

Smart Maintenance Scheduling in Vaccine Production Facilities: A Genai-Enhanced Sap Pm Solution

Tushar Chaudhari

Sr. Manager – ERP, West Pharmaceutical Services, Exton, PA

Email: seetushar@gmail.com

Abstract— This research aims to show the ability to apply GenAI with SAP PM to optimise maintenance scheduling in vaccine manufacturing facilities. To achieve this aim discussions based on both secondary qualitative and quantitative research were done in this paper. Developers and manufacturers have spent decades trying to make hubs smarter so that vaccines and medicines reach patients faster. AI, ML, robots, and other instruments have been giving developers new ways to create at speed and get ahead of disruptions. This research has highlighted issues such as inconsistency of raw and production materials, malfunctions of the tools, differences in manufacturing along with inconsistency in pricing. Furthermore, recommendations based on AI-based mitigations on scalability and operational charges partnering with industrial professionals were shown in this research.

Index Terms — AI, ML, Smart Maintenance Scheduling, Vaccine, Vaccine Production, GenAI, Predictive Analytics, SAP PM

I. INTRODUCTION

A. Background to the Study

Smart maintenance scheduling is a method that uses technology and data to optimise maintenance timeliness depending on the performance of the equipment. This is a type of predictive maintenance that aims to decrease failures of the instruments and develop operational efficiency. Contemporary sensor IoT plants data to create scalable production in vaccine manufacturing [1]. 15-20% reduction in lead times and a 25-40% increase in plant capacity were observed because of the utilization of advanced analytics and digital technologies (Gsk.com, 2024). For example, GSK made around \$120 million investment in 2019 and developed a technological-based manufacturing site that creates the speed and flexibility needed to develop complex specialty vaccines and medications (Gsk.com, 2024).

Received: 06-11-2024

Revised: 15-12-2024

Accepted: 05-01-2025

Figure 1: Steps of development vaccine from conception to production

[3]

Figure 1 has highlighted the development process of vaccines including, analysing product profile, regulatory maintenance, pre-development stage, and others. The manufacturing process of vaccines includes complex methods that need consideration to specify continuous production quality [3]. Further failures and disruptions in maintenance lead to contagion challenges, decreased output, and a major economic downturn. Thus, leveraging GenAI in SAP PM transforms manual maintenance planning by regulating adaptive and predictive initiatives [4].

B. Overview

Smart Maintenance Scheduling in the manufacturing of vaccine initiates combines modern technologies with PM initiatives to improve reliability and operational efficacy. By applying GenAI or generative AI along with SAP PM Solution can transform beyond cognizant and routine maintenance to a data-based and proactive context. The role of GenAI promises to reform process mining models that manipulate XML-based logs and serializations, thereby improving their efficacy and precision [5]. These processes interpret the performance of the equipment, data, and operational parameters, and reduce major failures, decreasing production downtime and specifying consistency in manufacturing.

C. Problem Statement

Production of vaccines faces a major threat to maintaining the reliability of the tools and decreasing production and delivery timelines, as certain failures disrupt production schedules

Received: 06-11-2024

Revised: 15-12-2024

Accepted: 05-01-2025

and quality. Manual maintenance processes commonly lead to high-strung developments, certain outages, and increased operational charges. This research cultivates how GenAI with SAP PM refers to these challenges by initiating predictive maintenance timelines. GenAI also aims to improve digital security [6]. By using both historical and real-time outcomes, this context anticipates major failures, specifying on-time interventions. This research sheds light on how AI-based incorporations improve efficiency, increase maintenance, decrease challenges, and support the quality and availability of vaccines.

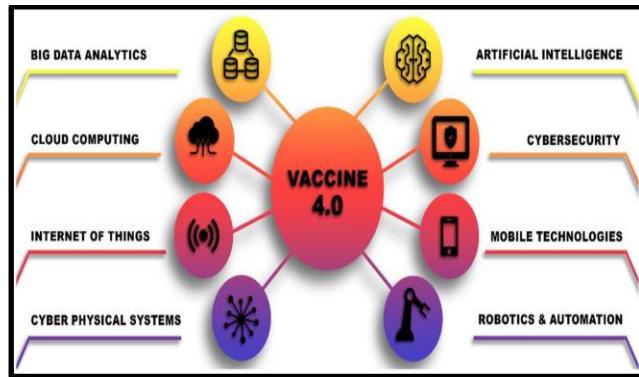
D. Objectives

The primary objectives of this research are: 1. To analyse the role of smart maintenance scheduling in vaccine production facilities. 2. To examine the integration of GenAI in SAP PM Solution. 3. To identify development and quality control issues in Vaccine Production. 4. To observe how smart maintenance scheduling contributes to achieving strict industry norms specifying vaccine production sticks to compliance requirements and quality standards. These research objectives aim to show the ability to apply GenAI with SAP PM to optimise maintenance scheduling in vaccine manufacturing facilities.

E. Scope and Significance

The **scope** of this research surrounded the application of genAI in SAP-PM or Plant Maintenance to optimise maintenance scheduling in the production facility of the vaccine. This concentrates on PM or predictive maintenance, decreasing downtime, and checking the credibility or reliability of the instruments around the production lines. This research also cultivates the effect of compliance, resource management, and cost reduction insight industry norms. Additionally, the **significance** of this study lies in its ability to transform maintenance initiatives into insight into the vaccine production units. The GenAI revolution quickly collected steam in early 2023 [7]. By applying AI-based mitigations, facilities improve operational credibility and achieve demands of vaccines globally, specifying consistency in production, hence facilitating public health outcomes and sustainability in manufacturing processes.

II. LITERATURE REVIEW


A. Smart maintenance scheduling in vaccine production facilities

Smart maintenance scheduling in the production of vaccines is a transforming step, as it applies contemporary technologies such as GenAI along with SAP PM to monitor maintenance activities while manufacturing. Manual processes commonly depend on reactive maintenance, leading to delays and certain reductions in manufacturing [8]. PM tools along with smart scheduling interpret data from instruments, such as utilising historical performance and patterns to anticipate major failures and schedule maintenance before an issue develops.

Received: 06-11-2024

Revised: 15-12-2024

Accepted: 05-01-2025

Figure 2: Driving forces of human and technology-led Vaccine 4.0 technologies

[8]

Figure 2 has highlighted big data analytics, cyber-physical systems, robots, and others as driving forces of human and technology-led Vaccine 4.0 technologies. For example, Pfizer has applied PM in its manufacturing plants. With the help of IoT and AI-based mitigations, Pfizer regulates and monitors the management of tools, decreases downtime, and specifies the production of vaccines [9]. The system of this company, applied with SAP, navigates schedule maintenance depending on actual recruitment compared to the set initiatives. This proactiveness has effectively developed the reliability, and stability of the equipment and decreased production disruptions, validating the on-time distribution of vaccines and specifying obedience to authoritative standards while manufacturing vaccines.

B. GenAI in SAP PM Solution

GenAI in SAP PM improves manual methods of maintenance by using contemporary data analytics and machine learning strategies to anticipate failures of tools and monitor maintenance schedules. AI-based mitigations help companies become more flexible and adaptive to create real-world outcomes [10]. AI copilot of SAP can be infused with several autonomous and collaborative AI agents that work around the company to create cross-enterprise and interlinked results.

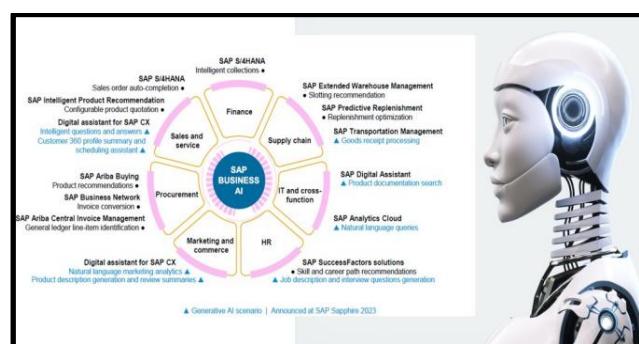


Figure 3: SAP AI

[11]

The above figure has highlighted SAP AI attributes such as HR, sales and service, supply chain, procurement, and others. GenAI in SAP PM initiates automation and affects the development of maintenance facility orders, optimizes resource allocation, and recommends maintenance measures depending on predictive outcomes. This application leads to accuracy in timeliness, less wasted downtime, and a depletion in maintenance charges.

C. Vaccine Production and quality control issues

Vaccines are creed in a large proportion as they are required to be administered to a wide range of adults as well as children to be effective as public health instruments. However, production on such a large scale has become a threat [11]. Thus, the stages of vaccine production are as follows.

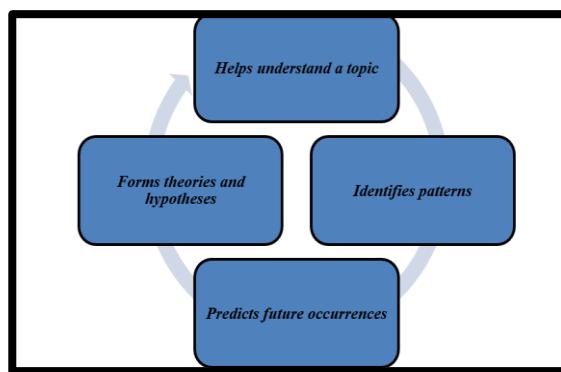
Inactivation: This stage includes developing the antigen preparation.

Purification: This phase refers to the purification of the isolated antigen [11].

Formulation: Lastly, the purified antigen is linked with stabilizers, adjuvants, as well as preservatives to create the form of the ultimate preparation of the vaccine.

After these, quality control is focused on sampling, testing, and specifications, as well as the company, documentation, and discharge systems to specify that the major and relevant tests are conducted, and the components are not released for use, nor products released for supply and sale until they have been tested [12]. Improper handling has been highlighted as one of the core reasons for the delay in vaccine potency during its administration. Loss of potency is evident when a vaccinated entity contracts the diseases that the vaccine was meant to decrease.

D. Current practices of smart maintenance scheduling


practices in smart maintenance scheduling initiatives technologies such as AI, ML, and IoT to anticipate failures of the instruments and optimise maintenance activities. These initiatives concentrate on condition-based maintenance and predictiveness, performing manual reactive or time-based context. IoT-based sensors control the performance of the instruments in real time gathering information on attributes such as vibration, pressure, and temperature [13]. AI and analytic tools process this information or data to highlight lineups and anticipate major threats. processes such as, SAP PM initiate automation in Workflow allowing database scheduling and allocation of resources. These initiatives improve credibility, and reliability, decrease cost and downtime, and develop operational efficacy specifically in industries such as vaccine manufacturing.

III. METHODOLOGY

A. Research Design

Research design is a plan to collect, analyse, and examine data to achieve research objectives and questions. Research design acts as a blueprint for projects that specify the credibility of data collection and analysis methods [14]. Thus, in the research of “Smart Maintenance Scheduling in Vaccine Production Facilities,” the researcher has selected a multi-method including both ***quantitative and qualitative methods***. In this regard, “***explanatory research design***” has been selected by the researcher.

Figure 4: Facilities of explanatory research design

The above figure has highlighted several facilities of “explanatory research design” including, predicting future occurrences, identifying patterns, Forming theories and hypotheses, guidance in further research, and others. Moreover, explanatory research design guides fulfil research objectives by creating insights into the causal correlations and underlying insights of the phenomenon. Smart maintenance scheduling examines how GenAI with SAP PM affects credibility, and by observing patterns, this research design shows the effectiveness of PM strategies. It enables researchers to describe how AI-based mitigations decrease risk factors and optimise the duration of product manufacturing.

B. Data Collection

This research has applied a multi-research method based on ***secondary quantitative and qualitative*** data collection and analysis techniques. Data sources used for the secondary qualitative method are ***academic journals- articles, case study examples***, and others. Case study instances include organizations operating in the pharmaceutical sector or vaccine production. Additionally, ***statistical charts, graphs, industry reports***, and ***metrics*** are obtained and further interpreted in a secondary quantitative method. Both research strategies help create a strong foundation for “Smart Maintenance Scheduling in Vaccine Production Facilities”.

C. Case Studies/Examples

Case Study 1: Predictive Maintenance at Pfizer

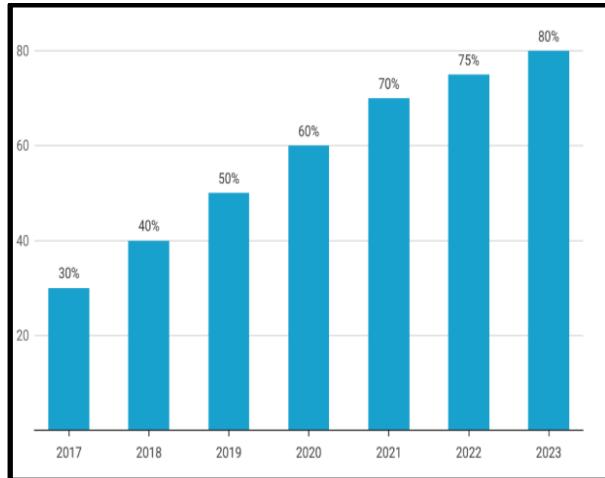
Pfizer applies PM or predictive maintenance systems enabled by IoT and AI in its manufacturing facility vaccines. Mechanisms for developing equipment monitor areas such as pressure and temperature, while AI frameworks interpret the data to anticipate major disruptions [15].

Case Study 2: Digital twin technology at GlaxoSmithKline (GSK)

GSK integrates digital twin initiative and predictive maintenance in its developing plants. With the help of its production line, GSK recognizes uncertainties and anticipates the wear of the tools. This process is a virtual replica of the service, product, and process. When integrated to creating vaccines it gathers real-time information from the outset [16].

Case Study 3: Cloud-based solutions at Moderna

Moderna applies cloud optimised solutions applied with AI and IoT to smoothen its streamlined maintenance in its vaccine manufacturing. At the time of the pandemic, this company has implemented predictive analytics to track the lifecycle of the production tools and improve schedules of maintenance [17].


D. Evaluation Metrics

Evaluation metrics for “Smart Maintenance Scheduling in Vaccine Production Facilities” are, **Maintenance Costs** refer to savings from reactive systems compared to predictive timelines. **Failure Rate** refers to the frequency of malfunctions in the instruments [3]. **Equipment Downtime** indicates a delay in certain production downtime. Lastly, **Compliance Rate** as a metric refers to industry-based standards. Moreover, these metrics evaluate this study by showing the potential of smart maintenance with core attributes such as operational efficiency, compliance, and others, creating a thorough assessment of the performance.

IV. RESULTS

A. Data Presentation

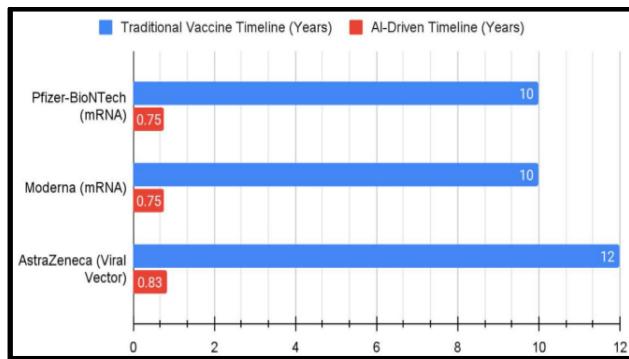

Smart maintenance scheduling is pivotal in manufacturing vaccines by specifying consistency in the quality of productions and operational potentialities [7]. By cultivating PM enabled by IoT, AI, benefits track the performance of the tools in real-time, observing major failures before they happen.

Figure 5: Smart Healthcare Adaptation

[18]

Figure 5 highlights the smart healthcare adoption rate worldwide. This market was worth around USD 184 billion in 2022 and is anticipated to touch USD 541 billion by the end of 2032 [18]. Between 2023 and 2032 this segment will thrive at a CAGR of 15.7%. Smart technology and instruments decrease certain downtime, improve operational credibility, and optimises resource allocation.

Figure 6: Traditional and AI-based Vaccine development timelines

[19]

The above figure has highlighted a comparison between traditional and AI-based Vaccine development timelines. For vaccines such as Moderna, and Pfizer-BioNTech AI based contexts decrease duration from an average of 10 years to only 9 months [19]. Additionally, generative AI specifies less equipment downtime, continually in operational potentialities, and conformity to strict quality production and standards. However, there are challenges such as inconsistency of raw and production materials, malfunctions of the tools, and differences in manufacturing that lead to operational disruptions.

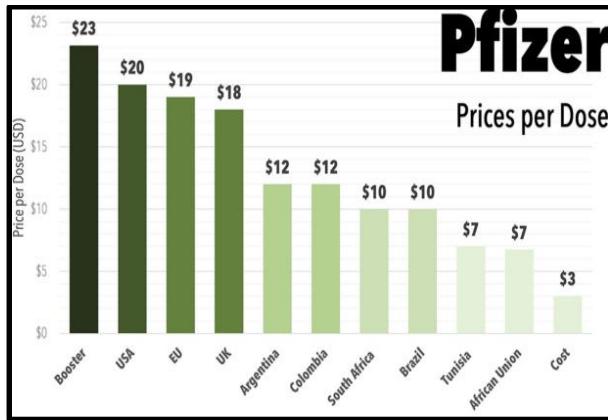


Figure 7: Variations in prices

[20]

The above bar graph highlights a range of costs reported to be paid in multiple regions or areas of the world for the “Pfizer mRNA COVID-19 vaccine.” \$26 billion for 2021 was the projected sales of Pfizer, and this also increased to \$33.5 billion [20]. However, an issue lies as the private sector did not create the vaccinations alone, rather they have developed depending on collective knowledge created by public investment into research and development and public funding has become instrumental in this method.

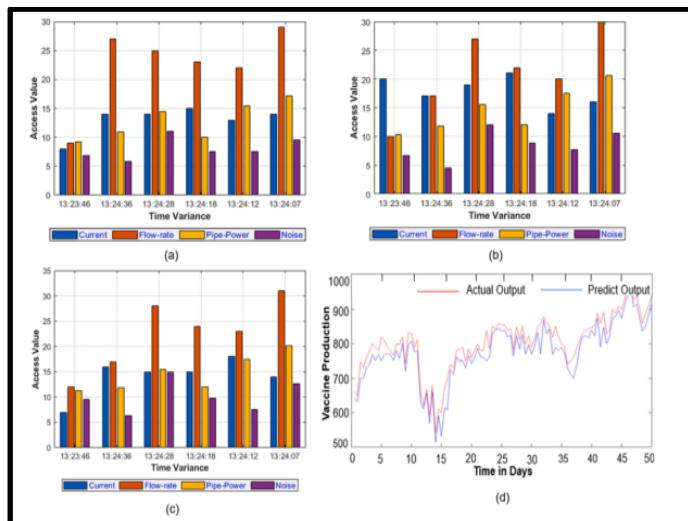


Figure 8: Access data output values of various vaccine manufacturing plant

[1]

The above figures show the vaccine production anticipation as per the vaccine manufacturing hubs with deep learning LSTM. In this regard, automation in documentation helps maintain the readiness of the audit process and compliance with GMP or Good Manufacturing Practices [18].

B. Findings

The 1st graph shows the adaptation rate of Smart Healthcare from 2017 to 2023. This has shown the rapid adaptation rate of Smart Healthcare technology and initiated Smart Maintenance Scheduling in the Facilities of vaccine production. Additionally, AI-enabled diagnostics have observed around 90% accuracy in highlighting medical parameters [18]. The second graph highlighted Traditional and AI-based Vaccine development timelines where AI-based mechanisms decreased timelines drastically for each of the companies highlighted in the graph such as Pfizer, Modera, and AstraZeneca [19]. After that, with issues such as inconsistency of raw and production materials, malfunctions of the tools and others figure 7 has highlighted cost variations in vaccine production in multiple countries. Lastly, figure 8 assesses data output values of multiple vaccine manufacturing plants to show technological credibility's to achieve strict industry norms specifying vaccine production [1].

C. Case Study Outcomes

Table 1: Case Study Outcomes

Case study	Company	Case study outcome	Relevance to current research
Predictive Maintenance	Pfizer	This has guided this company to decrease downtime at the time of vaccine manufacturing, specifying consistency in the supply chain and reference with product quality standards [15].	Shows the application of IoT and AI-based PM, decreasing production downtime in high-phase productions of vaccines.
Digital twin technology	GlaxoSmithKline	This context improved operational efficacy and management during the production phase for demand influenza medication and vaccinations [16].	Shows the incorporation of “digital twin technology” to quality assurance and proactive maintenance in plants in the pharmaceutical sector.
Cloud-based	Moderna	This process navigates the sector to maintain	Highlights cloud-based predictive analytics

solutions		24-7 lines in manufacturing, developing efficiency, and specifying the creation and delivery of vaccines on time [17].	process specifying all-time operational availability at the time of surges.
-----------	--	--	---

Moreover, these case study examples show the real-time integration of AI-based PM tools in vaccine production. These initiatives support how applying modern technologies regulates the reliability and credibility of tools, decreases operational challenges, and specifies authoritative obedience.

D. Comparative Analysis

Table 2: Comparative Analysis of literature analysis articles

Author	Focus	Findings	Gaps identified
[8]	This study shows the role of Industry 4.0 Technologies in the development and Distribution of COVID-19 vaccines	AI-enabled sensors and robotics validate thermostable vaccine distribution in limited capacity regions, globally. Vaccine 4.0 blockchain process refers to low- and middle-income regions with disrupted distribution capacities [8].	Lack of statistical overview in technological advancement
[10]	This study shows the role of AI in general business	Gen AI instruments hold the wider potential to reform professional settings with improved	Gaps in the application of TPB and TRA tools.

		employee engagement and employee Performance [10].	
[12]	This study concentrates on “mRNA manufacturing for vaccines and therapeutics”	“Particle size and polydispersity index of mRNA-LNP samples” were examined by emerging light scattering with the help of a Zetasizer Ultra initiative [12]	Lack of statistical overview in findings.
[13]	Focusing on the role of AI in the evolution of COVID-19 vaccines.	The future usability of AI in the creation of personalized vaccines is major. With the help of AI, the healthcare industry can create more effective immunization initiatives [13].	Statistical overview of the findings

Competitive analysis of the literature review articles guides this study by highlighting limitations in knowledge, comparing predictive maintenance initiatives, and showing preferable practices in the production of vaccines.

V. DISCUSSION

A. Interpretation of Results

Both secondary qualitative and qualitative analyses have been done to specify the research objective such as the “role of smart maintenance scheduling.” This research has highlighted the core driving forces of technology-led Vaccines such as big data analytics, AI, cloud computing, and others [8]. Additionally, figure 5 highlighted the adaptation rate of smart healthcare technology validating the significance of “smart maintenance scheduling in vaccine production facilities.” After that, the role of GenAI in SAP PM Solution has been examined by

Received: 06-11-2024

Revised: 15-12-2024

Accepted: 05-01-2025

comparing traditional and AI-based Vaccine development timelines as per Figure 6 [19]. For example, AI-based machines can decrease the timeline from 10 years to only 9 months.

Additionally, the case study examples, Pfizer, and GlaxoSmithKline show the integrations of AI in productions achieving this research objective. Along with issues such as inconsistency of raw and production materials, malfunctions of the tools, and differences in manufacturing figure 7 has highlighted cost variations of vaccines in multiple regions referring to development issues of vaccine manufacturing. Lastly, the contribution of smart maintenance scheduling was achieved by cultivating data output insights of various vaccine manufacturing plants' wearable sensors depending on the different timelines of the vaccines.

B. Practical Implications

This study improves the credibility and workability of the tools, specifies continuity in production, and deceased downtime, major to achieve ongoing production and demand of vaccines. By applying GenAI in SAP PM companies achieve regulatory compliance, cost efficiency, and developed quality controls. This context validates sustainability, decreased waste generation, and increased resilience of the supply chain leading to better heath-based outcomes.

C. Challenges and Limitations

However, the present study had its limitations such as too much dependence on secondary data collection and analysis processes that initiate a threat of bias in the outcome of this research. Additionally, only 2 to 3 examples of case studies bound the wider scope of this research [15].

D. Recommendations

For industry-experts willing to integrate “Smart Maintenance Scheduling in Vaccine Production Facilities” can concentrate on creating personalised maintenance timelines served to multiple vaccine production methods and types of tools. In addition to these, cultivating the long-term effect of AI-based mitigations on scalability and operational charges in multiple manufacturing circumstances would create major insights [19]. Lastly, partnering with industrial professionals to refer threats in data security, application, and employee training specifies smooth application and maintenance scheduling in vaccine manufacturing [20].

VI. CONCLUSION AND FUTURE WORK

GenAI-regulated SAP PM incorporates a strong framework to maintain the continuity of the operation, specifying compliance and achieving rapid demand for sustainable and efficient vaccines. Developments to the hub of GenAI in SAP AI Launchpad and SAP AI Core enable creators to create, personalised, and position major AI-based mitigations more effectively with an increased confidence level. Moreover, this research imposes operational credibility, specifying production of vaccines achieves quality requirements without further delays. Future

Power System Technology

ISSN:1000-3673

Received: 06-11-2024

Revised: 15-12-2024

Accepted: 05-01-2025

work needs to examine enlarging AI-based PM to other manufacturing areas of the pharmaceutical sector, applying contemporary data analytics technologies for ongoing development and scalability.

VII REFERENCE LIST

- [1] Singh, S.K., Lee, C. and Park, J.H., 2022. CoVAC: A P2P smart contract-based intelligent smart city architecture for vaccine manufacturing. *Computers & Industrial Engineering*, 166, p.107967.
- [2] Gsk.com, 2024. *Robots, AI, and machine learning: how smart manufacturing is getting medicines and vaccines from factories to patients faster*, Available at: <https://www.gsk.com/en-gb/behind-the-science-magazine/smart-manufacturing-factories-uppermerion-medicines/> (Accessed on: 20 January 2025).
- [3] Barbosa, R.D.M., Silva, A.M., Silva, C.F.D., Cardoso, J.C., Severino, P., Meirelles, L.M., Silva-Junior, A.A.D., Viseras, C., Fonseca, J. and Souto, E.B., 2022. Production Technologies, Regulatory Parameters, and Quality Control of Vaccine Vectors for Veterinary Use. *Technologies*, 10(5), p.109.
- [4] Sainio, K., Abrahamsson, P. and Kettunen, P., 2024. Addressing Agile Software Project Pain Points with Generative Aiexperimenting with Chatgpt Prompt Patterns. Available at SSRN 4879584.
- [5] Dolha, D.N. and Buchmann, R.A., 2024. Experiments with natural language queries on RDF vs. XML-serialized BPMN diagrams. *Procedia Computer Science*, 246, pp.3246-3255.
- [6] Yigit, Y., Buchanan, W.J., Tehrani, M.G. and Maglaras, L., 2024. Review of generative ai methods in cybersecurity. *arXiv preprint arXiv:2403.08701*.
- [7] Leslie, D. and Perini, A.M., 2024. Future Shock: Generative AI and the international AI policy and governance crisis.
- [8] Sarfraz, A., Sarfraz, Z., Sarfraz, M., Abdul Razzack, A., Bano, S., Singh Makkar, S., Thevuthasan, S., Paul, T., Khawar Sana, M., Azeem, N. and Felix, M., 2022. Industry 4.0 technologies for the manufacturing and distribution of COVID-19 vaccines. *Journal of Primary Care & Community Health*, 13, p.21501319211068638.
- [9] Gevernova.com, 2025. *Pfizer Cuts Downtime by Moving to Proficy CSense Predictive Maintenance*, Available at: <https://www.gevernova.com/software/customer-stories/pfizer-cuts-downtime-with-predictive-maintenance#:~:text=Pfizer%20has%20integrated%20live%20process,increase%20productivity%20and%20resulting%20yield> (Accessed on: 20 January 2025)
- [10] Prasad, K.D.V. and De, T., 2024. Generative AI as a catalyst for HRM practices: mediating effects of trust. *Humanities and Social Sciences Communications*, 11(1), pp.1-16.
- [11] News-medical.net, 2025. *Vaccine Production*, Available at: <https://www.news-medical.net/health/Vaccine-Production.aspx> (Accessed on: 20 January 2025).

[12] Whitley, J., Zwolinski, C., Denis, C., Maughan, M., Hayles, L., Clarke, D., Snare, M., Liao, H., Chiou, S., Marmura, T. and Zoeller, H., 2022. Development of mRNA manufacturing for vaccines and therapeutics: mRNA platform requirements and development of a scalable production process to support early phase clinical trials. *Translational Research*, 242, pp.38-55.

[13] Ghosh, A., Larrondo-Petrie, M.M. and Pavlovic, M., 2023. Revolutionizing vaccine development for COVID-19: a review of AI-based approaches. *Information*, 14(12), p.665.

[14] Ansari, M.R., Rahim, K., Bhoje, R. and Bhosale, S., 2022. A study on research design and its types. *International Research Journal of Engineering and Technology (IRJET)*, 9(7), pp.1132-1135.

[15] Gevernova.com, 2025. *Pfizer Cuts Downtime by Moving to Proficy CSense Predictive Maintenance*, <https://www.gevernova.com/software/customer-stories/pfizer-cuts-downtime-with-predictive-maintenance>

[16] Gsk.com, 2022. *Digital twin: using advanced technology to accelerate vaccine development*, Available at: <https://www.gsk.com/en-gb/behind-the-science-magazine/digital-twin-using-advanced-technology-to-accelerate-vaccine-development/> (Accessed on: 20 January 2025).

[17] Cloud.google.com, 2025. *Moderna uses the right dose of data to boost discovery*, Available at: <https://cloud.google.com/customers/moderna> (Accessed on: 20 January 2025).

[18] Who.int, 2025. *Good Manufacturing Practices*, Available at: [https://www.who.int/teams/health-product-policy-and-standards/standards-and-specifications/norms-and-standards/gmp#:~:text=Good%20Manufacturing%20Practices%20\(GMP%2C%20also,required%20by%20the%20product%20specification](https://www.who.int/teams/health-product-policy-and-standards/standards-and-specifications/norms-and-standards/gmp#:~:text=Good%20Manufacturing%20Practices%20(GMP%2C%20also,required%20by%20the%20product%20specification) (Accessed on: 20 January 2025).

[19] P. Chintale, R. K. Malviya, N. B. Merla, P. P. G. Chinna, G. Desaboyina and T. A. R. Sure, "Levy Flight Osprey Optimization Algorithm for Task Scheduling in Cloud Computing," 2024 International Conference on Intelligent Algorithms for Computational Intelligence Systems (IACIS), Hassan, India, 2024, pp. 1-5, doi: 10.1109/IACIS61494.2024.10721633.

[20] Saraswat, D., Bhattacharya, P., Verma, A., Prasad, V.K., Tanwar, S., Sharma, G., Bokoro, P.N. and Sharma, R., 2022. Explainable AI for healthcare 5.0: opportunities and challenges. *IEEE Access*, 10, pp.84486-84517.

[21] Chintale, P.: DevOps Design Pattern: Implementing DevOps Best Practices for Secure and Reliable CI/CD Pipeline (English Edition). BPB Publications, 2023.

[22] Chirra, D.R., 2021. Mitigating ransomware in healthcare: A cybersecurity framework for critical data protection. *Revista de Inteligencia Artificial en Medicina*, 12(1), pp.495-513.