framework is a robust cybersecurity platform for sophisticated power systems 

with a looming threat detection and prompt alert system. By incorporating the combination of 

supervised classification, simulated SIEM functionality, and Zero Trust concepts, the proposed 

framework can meet the growing needs for cyber resilience for critical infrastructure. The paper 

further talks about the dataset attributes, the method followed, the process of implementation 

of the solution, and the findings of the assessment to prove that the solution is practical and 

effective. 

2. LITERATURE REVIEW  

2.1 Overview of Existing Standards: NIST CSF, IEC 62443, Zero Trust, and ITIL for 

Service Security 

Digital integration of critical infrastructure has been further improved, igniting high interest in 

standardised cybersecurity frameworks [5]. Start by identifying risks, prioritising a protected 

system, creating strong detection mechanisms, and then rapid response, followed by effective 

recovery. The NIST CSF promotes adoption across the power sector, thus establishing 

provisions for system security enhancement, threat response, and maintenance of service 

continuity. For the architectural design of the modern power systems, the NIST CSF will help 

develop resilient architectures capable of adequately addressing emerging cyber challenges [6]. 

Apart from these standards, IEC 62443 is explicitly designed for Industrial Automation and 

Control Systems (IACS) [7]. It creates a multi-tiered structure for asset diagnosis, improving 

access control, and securing network segments. It is especially characteristic of this standard 

application when speaking of SCADA for power infrastructure, where the safe state of 
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operation and strong cyber defence are necessary. Even though IEC 62443 presents a rigorous 

structure, its implementation is problematic, especially in data-centric smart grids because of 

its deep complexity and the bulk of compliance and verification tasks it requires [8]. 

A vital security advancement has recently been outlined in NIST SP 800-207, the Zero Trust 

Architecture (ZTA) [9]. When it was started, ZTA assumed that all system access should be 

verified constantly, regardless of whether the user or device is trusted. Such key elements of 

ZTA, as real-time identity verification, adaptive authorisation, and behavioural audits, are 

ideally suited for supporting SCADA systems that are fragile to security threats such as 

insiders’ activity and credentials abuse [10]. These benefits are offset by old systems, stringent 

real-time needs, and no fine-grained access controls in embedded devices, which prevent 

deployment of Zero Trust in the operations technology (OT) scenario [10]. 

ITIL offers essential lessons from its service management framework. A widespread practice 

in big IT organisations, ITIL provides uniform practices around managing security incidents, 

setting SLAS, and restoring IT services [11]. By using ITIL to power systems, security 

operations can become better integrated into service delivery as anomaly detection results are 

used to add to existing incident management processes [12]. Such an approach creates a 

responsive cyber protection mechanism that supports the overarching need for high availability 

and dependable service delivery. 

2.2 SCADA/ICS Vulnerabilities and Limitations of Traditional Perimeter Defence 

SCADA and ICS systems are still prone to attacks because of their legacy design and continued 

reliance on fixed security practices [13]. With smart adversaries exploiting zero-day exploits 

and social engineering, traditional perimeter defences like firewalls and air gapping are 

ineffective and failing to protect these systems. Since Modbus and DNP3 have no encryption 

and authentication, the large-scale usage leaves SCADA and ICS vulnerable to vulnerabilities 

such as replay attacks, spoofing, and command injection [14]. As a result of hugely critical 

uptime requirements, organisations tend to face challenges in addressing vulnerabilities 

rapidly. The risk of service interruptions forces most organisations to delay securing critical 

systems by patching or re-architecting them without securing against known threats [15]. Such 

weaknesses expose systems to vulnerabilities and illegitimate users' attacks for long periods. 

Furthermore, many industrial systems lack logging and real-time telemetry, thus making 

detection inefficient in many cases. Time and time again, anomaly detection is highly 

demanding in these scenarios, so any responses are delayed or poorly informed [16]. IDS 

solutions are in the mainstream solution methods, but they frequently fail to detect new threats 

as signature detection methods are excessively relied on. Consequently, they fail to protect 

against the latest malware, sophisticated persistent threats, or atypical actions based on 

command-and-control activities [17]. 



 

Received: 16-10-2022        Revised: 05-11-2024 Accepted: 22-12-2022 

 

 
  

Volume 46 Issue 4 (December 2022) 

https://powertechjournal.com 

 

68 

2.3 Recent ML/AI Applications in Intrusion Detection 

Driven by efforts to surmount these detection problems, there has been a significant trend 

towards the increasing use of machine learning (ML) and artificial intelligence (AI) within 

cybersecurity practices [18]. The techniques, such as Random Forest, SVM, and Gradient 

Boosting, based on machine learning, have been applied to define attacks and unusual activity 

in telemetry data. Among the best characteristics of Random Forest classifiers is their ability 

to handle large sets of features, overcome the problem of class imbalance, and produce 

understandable results [18]. Sequence learning and prediction for time series information are 

performed using Recurrent Neural Network (LSTMs), which are among the Recurrent Neural 

Networks (RNNs) [19]. These models allow temporal dependencies to be tracked well in the 

SCADA data to reveal stealthy attacks and attacks that are somewhat subtle in approach and 

execution over time. Clustering the behaviour profiles and outlier detection that point to attacks 

have been accomplished using unsupervised algorithms such as K-Means, DBSCAN, and 

Autoencoders [20]. 

However, most of these implementations are driven by being primarily created as proof-of-

concept models, which are experimented with in a simulated environment or academic datasets 

[21]. These models have difficulties being deployed in actual environments. Issues include 

poor interpretability, high computational needs, and the complex task of coupling ML models 

with operational machinery. Furthermore, applying ML models to live operational processes, 

such as generating real-time alerts or automatically creating incidents, is rare, precluding their 

concrete usage [22]. 

2.4 Gaps Identified: Lack of Integrated Testing, Resilience Simulations, and SIEM-Alert 

Emulation 

Although many ML techniques for power systems fault and anomaly detection are mentioned 

in academic works, there is a lack of complete cybersecurity systems that emulate real-time 

detection, alerting, and response systems. Although detection accuracy is a central aspect of 

studies that have already been conducted, there is an apparent lack of attention to the actual 

operation of ML results in incident management platforms and decision support systems [23]. 

However, standardised, real-world datasets for SCADA environments are notoriously missing 

from existing literature [24]. Intrusion detection research has limitations as most of the work 

depends on synthetic or sanitised data, which does not reflect the noisiness, variability, and 

complexity of real smart grid measurements [25]. Therefore, the reported performance is 

typically more hopeful than actual application scenarios, resulting in minimal effectiveness in 

practical applications [26]. 

In addition, standard solutions for enterprise IT, in the form of SIEM, are rarely applied to 

reinforce the SCADA protection measures [27]. SIEM systems perform rule-based correlation 

and incorporate threat intelligence and target alerts, vital for immediate response. When they 
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fail to implement SIEM-style validation procedures, ML models are inefficient, making 

operators unable to deal with actionable intelligence [28]. Finally, there is little insight into 

how Zero Trust principles fit and operate within ML-based intrusion detection once 

implemented within an integrated architecture [29]. While demonstrating how identity-aware 

access control and continuous verification can be combined with predictive anomaly detection 

to deliver layered, adaptive defence mechanisms is limited [30]. 

3. DATASET AND PREPROCESSING 

3.1 Proposed Framework 

 

Figure 1: Proposed Methodology Diagram 
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A seven-phase approach is presented, as shown in Figure 1, to implement a strong 

cybersecurity framework within power systems. The first step is to obtain the Power System 

Intrusion Dataset from Kaggle, after which the data is pre-processed and a model is trained 

with Random forest and SIEM-style alerts for probability thresholds are carried out. The 

workflow guarantees high accuracy, clear reasoning, and real-time fault identification, and it 

is augmented by a feedback loop that enables continuous model tuning. 

3.2 Dataset: Power System Intrusion Dataset from Kaggle 

This research utilises the Power System Intrusion Dataset, which is obtainable at Kaggle, to 

test the proposed resilient cybersecurity solution for power systems. The dataset addresses a 

'smart' infrastructure, rooted in simulated SCADA/ICS environments, providing a solid 

foundation for analysis of intrusion patterns. The datasets are divided into two groups, 

Train.csv and Test.csv, where all draws are multivariate and hold both time-sensitive and 

control layer features. It allows the development and evaluation of supervised learning 

algorithms in a real-world environment that merges digital control operations with 

measurements, which can simulate the performance of innovative grid systems under everyday 

and fault scenarios. 

3.3 Description of Features: Time-Based and Measurement Parameters 

More than 50 variables associated with the telemetry and control operations in smart grids were 

generated from coding for the simulation. Data is classified into two basic features: metrics 

that measure timing behaviour and electrical parameter values. Time, timeLastMsg, sqDiff, 

and stDiff metrics are used to measure the time and frequency of message and system update 

transmission. The measurement-based parameters include sensor data of IED4_iA, IED4_iB, 

and IED4_iC for current and MU 4VoltageAngleA, MU4VoltageAngleB, and MU 

4VoltageAngleC for three-phase voltage phase angles. Control and status features like 

recentChange, any_relay, and state_cb reflect relay activation and system state transitions, 

making them valuable for detecting dynamic threats that manifest through command-level 

anomalies or measurement shifts. 

3.4 Binary Classification: "Fault” vs “Normal” (Label Encoding) 

The main target feature is the column for class, which for each record tells if it is “Fault” or 

“Normal”. To fit the algorithms, especially the Random Forest classifier used in this work, the 

categorical class labels had to be represented numerically using Label Encoding. The class 

“Fault” was given a numerical value of 1, and "Normal” was given a value of 0, generating a 

binary class problem. This number representation of the labels aligns with the general goal of 

the architecture, which is to successfully classify normal and fault states to provide near-time 

threat alarms. 
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3.5 Null Checks, Class Distribution, and Label Imbalance 

An exhaustive checking of the null values ensured that the dataset is intact because both the 

training set and test sets had no missing values or the following Nan values in any of the 

features. This allowed us to go straight to machine learning workflows without using data 

imputation. However, the authors observed that on the training set, there was a slight 

imbalance, where "Fault" records outnumbered the "Normal" ones. Although there was an 

imbalance, there was no need for synthetic balancing methods such as SMOTE; instead, 

evaluative metrics such as F1-score and confusion matrix were used to give a complete view 

of the model's performance in addition to accuracy. 

3.6 Data Scaling Using StandardScaler 

In the dataset, feature values were highly diverse, including minor binary indicators and larger 

numeric data points that extended into the hundreds or thousands. StandardScaler from scikit-

learn was used to standardise the feature matrix and normalise feature influence when training 

the model. With each feature revolving around zero, sharing unit variance, the dataset was 

normalised to an even scale that mitigated biases towards high-magnitude features and 

facilitated better convergence, especially in distance-sensitive algorithms like Random Forests. 

3.7 Feature Reduction and Cleaning  

The preprocessing pipeline feature cleaning stage identified non-informative, redundant, or 

highly correlated variables, which were selectively removed. Identifiers that did not contribute 

significantly towards classification, such as static or almost constant, were dropped from the 

dataset. On the other hand, features critical for grid dynamics, such as stDiff, and control flags, 

e.g., recentChange, were retained because of their strong association with behavioural 

anomalies in the smart grid. Since the dataset only had the target as categorical and also did 

not have other categorical multi-class variables, there was no need for further data encoding. 

3.8 Dataset Split for Validation 

The dataset was then split into training and validation subsets by resampling on stratification 

to maintain class balance in an 80/20 split. Such an approach helped the model generalise well 

and provided an even data analysis. A pre-processed and normalised feature matrix was then 

introduced to a Random Forest Classifier to appropriately train it to identify between "Normal" 

and "Fault" instances. The Test.csv dataset was also processed similarly and held for the final 

performance validation and service, SIEM-style alert simulation (as described later). 

4. PROPOSED ARCHITECTURE & METHODOLOGY 

4.1 Layered Architecture: Physical, Communication, Monitoring, Control 

The cybersecurity framework takes a layered approach that reflects the operational intricacies 

in the contemporary smart grid systems. This architecture delegates each level to a particular 
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role in the power system, treating security as a contextual and distributed problem, not a single 

monolithic system. The Physical Layer constitutes the first layer of our architecture, and here 

we have hardware components like intelligent electronic devices, sensors, and relay systems. 

Its primary duty is to protect physical connectors and retain the operational performance of 

associated hardware. 

The Communication Layer (2nd position) controls the protocols and data channels for 

transporting measurements, commands, and updates between devices. The second tier also 

manages message buses, SCADA data frames, and Interdevice signal transfer. Security here is 

reinforced through assumptions of Zero Trust, ensuring all inter-device communications are 

evaluated, even from within the network perimeter. 

The monitoring layer, representing the third level, is essential to deal with telemetry, monitor 

activities, and accumulate live data. This layer is critical in the empowerment of data-based 

anomaly detection and alert generation. Hierarchical systems and SCADA elements, which are 

elements of the Control Layer, are intended to control decision making, command giving, and 

grid activity alignment during this final architecture level. Paying attention to this layer is 

essential for ensuring operational stability because it must protect itself against intrusions by 

implementing enforced access restrictions and recording suspicious patterns of actions. 

 

Figure 2: Layered Architecture Diagram 
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All these layers compose a modular, vertically integrated security model, enabling anomalies 

or faults detected at one of these layers to trigger countermeasures on the next layer. This design 

has the defence-in-depth practised (redundancy and cross verification across the layers) (Fig. 

2). 

4.2 Modelling Engine: Random Forest Classifier for High-Speed Threat Detection 

The base of the architecture design is the modelling Engine, a real-time machine learning 

module specifically engineered to identify and respond to cyber-induced anomalies and faults. 

A Random Forest Classifier was selected for this task due to its reliability, speed, and 

outstanding behaviour on structured data common in smart grid telemetry. During training, the 

classifier builds decision trees and returns a final class prediction by pointing out the most often 

output in the ensemble. 

The data set transformed and normalised from the Power System Intrusion Dataset gives data 

about time, values of current, the angle of voltage, and information about the statuses of relays. 

Using its ability to analyse multivariate correlations, the Random Forest classifier can identify 

regular operation distinguishing characteristics and cyber-based faults or irregularities. 

Random Forests are excellent at preventing overfitting, especially when input data 

characteristics vary. Random Forests provide a quicker deployment process than deep learning 

models, which generally require significant hyperparameter tweaking and augmented 

processing power, especially from devices of limited processing capabilities. Consequently, 

Random Forest models are perfectly suited for deploying secure and seamless surveillance in 

industrial control systems. 

4.3 Alerting Layer: SIEM-Style Logic Using Probability Thresholds (≥ 0.5 = Alert Raised) 

A simulated operational response is created by incorporating an Alerting Layer into the 

architecture based on SIEM principles. The Alerting Layer massages the predicted class 

probabilities served up by the Random Forest model and issues binary alerts using a given 

threshold. The threshold used in this implementation was 0.5: If any event has a fault 

probability of over 0.5 predicted, an "alert raised" notification is sent out. This approach 

captures the working model of actual SIEM systems by using correlation and threshold 

methods to filter important alerts and those that are not so important. 

Generated alerts contain rich metadata, including a time stamp, predicted probability, and 

actual class label. SOCs can leverage these alerts and use them to initiate incident response 

workflows and commence forensics investigations, or put in fail-safe provisions to neutralise 

the effects of an intrusion. 

By applying classification and doing so in the form of an alert simulation, the system 

transforms from being an anomaly detector alone into a dynamic intrusion response machine, 
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directly connecting analytics and operational activities. Immediate action is necessary for 

critical infrastructure because any slow response may incite successive breakdowns. 

4.4 Implementation on Google Colab with sklearn, seaborn, and matplotlib 

The entire system was designed and tested in Google Colab, an internet Python development 

environment. The choice of this platform made the workflow more open, allowed for 

replicating results, and allowed for optimising computational resources for experimentation. 

Key libraries included: 

• scikit-learn for modelling, performance verification, and evaluation metrics 

examination. 

• Seaborn and Matplotlib libraries used to view the class distribution, correlation heat 

maps, confusion matrices, and ROC curves.  

• pandas and numpy are essential tools to process and change the formats of data 

We employed EDA for feature analysis, data balance analysis, and detailed form evaluation to 

unveil crucial characteristics. After the relevant data preparation, we employed an 80%-20% 

split with stratification to guarantee representative class representation in training and testing 

subsets. By splitting the data this way, the model's performance could be validated reliably, 

and results could be applied appropriately to operational settings. 

4.5 Justification for Random Forest Over Deep Learning 

Such models as LSTM and CNNs offer a splendid performance on sequence and spatial data, 

but with greedy approximations, dependency on optimal hyperparameters, and poor 

interpretability. The random forest classifier gives: 

• Speed: The swift performance of both learning and prediction tasks makes real-time 

deployment possible. 

• Interpretability: Extraction of feature importance increases transparency, enabling 

operators to understand how alerts are raised and take appropriate decisions. 

• Compatibility: Utilises structured tabular data, the dominant form in SCADA 

telemetry. 

• Scalability: Real-time monitoring without needing GPUs or cloud-based resources is 

achievable with a supported operation on resource-limited devices implemented at substations 

or field units. 

Such features warrant the application of Random Forests to deploy real-time, interpretable 

intrusion detection systems on operational technology environments. 
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5. RESULTS AND EVALUATION 

 

Figure 3: Label Distribution 

Class distribution for the train dataset is shown in Figure 3, where a pronounced imbalance can 

be observed. And although "Normal" and "Masquerade" capture the majority of the dataset, 

there are significantly fewer cases of "Fault", "Injection" and "Replay". Due to class imbalance, 

it is possible to create biases, which is why one would need more performance metrics, such 

as F1-score, to measure intrusion detection for less-represented categories accurately. 

 

Figure 4: Feature Correlation Matrix 
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Heatmap visualisation of pairwise connections between features is represented in Fig. 4. In 

dark red, features with strong positive or negative correlations tend to exhibit redundancy, for 

instance, among the current and angle measurements in MUS. In other chart areas, few 

correlations would account for diverse features. This heatmap exposes critical prediction-

driving factors, leading to sensible choices of features that optimise interpretability and model 

dimensionality. 

 

Figure 5: Feature Distributions (Histogram Grid) 

From Figure 5, it is apparent how the identified features are divided along their respective 

values. sqNum and stDiff have skewed distributions, but sqDiff is approximately normally 

distributed. The state_cb is a binary variable, reflecting a more straightforward on-off 

operation. Analysis of these patterns makes practical preprocessing steps such as scaling or 

transformation applicable, and makes model assumptions consistent with realistic sensor 

features. 
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Figure 6: Classification Report (Random Forest) 

Figure 6 aggregates each class's precision, recall, and F1-score metrics, respectively. Class 2 

and 3 prediction performance is impressive regarding recall, but the "Injection" class labelled 

as class 1 has limited sensitivity. The macro F1-score (0.71) reflects overall balanced 

performance, while the weighted average (0.81) accounts for skewed class support during 

validation. 

 

Figure 7: Confusion Matrix (Random Forest) 
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Figure 7 shows the strengths and limitations of the model. Classes 2 and 3 exhibit reliable 

identification; however, Class 1 is error-prone, hence frequent misclassification among classes 

1 and 2. This explains why differentiating injection-type faults is challenging; additional 

feature engineering or ensemble correction measures are necessary. 

 

Figure 8: ROC Curve (Random Forest) 

Figure 8 shows the classifier's ability to distinguish between classes because its AUC is 0.93, 

indicating good classification performance. The sharp spike upward and proximity to the top-

left corner imply proficient false positives treatment and high true favourable rates – a critical 

performance for intrusion detection needs. 

 

Figure 9: Classification Report (Test Set) 
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Figure 9 confirms high model generalizability. Most classes exhibit precision and recall over 

0.95, and the macro and weighted F1-scores equal 0.95 and 0.97, respectively. This uniform 

result shows proficiency in learning and minimal overfitting; the Random Forest can be trusted 

to be deployed in real-world scenarios.  

 

Figure 10: Confusion Matrix (Test Set) 

Figure 10's diagonal dominance points to reliable and accurate classification outcomes. 

Although some situations indicate mixing up of Classes 1 and 2, the overall accuracy level is 

still high. This evidence: a) supports the classifier's constant performance in all categories; b) 

confers this categoriser's legitimacy for use in smart grid monitoring systems.  

 

Figure 11: Alert Table (SIEM Simulation) 
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This table recreates the SIEM process, illustrating cases where the model predicts faults using 

“likelihood” at 0.5 and above. All the flagged events in the table prove that the model always 

notifies one about essential anomalies, ensuring its credibility for real-time intrusion detection. 

This demonstrates the model's suitability for implementation with the rule-based security 

platforms to enable proactive intervention in security breaches. 

6. DISCUSSION 

Using and evaluating the proposed resilient cybersecurity framework of power systems 

demonstrated robust predictive performance and a successful application in intrusion detection 

settings. Using a layered defence strategy and Random Forest classifier, the architecture 

performed very well on a dataset taken from the real-world condition with an exact 

representation of the world. Based on the classification report of the model, it had 97% overall 

accuracy on the test dataset, 3780, with macro and weighted F1-scores equal to 0.93 and 0.97, 

respectively. 

An important finding is that the analysis reveals that the model can perform well on input 

imbalanced data without synthetic oversampling. The model maintained a precision higher than 

85% for all classes, a very significant measure of effectiveness to offset the imbalance of 

classes – as seen by “Fault” and “Replay” (which had a much lower number of samples) vs 

“Normal” or “Masquerade”. It was observed that there were problems with the model when 

distinguishing between some types of attacks, and there were considerable blended 

classifications, as evident in injection and masquerade cases. Although Random Forest is 

robust, the finer distinctions between attack types may benefit from advanced temporal 

modelling or ensemble methods. 

The great AUC of 0.93 on the ROC curve supports the exceptional ability of the model to 

discriminate between classes. The robustness of these results is especially relevant in the 

sectors that are so essential that oversight of attacks cannot be permitted. Importantly, the 

threshold-based alerting mechanism operated in the same way as SIEM tools, converting 

probability scores into actionable alert notifications. The capability is critical for linking 

machine learning output to grid monitoring and incident response systems. 

Researchers got a better overview of the dataset’s underlying structure by checking the 

correlation matrix and plotting the feature distributions. High correlations of such features as 

voltage angle or current amplitude were observed, which suggests possible redundancy that 

efforts towards dimensionality reduction may deal with if one wishes to update the model. In 

comparison, features including sqDiff and stDiff, which possessed near-normal distributions, 

played a vital role in improving the pattern recognition with balanced variability. 

Model transparency and interpretability were recognised as essential factors of the study. 

Besides its efficacy, the Random Forest classifier also supported feature importance evaluation, 
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improving the model's explainability to operational teams. Nevertheless, even minor 

performance improvements are dwarfed by the challenges associated with deep learning 

models, complex interpretability and high computational demands that prevent their use among 

resource-constrained edge SCADA applications. 

Also, the SIEM-style alert table development highlighted the practical use of the system. 

Predictions that exceeded the defined threshold (0.5) matched the true fault class (created 

minimal false alarms). This advantage enables a credible cooperation in the industry, and grid 

operators and security specialists can rely on the alerts for timely responses and 

countermeasures. 

Despite these positive results, there are still aspects that the architecture fails at. First, the 

simulated data is close to replicating real-world situations, not field data. Validation of the 

architecture is suggested using actual operational data obtained directly from the energy 

distribution systems under real-time conditions. Second, the current architecture does not 

capture time dependencies, an essential aspect of stealthy threats that change in time. 

To overcome the abovementioned limitations, the architecture can be extended with hybrid 

models that integrate Random Forest and LSTM layers, and both temporal and spatial aspects 

of security threats can be captured. The solution will be able to add dynamic response 

capabilities to the threats thanks to the merger of external threat data with the alerting module; 

thus, instead of being a response-oriented tool, it will receive the ability for anticipatory 

defence. 

7. CONCLUSION 

This research presented and implemented a strong cybersecurity environment to modern power 

systems, combining machine learning-generated threats with SIEM-style alerts and Zero Trust 

tenets. The framework was developed based on the Power System Intrusion Dataset available 

on Kaggle, which was adapted to represent real-world SCADA environments in which real-

time anomaly detection is critical to maintaining the stability of operations. Divided into four 

inherent components, physical, communication, monitoring, and control, the platform enables 

a modular defence architecture that allows cascading responses as challenges emerge on any 

layer of the defence. 

Due to the optimal balance of accuracy, speed, and clear explainability, a Random Forest 

classifier was used for real-time classification. It achieved excellent results; it managed a 97% 

test accuracy with F1-scores over 0.90 on most classes. Amazingly, this result was achieved 

with typical methods, making no use of oversampling or advanced data manipulation, 

demonstrating the ability of the framework to cope with class imbalance. Its proven capacity 

to provide precise results predictions in unseen test situations establishes the model's viability 

for actual operational usage. 
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Besides a detection functionality, the system also integrated the SIEM version of an alert 

generator that transformed the predicted probabilities into actionable alarms within a given 

threshold range. Combining machine learning models with operational workflows solves a 

common conundrum in which AI predictions do not directly engage decision-makers. The 

generated alert tables demonstrated systematic fault detection of critical ones, providing system 

operators with timely and correct warnings of possible threats. This approach conforms to the 

usual industry practice, in which rule-based systems are the foundation for automated protocols 

to handle incidents. 

The explainable nature of the system is one of its major strengths. Some of the most informative 

classifications that Random Forests can provide are visibility into feature relevance and 

classification logic, which is not excessive in compliance-driven industries like energy. 

Operators and auditors can learn about trigger points for alerts, promoting transparency and 

compliance standard adherence. 

The existing framework holds promise but contains multiple vital aspects that need addressing 

in the development. An important area for improvement is temporal modelling. SCADA 

systems are frequently the targets of adversaries that engage in time-based attacks, challenging 

the legacy traditional snapshot classification methods. Using time-aware algorithms such as 

LSTM or the Temporal Convolutional Networks might make it possible to capture the 

evolution of threats over time to enhance slower-moving attack detection. Second, introducing 

adaptive thresholding mechanisms can strengthen the alerting layer, enabling it to act in near 

real time according to risk, operational conditions and incoming threat intelligence. 

Additionally, the dataset is realistic, but it is still a synthetic dataset. Hopefully, this work's 

next step should consist of assessing this architecture based on real-time data obtained from 

operational smart grid systems. By harnessing real-time operational datasets, researchers can 

determine the system's robustness against practical operational issues like noise, latency and 

fault variability. Finally, by extending the research to encompass blockchain and federated 

learning, the data pipeline's decentralisation, privacy, and trustworthiness can be increased; 

these are key elements of safe operation in the distributed energy systems. 

In conclusion, this research unmistakably establishes that a lightweight, explainable, and 

resilient architecture, based on machine learning and real-time alarms, provides significant 

protection for power system grids. Provided so, the proposed solution coordinates technical 

development with practical operational goals, thereby integrating research and practice within 

cybersecurity and moving the field of critical infrastructure security forward. 
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