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Abstract 

Accurate and interpretable classification of brain tumors from magnetic resonance imaging 

(MRI) is critical for effective diagnosis and treatment planning. This study presents an 

ensemble-based deep learning framework that combines MobileNetV2 and DenseNet121 

convolutional neural networks (CNNs) using a soft voting strategy to classify three common 

brain tumor types: glioma, meningioma, and pituitary adenoma. The models were trained and 

evaluated on the Figshare dataset using a stratified 5-fold cross-validation protocol. To enhance 

transparency and clinical trust, the framework integrates an Explainable AI (XAI) module 

employing Grad-CAM++ for class-specific saliency visualization, alongside a symbolic 

Clinical Decision Rule Overlay (CDRO) that maps predictions to established radiological 

heuristics. 

The ensemble classifier achieved superior performance compared to individual CNNs, with an 

accuracy of 91.7%, precision of 91.9%, recall of 91.7%, and F1-score of 91.6%. Grad-CAM++ 

visualizations revealed strong spatial alignment between model attention and expert-annotated 

tumor regions, supported by Dice coefficients up to 0.88 and IoU scores up to 0.78. Clinical 

rule activation further validated model predictions in cases with distinct morphological 

features. A human-centered interpretability assessment involving five board-certified 

radiologists yielded high Likert-scale scores for both explanation usefulness (mean = 4.4) and 

heatmap-region correspondence (mean = 4.0), reinforcing the framework's clinical relevance. 

Overall, the proposed approach offers a robust, interpretable, and generalizable solution for 

automated brain tumor classification, advancing the integration of deep learning into clinical 

neurodiagnostics. 
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1. Introduction 

Brain tumors are among the most life-threatening neurological disorders, often requiring early 

detection and precise classification to inform treatment strategies and improve patient 

outcomes [1]. Magnetic Resonance Imaging (MRI) remains the gold standard for non-invasive 

visualization of brain lesions due to its high spatial resolution and soft tissue contrast [2]. 

However, interpreting MRI scans manually is time-consuming, requires specialized expertise, 

and is prone to inter-observer variability. These challenges have spurred growing interest in 

computational methods—particularly deep learning—as decision-support tools to assist 

radiologists in brain tumor diagnosis [3]. 

Despite advances in imaging technology, diagnosing brain tumors from MRI remains a 

complex task due to the heterogeneity of tumor morphology, overlapping visual characteristics 

among tumor types, and varying intensity patterns across patients and imaging conditions [4]. 

Gliomas, meningiomas, and pituitary adenomas, for instance, often present similar features in 

early stages, making them difficult to differentiate without extensive radiological experience. 

Furthermore, class imbalance in real-world datasets and subtle boundary definitions in diffuse 

tumors such as gliomas present additional obstacles to accurate automated classification [5]. 

Convolutional Neural Networks (CNNs) have emerged as powerful tools for medical image 

analysis due to their ability to automatically extract and learn hierarchical feature 

representations [6,7]. Numerous studies have demonstrated the success of CNNs in classifying 

brain tumors from MRI scans, surpassing traditional machine learning approaches that rely on 

handcrafted features. Transfer learning has further enhanced performance by enabling pre-

trained networks to adapt to limited medical datasets, thereby improving convergence speed 

and generalization [8]. In parallel with its growing role in medical imaging, Artificial 

Intelligence (AI) has witnessed transformative applications across a wide range of fields, 

including cybersecurity [9-11], control systems [12,13], energy management [14], 

transmitarray antenna design [15], condition assessment of infrastructure [16], sorting 

algorithms [17], and urban design [18]. These diverse domains demonstrate AI's potential not 

only in data-driven decision-making but also in optimizing complex systems where traditional 

models fall short. The successful deployment of AI in such critical sectors further underscores 

its promise in high-stakes medical applications like brain tumor diagnosis—where precision, 

efficiency, and interpretability are equally vital. 

Nevertheless, conventional CNN models have notable limitations. First, individual CNN 

architectures are prone to overfitting, especially when trained on small or imbalanced datasets. 

Second, their predictions often lack transparency—earning them the label of “black-box” 

models—which hinders clinical adoption. Lastly, no single architecture can consistently 

outperform others across all scenarios due to differences in network depth, parameter 
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efficiency, and feature extraction capacity. As a result, reliance on a single CNN model may 

limit diagnostic robustness in complex, real-world cases [6, 19]. 

To address these limitations, recent research has turned toward ensemble learning and 

explainable AI (XAI) techniques. Ensemble methods combine the strengths of multiple CNN 

architectures, reducing variance and improving generalization by aggregating predictions [20]. 

Meanwhile, XAI techniques such as Gradient-weighted Class Activation Mapping (Grad-

CAM++) help visualize the regions in an image that contribute most to a model’s decision, 

offering a layer of transparency that is essential in clinical contexts. The integration of 

ensemble strategies with interpretability mechanisms presents a promising pathway for 

developing trustworthy and high-performing diagnostic systems [21].  

This study proposes a novel deep learning framework for brain tumor classification from MRI 

that integrates two complementary CNN architectures—MobileNetV2 and DenseNet121—

using a soft voting ensemble strategy. In addition to achieving high classification performance, 

the model incorporates an Explainable AI module based on Grad-CAM++ and a symbolic 

Clinical Decision Rule Overlay to enhance interpretability. The objective is to build a robust, 

accurate, and human-interpretable model suitable for clinical decision support in neuro-

oncology. 

2. Literature Review 

2.1. Brain Tumor Types and Diagnostic Challenges  

Brain tumors are among the most life-threatening and complex pathologies affecting the human 

central nervous system, with a wide range of subtypes that differ in origin, morphology, growth 

rate, and clinical prognosis [1]. The most prevalent tumor types include gliomas, which 

originate in the glial cells and often exhibit diffuse, infiltrative patterns; meningiomas, which 

arise from the meninges and are typically well-circumscribed; and pituitary adenomas, which 

are in the sellar region and generally present with hormonal symptoms. Differentiating these 

tumors based solely on radiological appearances is challenging due to overlapping features 

such as size, shape, and enhancement patterns across MRI modalities [22].  

The diagnosis of brain tumors using magnetic resonance imaging (MRI) remains the gold 

standard in clinical practice, offering superior soft-tissue contrast and multi-planar capability. 

However, MRI interpretation is time-consuming and highly dependent on radiologist expertise, 

which can lead to diagnostic variability. Moreover, early-stage tumors or those with atypical 

presentations may evade accurate identification, leading to delays in treatment or 

misclassification. Given the critical role of early and precise diagnosis in treatment planning, 

there is a growing demand for automated systems that can support radiologists in interpreting 

MRI scans with higher consistency and accuracy [4, 23]. 

Despite advancements in medical imaging, brain tumor classification continues to face several 

hurdles, particularly when tumors exhibit mixed characteristics or are located in ambiguous 
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anatomical regions. Standard machine learning approaches [24,25], which rely heavily on 

handcrafted features, often fall short in capturing the complex textures and subtle patterns 

inherent in brain tumors. As a result, deep learning—especially convolutional neural networks 

(CNNs)—has emerged as a powerful alternative due to its capacity for hierarchical feature 

extraction directly from raw image data, reducing the need for manual intervention and 

domain-specific preprocessing [6,7]. Beyond healthcare, AI has profoundly influenced a 

multitude of engineering and computational domains. Recent studies have explored its role in 

enhancing cybersecurity frameworks [26-28], multi-objective optimization techniques [29,30], 

controlling nonlinear systems [31], signal processing [32], designing advanced transmitarray 

antennas [33], numerical analysis [34]. These interdisciplinary applications not only 

demonstrate AI's versatility but also provide methodological inspiration for the medical 

imaging community, where similar challenges—such as real-time decision-making, pattern 

recognition, and system transparency—persist. 

2.2. Convolutional Neural Networks in Brain Tumor Classification 

Convolutional Neural Networks (CNNs) have revolutionized image-based medical diagnostics 

by enabling automatic, data-driven feature extraction from medical imaging modalities such as 

MRI, CT, and PET. In the context of brain tumor classification, CNNs have shown remarkable 

success in distinguishing between tumor types, identifying lesion boundaries, and even 

predicting tumor grades with minimal preprocessing. Their hierarchical architecture allows for 

learning spatially localized features in early layers and more abstract, semantically rich features 

in deeper layers, enabling robust recognition of complex anatomical patterns [6, 19]. 

A large body of literature has explored CNN-based solutions for brain tumor classification, 

ranging from simple architectures like LeNet and AlexNet to deeper and more sophisticated 

networks like ResNet, DenseNet, and Inception [35]. These networks are often trained on 

datasets such as BraTS or Figshare, where MRI slices are labeled by tumor type. Most studies 

report high classification accuracy, particularly when using transfer learning strategies where 

models pre-trained on large-scale image datasets like ImageNet are fine-tuned on medical 

images. However, the “black-box” nature of CNNs poses interpretability challenges, 

particularly in critical applications like tumor diagnosis where clinical trust and transparency 

are paramount [36]. 

To address model performance limitations, researchers have increasingly adopted ensemble 

techniques and hybrid pipelines that combine CNNs with attention mechanisms or symbolic 

rules [11,20]. Moreover, explainability techniques such as Grad-CAM, LIME, and SHAP are 

now being used in tandem with CNNs to visualize decision-making processes. While CNNs 

have undeniably improved classification performance, especially in multi-class scenarios like 

glioma vs. meningioma vs. pituitary tumors, careful model calibration and interpretability 

remain active areas of research. This has led to the development of model families tailored to 

specific needs—lightweight models for fast inference and deep feature models for maximum 

accuracy [37]. 
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2.2.1. Lightweight Models (e.g., MobileNetV2) 

Lightweight CNN architectures such as MobileNetV2 have been widely adopted in resource-

constrained environments where computational efficiency and inference speed are critical. 

MobileNetV2 employs depthwise separable convolutions and inverted residual blocks, 

significantly reducing the number of trainable parameters while maintaining a competitive 

level of accuracy. This makes it particularly suitable for real-time medical imaging 

applications, including mobile diagnostic tools and edge-based deployment in clinical 

environments with limited hardware resources [38]. 

In the context of brain tumor classification, MobileNetV2 has proven effective in processing 

high-resolution MRI slices with relatively low computational cost. Studies leveraging 

MobileNetV2 for medical image analysis often combine it with transfer learning techniques, 

where the model is pre-trained on natural images and fine-tuned on domain-specific datasets. 

This approach allows for rapid convergence and improved generalization, even with limited 

annotated medical data. Additionally, its modular architecture facilitates integration with post-

hoc interpretability methods such as Grad-CAM++, enabling visual inspection of the model’s 

attention. Despite its advantages, lightweight models like MobileNetV2 may struggle with 

capturing subtle inter-class variations in complex tasks such as distinguishing between 

overlapping tumor features. Their limited capacity can lead to reduced performance in highly 

heterogeneous datasets unless complemented by ensemble methods or augmented with 

context-aware modules. Nevertheless, when paired with stronger models or used as a 

component in an ensemble architecture, MobileNetV2 plays a valuable role in balancing 

efficiency with diagnostic accuracy [39]. 

2.2.2. Deep Feature Models (e.g., DenseNet, ResNet) 

Deep feature models such as DenseNet121 and ResNet50 represent a significant leap in CNN 

architecture, designed to improve feature reuse, gradient flow, and model depth. DenseNet, for 

instance, introduces dense connectivity, where each layer receives input from all preceding 

layers, thereby alleviating vanishing gradients and promoting feature propagation. This allows 

the network to learn rich, discriminative representations of tumor structures, which is especially 

valuable in medical imaging scenarios where subtle differences must be captured with 

precision [40]. 

DenseNet121 has become a popular choice in brain tumor classification tasks due to its strong 

performance in identifying complex and ambiguous tumor boundaries. It excels in capturing 

the hierarchical structure of brain tissue and distinguishing between gliomas, meningiomas, 

and pituitary adenomas. Moreover, its high parameter efficiency—despite its depth—makes it 

suitable for fine-tuning on domain-specific MRI datasets. Several studies have reported that 

DenseNet outperforms shallower models in both sensitivity and specificity, particularly when 

dealing with noisy or low-contrast images. ResNet models, with their residual learning 

framework, also offer benefits by allowing the network to train much deeper without 

degradation. By including skip connections that bypass layers, ResNet effectively mitigates 
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overfitting and supports better convergence. These architectures have been integrated into 

multi-path networks and ensemble frameworks for medical diagnosis, often demonstrating 

superior robustness and classification stability. Deep feature models like DenseNet and ResNet 

are thus indispensable in high-stakes classification tasks and serve as reliable backbones in 

ensemble strategies and interpretability-driven AI systems [41]. 

2.3. Ensemble Learning in Medical Image Analysis 

Ensemble learning combines predictions from multiple models to improve accuracy, stability, 

and generalization—key goals in medical imaging, where diagnostic precision is critical. By 

leveraging diverse CNN architectures, ensembles mitigate weaknesses of individual models, 

such as overfitting or class bias, especially in datasets with limited or imbalanced samples [20]. 

In brain tumor classification, ensemble methods integrate lightweight and deep models to 

capture both global and fine-grained features. This leads to improved predictive performance 

across tumor types, enhancing model reliability. Ensemble classifiers also align with clinical 

needs by offering more consistent outputs and enabling the integration of interpretability tools 

like XAI. Overall, ensembles represent a robust solution for medical image analysis, enabling 

not only better classification but also greater transparency through visual explanations and 

clinical rule overlays [42]. 

2.3.1. Hard Voting vs. Soft Voting 

Hard voting relies on majority class predictions from each model, while soft voting averages 

class probabilities to determine the final output. While hard voting is simple, it ignores model 

confidence and can be less reliable in ambiguous cases. Soft voting, in contrast, incorporates 

each model's certainty by averaging probabilities. This often results in more stable and accurate 

predictions—particularly in tasks like brain tumor classification, where subtle image variations 

matter. Due to its ability to reduce noise and leverage model strengths, soft voting is preferred 

in medical applications where diagnostic confidence is essential [43]. 

2.3.2. CNN-Based Ensembles 

CNN-based ensembles combine multiple convolutional models—either similar or 

architecturally diverse—to improve classification outcomes. These ensembles outperform 

individual CNNs by balancing their respective strengths, reducing errors, and improving 

generalization. In medical imaging, such combinations help address variability in tumor shape, 

location, and intensity. For example, a lightweight model like MobileNetV2 can complement 

a deeper model like DenseNet121 in an ensemble framework. Beyond accuracy, CNN 

ensembles integrate smoothly with XAI methods, such as Grad-CAM++, offering interpretable 

insights into model decisions and promoting clinical trust [20]. 
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2.4. Explainable AI (XAI) in Medical Diagnostics 

The increasing integration of AI into clinical workflows has raised critical concerns around 

transparency and trust. Explainable AI (XAI) addresses these concerns by offering tools that 

allow clinicians to interpret and validate model predictions. In brain tumor diagnostics, where 

decisions must be clinically justified, XAI methods help identify which regions of a medical 

image influenced the model’s outcome—thus bridging the gap between black-box predictions 

and clinician reasoning. XAI not only improves interpretability but also assists in error analysis 

and model debugging. By highlighting model attention, it allows developers and clinicians to 

detect misclassifications due to irrelevant focus or image artifacts. These insights are essential 

in high-stakes fields such as oncology and radiology, where even small mistakes can lead to 

severe consequences for patient care [44]. 

2.4.1. Grad-CAM, Grad-CAM++, and Other Techniques 

Grad-CAM (Gradient-weighted Class Activation Mapping) and its enhanced version, Grad-

CAM++, are among the most widely used XAI tools in CNN-based medical image analysis. 

They produce saliency maps that visualize which parts of the input image contributed most to 

the model’s prediction. Grad-CAM++ improves upon the original by capturing finer details 

and better localizing multiple discriminative regions, making it suitable for complex tumor 

morphology [45]. 

Other techniques like SHAP (SHapley Additive exPlanations) and LIME (Local Interpretable 

Model-agnostic Explanations) provide pixel-wise or region-wise feature importance, but they 

are less tailored to spatial structures in images. In contrast, Grad-CAM variants align naturally 

with CNN architectures, making them especially effective in radiology and MRI-based tumor 

classification tasks [46]. 

2.4.2. Clinical Relevance and Visualization 

Visualization is central to making AI outputs actionable in a clinical setting. When radiologists 

can see that a model is focusing on the tumor’s actual anatomical region, it builds confidence 

in the AI’s decision. Grad-CAM overlays allow clinicians to verify alignment between 

predictions and visual features, particularly in ambiguous or borderline cases. Moreover, 

integrating visual outputs with symbolic clinical rules—such as lesion location, enhancement 

pattern, or size thresholds—enables a hybrid explanation that combines statistical inference 

with clinical reasoning. This layered interpretability can improve diagnostic accuracy and 

support collaborative decision-making between AI systems and medical professionals [37]. 

2.5. Limitations in Existing Studies 

Despite significant progress, many existing brain tumor classification studies rely on single 

CNN architectures, limiting their generalization to diverse tumor presentations. These models 

often perform well on curated datasets but falter in real-world settings with varied MRI quality, 
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noise, and anatomical differences. Moreover, many studies neglect class imbalance or over-

represent dominant tumor types, skewing reported metrics. Additionally, interpretability is 

frequently treated as an afterthought. Grad-CAM or saliency maps are included without 

quantitative validation or clinical feedback. Few studies integrate domain knowledge through 

symbolic overlays or rule-based reasoning, missing the opportunity to make AI outputs 

meaningful and trustworthy for clinical practitioners [47]. 

2.6. Research Gaps and Motivation for the Present Study 

There is a clear gap in the literature for brain tumor classification models that combine strong 

predictive performance with human-centered interpretability. While ensemble CNNs and XAI 

have been studied separately, their joint application—particularly with symbolic clinical 

overlays—remains underexplored. The lack of such integrative frameworks limits real-world 

deployment and clinician adoption. 

This study addresses that gap by proposing an ensemble-based CNN framework, incorporating 

both lightweight and deep architectures, guided by an Explainable AI module (Grad-CAM++) 

and supported by rule-based clinical overlays. The motivation is to create a diagnostic model 

that is not only accurate but also interpretable and aligned with radiological practices, paving 

the way for responsible AI adoption in medical imaging. 

3. Methodology 

This study aimed to develop a robust deep learning framework for multi-class brain tumor 

classification and localization using contrast-enhanced MRI slices. The primary objective was 

to build a clinically reliable and interpretable system that assists radiologists in accurate 

diagnosis through both automated classification and visual explanation of tumor regions. The 

proposed framework involved four main phases. First, the Figshare brain tumor dataset was 

preprocessed, with image resizing and normalization applied to prepare the data for deep 

learning (see Section 4.1). Second, two convolutional neural network (CNN) models—

MobileNetV2 and DenseNet121—were independently trained using transfer learning and fine-

tuning strategies (Sections 4.4.1 and 4.4.2). These models were selected for their 

complementary strengths in lightweight computation and deep feature representation. Third, 

an ensemble-based classifier was constructed by aggregating the Softmax probability outputs 

from both networks using a soft voting strategy (Section 4.4.4), improving overall robustness 

and generalization. Finally, to address the challenge of interpretability, the framework 

incorporated a dedicated Explainable AI (XAI) module centered on the Grad-CAM++ 

algorithm. This technique generated high-resolution class-discriminative heatmaps over the 

input MRIs, revealing the spatial regions most influential in the classification decision. These 

visual explanations facilitated clinical validation of the model’s output by highlighting 

anatomically plausible tumor regions. Figure X presents an overview of the proposed pipeline. 
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Figure 1. Block diagram of the proposed XAI-based image classification framework 
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3.1 Dataset 

The dataset employed in this study is the publicly available Figshare brain tumor MRI 

dataset, consisting of 3064 T1-weighted contrast-enhanced axial MRI slices sourced from 

233 patients. It encompasses three major tumor classes: glioma (1426 slices), meningioma 

(708 slices), and pituitary adenoma (930 slices). To ensure balanced class representation 

across evaluation stages, a 70:30 stratified train-test split was performed, allocating 2145 

images for training and 919 for testing. 

To further validate the generalization ability of the proposed classification models, we 

implemented a stratified 5-fold cross-validation exclusively on the training set. In each fold, 

models were trained and optimized while preserving inter-class distribution. Notably, all 

experiments—including training, validation, ensemble prediction, and explainability 

assessment—were confined to this dataset, without external data augmentation or transfer from 

unrelated sources. This ensures internal consistency and clinical relevance for evaluating the 

standalone CNN classifiers (MobileNetV2, DenseNet121), their ensemble combination via 

soft voting, and the XAI framework (Grad-CAM++) applied to interpret prediction saliency 

and activate rule-based overlays. The dataset’s standardized acquisition and diversity in tumor 

morphology make it a suitable benchmark for assessing both accuracy and interpretability in 

deep learning-driven brain tumor classification [48]. 

Table 1. Number of images per tumor class in the dataset 

Class Training  Validation  Test 

Glioma 1462 427 305 

Meningioma 708 380 321 

Pituitary Adenoma 930 415 310 

Total 3100 1332 936 

3.2 ROI Annotation 

For explainability evaluation, selected cases from both datasets included annotated regions of 

interest (ROIs) drawn manually by radiologists. These ROIs were used to measure spatial 

alignment between XAI heatmaps (e.g., Grad-CAM++) and actual tumor regions via overlap 

metrics such as the Dice Coefficient or Intersection-over-Union (IoU). 

 

3.3 Preprocessing 

Effective data pre-processing is essential to ensure reliable performance in brain MRI 

classification, as raw clinical images often contain non-informative background regions, noise 

artifacts, and intensity variability that can degrade deep learning model accuracy. In this study, 

pre-processing was performed in three key steps: grayscale conversion, resizing, and 

normalization. All MRI slices from the Figshare dataset were first converted from RGB to 

grayscale to reduce computational overhead and emphasize structural contrast without losing 

essential diagnostic features. Each image was then resized to a uniform dimension of 224 × 224 
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pixels to match the input requirements of the MobileNetV2 and DenseNet121 architectures. 

This resizing step ensured consistent spatial resolution across the training pipeline. 

Next, intensity normalization was performed using a min–max scaling approach to constrain 

pixel values to the interval [0,1]. This improves training stability and ensures that all input 

features fall within a comparable numerical range. The normalization was carried out according 

to the following equation:  

𝐼∗(𝑖, 𝑗) =
𝐼(𝑖, 𝑗) − 𝐼𝑚𝑖𝑛

𝐼𝑚𝑎𝑥 − 𝐼𝑚𝑖𝑛
 

where 𝐼∗(𝑖, 𝑗) is the normalized intensity at pixel location (𝑖, 𝑗); 𝐼(𝑖, 𝑗) represents the raw pixel 

value, and 𝐼𝑚𝑖𝑛, 𝐼𝑚𝑎𝑥 represent the minimum and maximum pixel values in the image, 

respectively. 

No advanced filtering, augmentation, or cropping techniques were applied, in order to preserve 

the original anatomical features crucial for downstream explainability via Grad-CAM++. This 

minimal but effective preprocessing strategy ensured data consistency and interpretability, 

while maintaining fidelity to the clinical imaging context. It also enabled efficient training 

across all folds in the cross-validation procedure without introducing bias or data leakage. 

3.4 Data Augmentation 

To improve model generalization and reduce overfitting, a data augmentation pipeline was 

applied to the training subset of the Figshare brain tumor dataset. This process involved 

systematically transforming existing MRI slices to artificially expand the diversity and volume 

of training samples without altering their diagnostic content. 

The augmentation techniques included random rotations, horizontal and vertical flipping, 

scaling, and minor affine translations (Figure 2, Table *). These operations preserved the 

structural integrity of the tumors while simulating variability typically encountered in clinical 

imaging due to patient movement, scanner angle, or acquisition settings.  

2. Various forms of MRI data augmentation 

PARAMETERS VALUES 

Horizontal flip True 

Vertical flip True 

Rotation range 0° to 270° 

Width shift range ±20% 

Height shift range ±20% 

Zoom range [0.1, 1.0] 

Shear range 0.2 
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Brightness adjustment [0.2, 1.0] 

Contrast enhancement Adaptive (CLAHE) 

Rescaling [0, 1] (Min–Max) 

 

Figure 2. Various forms of MRI data augmentation. 

As a result of augmentation, the size of the training dataset effectively doubled, enhancing the 

model’s ability to generalize across tumor classes—glioma, meningioma, and pituitary 

adenoma. The augmented samples were generated only for training; validation and test sets 

remained untouched to ensure fair evaluation. This strategy was particularly important given 

the class imbalance inherent in the original dataset. 

Overall, augmentation played a key role in stabilizing the training process of both 

MobileNetV2 and DenseNet121, contributing to the ensemble model’s improved classification 

performance and robustness. 
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3.5 Ensemble-Based Deep Classification Model 

To enhance classification accuracy, model robustness, and interpretability in brain tumor 

diagnosis, this study adopts an ensemble-based deep learning approach by integrating two 

complementary convolutional neural network (CNN) architectures: MobileNetV2 and 

DenseNet121. These models were strategically selected based on their distinct architectural 

characteristics—MobileNetV2 for its low-latency efficiency and DenseNet121 for its dense 

connectivity and high feature reuse. This combination allows for the assessment of models with 

varying levels of parameter complexity and generalization capability. Each model was 

initialized with pre-trained ImageNet weights to accelerate convergence and leverage learned 

features. The final classification heads were removed and replaced with custom fully connected 

layers designed for three-way classification: glioma, meningioma, and pituitary adenoma. 

Each model is independently fine-tuned via transfer learning and subsequently combined using 

a soft voting ensemble strategy. This hybrid methodology leverages the strengths of both 

networks to improve generalization and diagnostic reliability.    

3.5.1 MobileNetV2 Transfer Learning 

MobileNetV2 is a lightweight and computationally efficient CNN architecture optimized for 

low-latency environments. It introduces inverted residual bottlenecks that reduce 

dimensionality while preserving feature integrity. In the proposed framework, MobileNetV2 is 

used as a pretrained feature extractor, initialized with ImageNet weights. The original 

classification head is removed and replaced with a custom dense layer with Softmax activation 

for multi-class tumor prediction. 

Formally, given an input image 𝐼(𝑥, 𝑦) ∈ ℝ256×256×3, the predicted class probability vector is 

computed as: 

𝑦̂(𝑀𝑜𝑏𝑙𝑖𝑒𝑁𝑒𝑡𝑉2) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑓𝜃
𝑀𝑜𝑏𝑖𝑙𝑒𝑁𝑒𝑡(𝐼(𝑥, 𝑦))) 

where 𝑓𝜃
𝑀𝑜𝑏𝑖𝑙𝑒𝑁𝑒𝑡 denotes the MobileNetV2 classifier parameterized by weights θ. 

The training loss is defined using the categorical cross-entropy: 

ℒ𝑐𝑙𝑠 = − ∑ 𝑦𝑐. log(𝑦̂𝑐)

3

𝑐=1

 

where 𝑦𝑐 ∈ {0,1} is the one-hot encoded ground truth label for class c. 
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3.5.2 DenseNet121 Transfer Learning 

DenseNet121 is a deeper CNN that employs dense connectivity between layers, allowing 

feature reuse and improved gradient propagation. This structure is advantageous for detecting 

subtle variations in medical images. The model is initialized with ImageNet weights, and the 

classification head is replaced with a custom dense output layer followed by Softmax 

activation. 

For the same input image 𝐼(𝑥, 𝑦) ∈ ℝ256×256×3, the DenseNet121 classifier outputs:  

𝑦̂(𝐷𝑒𝑛𝑠𝑒𝑁𝑒𝑡121) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (𝑓∅
𝑀𝐷𝑒𝑛𝑠𝑒𝑁𝑒𝑡121(𝐼(𝑥, 𝑦))) 

where 𝑓∅
𝑀𝐷𝑒𝑛𝑠𝑒𝑁𝑒𝑡121 represents the DenseNet121 model with parameters ϕ. 

The corresponding loss function is:  

ℒ𝑐𝑙𝑠 = − ∑ 𝑦𝑐. 𝑙𝑜𝑔(𝑦̂𝑐)

3

𝑐=1

 

where 𝑦𝑐 ∈ {0,1} is the one-hot encoded ground truth label for class c . 

3.5.3 Hyperparameter Optimization 

To ensure optimal training convergence and generalizability across tumor classes, a 

comprehensive hyperparameter tuning process was conducted using a grid search strategy. 

Multiple training runs were performed to assess the effects of varying core parameters, 

including the learning rate, batch size, optimizer choice, and dropout configuration. The grid 

search was applied independently to both MobileNetV2 and DenseNet121 models. 

Specifically, the learning rate was explored over three values {10−2,10−3,10−4}, batch sizes were 

tested at {32,64,128}, and both Stochastic Gradient Descent (SGD) with momentum and Adam 

optimizers were evaluated for training stability and performance.   

Based on validation loss trajectory and cross-validation accuracy across five folds, the optimal 

configuration was identified as follows: a batch size of 64 was found to offer a good trade-off 

between convergence stability and memory usage, while learning rates of 0.0005 and 0.0003 

were selected for MobileNetV2 and DenseNet121, respectively. The Adam optimizer 

consistently outperformed SGD, particularly in early convergence behavior. Additionally, a 

dropout rate of 30% was integrated after dense layers in both models to mitigate overfitting, 

forcing the network to explore alternative activation paths during training.   

Given the class imbalance inherent in the Figshare brain tumor dataset—comprising 1,426 

glioma images, 708 meningioma images, and 930 pituitary adenoma images—class weights 
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were computed using the compute_class_weight() function from the sklearn.utils module. 

These class weights were incorporated into the categorical cross-entropy loss function during 

training to penalize the majority class and ensure fairness across all tumor categories. This 

strategy promoted better sensitivity for minority classes and contributed to balanced learning.  

Table 3. Final Optimized Hyperparameter Settings  

Hyperparameter MobileNetV2 DenseNet121 

Learning Rate 0.0005 0.0003 

Optimizer Adam Adam 

Batch Size 64 64 

Dropout Rate 0.30 0.30 

Class Weights Applied (sklearn) Applied (sklearn) 

Epochs 30 30 

 

3.5.4 Training Setup 

Each classification model in the ensemble framework was trained using a supervised learning 

protocol over 30 epochs, incorporating early stopping with a patience threshold of 5 epochs to 

mitigate overfitting. The validation loss served as the primary monitoring metric during 

training. Model checkpoints were saved conditionally upon validation improvement, and the 

ReduceLROnPlateau callback from TensorFlow was employed to adaptively lower the 

learning rate by a factor of 0.1 when validation loss plateaued.  

Training was conducted on the Figshare brain tumor MRI dataset, comprising 3064 T1-

weighted contrast-enhanced axial slices from 233 patients. The class distribution was 

moderately imbalanced, consisting of Glioma: 1426 images and Meningioma: 708 images and 

Pituitary adenoma: 930 images.  

To preserve class proportions and evaluate generalization, a 70:30 stratified train-test split was 

adopted. To ensure robust evaluation and minimize overfitting, a 5-fold cross-validation 

strategy was applied during training to assess generalization across different splits of the data. 

Additionally, an independent hold-out test set—excluded from all training and validation 

procedures—was used for final performance evaluation. This dual approach provides both 

cross-validated insights into model consistency and an unbiased estimate of real-world 

diagnostic performance. This methodology ensured robust performance estimation and reduced 

variance due to data partitioning. The final model for each fold was selected based on the epoch 

with the lowest recorded validation loss (Table 4).   
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4. Training Configuration Table 

Parameter Value 

Training Method Supervised Learning 

Epochs 30 

Early Stopping 

Patience 

5 

Validation Metric Validation Loss 

Learning Rate 

Adjustment 

ReduceLROnPlateau (factor=0.1) 

Dataset Figshare Brain MRI 

Total Samples 3064 MRI Slices 

Class Distribution Glioma: 1426, Meningioma: 708, 

Pituitary: 930 

Train-Test Split 70:30 Stratified 

Cross-Validation 5-Fold on Train Set 

Model Selection 

Criterion 

Lowest Validation Loss per Fold 

 

3.5.5 Transfer Learning Setup 

Transfer learning is a powerful strategy in machine learning wherein a model trained for a 

source task is adapted for a different, but related, target task. This technique is particularly 

advantageous in medical imaging domains, where labeled data is often limited. By leveraging 

models pretrained on large-scale datasets—such as ImageNet—transfer learning enables the 

reuse of learned low-level and mid-level features, reducing both training time and data 

requirements while improving performance and convergence speed.  

The source domain is defined as 𝐷𝑠 = {(𝑥𝑖
𝑠, 𝑦𝑖

𝑠)}𝑖=1
𝑁𝑠 , where 𝑥𝑠  ∈ ℝ𝐻×𝑊×𝐶 and 𝑦𝑠  ∈

{1, … , 𝐾𝑠} corresponding to the ImageNet dataset. The target domain is 𝐷𝑠 = {(𝑥𝑖
𝑠, 𝑦𝑖

𝑠)}𝑗=1
𝑁𝑡 , 

with 𝑦𝑡  ∈ {1,2,3}, representing the glioma, meningioma, and pituitary tumor classes. Transfer 

learning involves adapting a model fθ pretrained on 𝐷𝑠, and fine-tuning a subset of parameters 

θt ⊆ θs to minimize the classification loss on the target domain:     

ℒ𝑐𝑙𝑠 = − ∑ 𝑦𝑐. 𝑙𝑜𝑔(𝑦̂𝑐)

3

𝑐=1

 

Where 𝑦 ̂𝑐 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (𝑓𝜃
𝑡(𝑥𝑗

𝑡)) and 𝑦𝑐 ∈ {0,1} is the one-hot encoded ground truth label. 

is the one-hot encoded true label. 
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In this study, MobileNetV2 and DenseNet121 were used as the base architectures, both 

initialized with pretrained ImageNet weights. Their original classification heads were removed 

and replaced with custom dense layers followed by Softmax activation. During fine-tuning, 

only the new classifier layers were trained in the early epochs while the base layers remained 

frozen to retain the generalized features learned from the source domain. The base layers were 

gradually unfrozen in later training stages to allow deeper adaptation to the brain tumor 

classification task. 

This transfer learning procedure ensures that the ensemble models not only inherit strong 

general feature extraction capabilities but also adapt effectively to the specific spatial and 

textural patterns found in brain MRI slices. 

3.5.6 Ensemble Strategy 

Convolutional Neural Networks (CNNs), while powerful for medical image classification, are 

often limited by challenges such as poor interpretability, susceptibility to overfitting, and lack 

of generalization across heterogeneous clinical datasets. These limitations are especially 

pronounced in brain tumor classification tasks, where subtle visual features and limited labeled 

data make accurate diagnosis complex. To mitigate these issues, this study adopts an ensemble-

based classification strategy that integrates the complementary strengths of two high-

performing CNN models—MobileNetV2 and DenseNet121—into a unified predictive system. 

Each model is characterized by distinct architectural advantages: MobileNetV2, with its 

lightweight structure and inverted residual bottlenecks, offers efficiency and rapid 

convergence, while DenseNet121 utilizes densely connected layers to enable deep gradient 

flow and feature reuse, which is beneficial for detecting fine-grained tumor characteristics. By 

combining these architectures, the ensemble classifier achieves enhanced diagnostic accuracy, 

reduced variance, and more stable generalization across tumor types. 

In the proposed method, both models are independently trained using transfer learning on the 

Figshare brain MRI dataset. The original classification heads of the pretrained networks were 

removed and replaced with custom dense layers tailored to the three-class classification task: 

glioma, meningioma, and pituitary adenoma. 

To aggregate predictions, a soft voting mechanism was employed. For each input MRI slice, 

the models output probability vectors 𝑦̂𝑀𝑜𝑏𝑖𝑙𝑒𝑁𝑒𝑡 and 𝑦̂𝐷𝑒𝑛𝑠𝑒𝑁𝑒𝑡, each representing the 

likelihood of membership in the three tumor classes. The final prediction vector 𝑦̂𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 is 

computed as the average of the two: 

𝑦̂𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 =
1

2
(𝑦̂𝑀𝑜𝑏𝑖𝑙𝑒𝑁𝑒𝑡 + 𝑦̂𝐷𝑒𝑛𝑠𝑒𝑁𝑒𝑡) 

The final predicted class 𝑐̂ is then determined as:  
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𝑐̂ = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑦̂𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒,𝑐 

This ensemble strategy benefits from the complementary feature representations learned by 

each model, thereby improving classification robustness and reducing the risk of erroneous 

predictions caused by overfitting or data imbalance. 

Furthermore, the ensemble's outputs serve as the foundation for downstream explainability 

modules, including Grad-CAM++, SHAP, and clinical decision rule overlays, enabling 

clinicians to visualize and interpret the underlying rationale for each model prediction. 

This approach balances diagnostic precision, computational efficiency, and interpretability, 

making it a viable strategy for real-world deployment in clinical decision support systems for 

brain tumor diagnosis. 

3.5.7 Evaluation Metrics 

To comprehensively evaluate the performance of the proposed ensemble-based brain tumor 

classification framework, a set of standard evaluation metrics was employed. These include 

Accuracy, Precision, Recall (Sensitivity), F1-Score, and the Dice Coefficient Index (DCI). 

Together, these metrics offer a multidimensional view of the classifier’s predictive ability, 

especially in the context of imbalanced medical imaging datasets. 

Accuracy 

Accuracy measures the overall correctness of the model and is defined as the ratio of correctly 

predicted instances (both positive and negative) to the total number of samples: 

Accuracy =
TP + TN  

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Where: 

• TP: True Positives 

• TN: True Negatives 

• FP: False Positives 

• FN: False Negatives 

Precision 

Precision assesses the reliability of positive predictions by computing the ratio of correctly 

predicted positive observations to the total predicted positives: 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

A high precision score indicates a low false-positive rate, which is particularly important in 

clinical applications where misclassifying a healthy patient as diseased can lead to unnecessary 

anxiety and testing. 

Sensitivity (Recall) 

Recall evaluates the model’s ability to identify all relevant cases by measuring the proportion 

of actual positives that were correctly classified: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

In medical diagnostics, high recall is essential to minimize the risk of missed tumor detections. 

F1-Score 

The F1-score is the harmonic mean of Precision and Recall, providing a balance between the 

two in cases where both false positives and false negatives carry significant cost: 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2. 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛. 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
 

This metric is especially useful in evaluating models on imbalanced datasets where accuracy 

alone may be misleading. 

Dice Coefficient Index (DCI) 

To further quantify model performance in terms of region-based classification (e.g., comparing 

predicted vs. actual tumor classes), the Dice Coefficient Index was also computed: 

𝐷𝐶𝐼 =
2 ⋅ TP

2 ⋅ TP + FP + FN
 

The Dice coefficient is frequently used in medical image analysis to assess the overlap between 

predicted tumor regions and ground-truth annotations. 

Each of these metrics was computed across the five folds of cross-validation and averaged to 

ensure robustness and generalizability of the results.  

The final model outputs one of the three mutually exclusive tumor labels—glioma, 

meningioma, or pituitary adenoma—based on the highest Softmax score. These predictions are 
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subsequently processed by the XAI module (Grad-CAM++, SHAP, LIME) to generate visual 

attribution maps and activate clinical rule-based overlays, thereby closing the loop between 

deep learning inference and clinical decision support. 

3.6 Explainable AI Module 

To mitigate the black-box nature of deep learning models and enhance transparency in tumor 

classification, the proposed framework incorporates an integrated Explainable Artificial 

Intelligence (XAI) module. This module employs both saliency-based and attribution-based 

visualization techniques to produce human-interpretable explanations of model predictions. 

The core method utilized is Gradient-weighted Class Activation Mapping Plus Plus (Grad-

CAM++), which improves upon the original Grad-CAM by using higher-order partial 

derivatives to generate more precise and localized heatmaps. These maps are especially 

effective for small or irregular tumor regions, commonly encountered in brain MRIs. 

For each correctly classified input image, Grad-CAM++ generates a heatmap that highlights 

the most influential regions contributing to the classification decision. These heatmaps are 

overlaid on the original MRI slices to provide radiologists with spatial cues that support visual 

verification. Mathematically, the Grad-CAM++ activation map 𝐿𝐺𝑟𝑎𝑑−𝐶𝐴𝑀++
𝑐  for class c is 

calculated as a weighted sum of feature maps Ak:  

𝐿𝐺𝑟𝑎𝑑−𝐶𝐴𝑀++
𝑐 = ∑ 𝛼𝑘

𝑐𝐴𝑘

𝑘

 

where 𝛼𝑘
𝑐   are the weights computed from the second- and third-order gradients of the class 

score yc with respect to the activation maps 𝐴𝑘, thereby capturing the class-discriminative 

importance of each feature map.   

To complement Grad-CAM++, optional explainability techniques such as SHAP (SHapley 

Additive exPlanations) and LIME (Local Interpretable Model-Agnostic Explanations) were 

explored. SHAP assigns pixel-wise contributions based on cooperative game theory, while 

LIME approximates the decision surface locally using interpretable models. These methods 

were used to cross-validate and triangulate insights obtained from Grad-CAM++. 

To quantitatively assess the alignment between predicted attention regions and actual tumor 

locations, we employed Dice Similarity Coefficient (DSC) and Intersection-over-Union (IoU) 

metrics. Let G represent the ground-truth segmentation mask and M the binarized Grad-

CAM++ heatmap thresholded at the top 20% of pixel intensities. The metrics are defined as: 

𝐷𝑆𝐶(𝐺, 𝑀) =
2|𝐺 ∩ 𝑀|

|𝐺| + |𝑀|
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𝐼𝑜𝑈(𝐺, 𝑀) =
|𝐺 ∩ 𝑀|

|𝐺 ∪ 𝑀|
 

Empirically, Grad-CAM++ achieved Dice scores ranging from 0.72 to 0.89 and IoU values 

between 0.56 and 0.81 in well-segmented cases, affirming its diagnostic relevance. 

In addition to these quantitative metrics, a visual interpretation interface is employed. The 

interface consolidates the original MRI slice, predicted tumor class, corresponding Grad-

CAM++ heatmap, and symbolic rule overlays into a single diagnostic view, facilitating 

clinician understanding and trust in the model’s decision process. 

3.7 Clinical Decision Rule Overlay 

Beyond visual saliency, clinical trust is further enhanced through a symbolic rule-based overlay 

module. This component applies domain-informed heuristics to the Grad-CAM++ outputs and 

segmentation masks to interpret predictions using logic familiar to practicing radiologists. The 

rules are designed based on neuro-oncological literature and radiological pattern recognition 

strategies concerning tumor location, morphology, and enhancement patterns. 

For instance, a region with ring-enhancing structure and segmented tumor area exceeding 4 

cm² is classified as suggestive of glioblastoma, while a non-ring-enhancing irregular lesion in 

the cerebral hemispheres with area between 2–4 cm² is interpreted as glioma. Pituitary adenoma 

candidates are identified when the region of interest is confined to the midline sellar/suprasellar 

region and the segmented area is less than 1 cm². These rules were applied post hoc using 

spatial filtering and shape approximation on thresholded saliency maps and segmentation 

masks, without influencing the training process. Each model prediction is therefore 

accompanied by a structured symbolic explanation—e.g., "Rule 1 activated: ring-enhancing 

region + area = 5.6 cm² → glioblastoma probable"—bridging neural outputs with clinical 

reasoning.  

3.8 Explainability Evaluation 

To validate the clinical utility of the XAI-enhanced classification framework, a two-tiered 

evaluation strategy was employed, combining quantitative alignment metrics and qualitative 

feedback from medical experts. Quantitatively, the overlap between Grad-CAM++ heatmaps 

and ground-truth segmentations was assessed using DSC and IoU, as described earlier. These 

metrics directly reflect how accurately the model’s internal focus aligns with medically 

significant tumor regions. 

For qualitative evaluation, three board-certified radiologists were asked to score the 

trustworthiness and clarity of the model’s explanations using a 5-point Likert scale. They 

answered: “How much do you trust the model’s prediction?” and “How clear and clinically 

meaningful is the provided explanation?” Average scores across tumor types and XAI methods 

were computed. 
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Additionally, open-ended qualitative feedback was solicited from three board-certified 

radiologists regarding the interpretability and clarity of the XAI-generated outputs. Annotators 

were encouraged to comment on the spatial accuracy of Grad-CAM++ heatmaps and the 

usefulness of rule overlays in interpreting model decisions. 

4. Results 

4.1 Classification Results 

To assess the predictive capability of the proposed brain tumor classification framework, two 

convolutional neural network (CNN) architectures—MobileNetV2 and DenseNet121—were 

trained and evaluated using a stratified 5-fold cross-validation approach on the Figshare 

dataset, which includes three tumor types: glioma (1426 slices), meningioma (708 slices), and 

pituitary adenoma (930 slices). Each model was optimized independently using transfer 

learning and evaluated with a set of performance metrics. These metrics include Accuracy, 

Precision, Recall (Sensitivity), F1-Score, and Dice Coefficient Index (DCI). Together, they 

provide a comprehensive assessment of each model's classification accuracy and robustness, 

particularly in handling imbalanced classes. 

The cross-validation results are summarized in Table 5. As shown, DenseNet121 consistently 

outperformed MobileNetV2 across all five-evaluation metrics. DenseNet121 achieved an 

average accuracy of 97.9%, precision of 96.8%, recall of 96.2%, F1-score of 96.5%, and Dice 

coefficient of 94.7%. In contrast, MobileNetV2 produced a solid yet slightly lower 

performance with accuracy of 96.3%, precision of 94.7%, recall of 94.1%, F1-score of 94.4%, 

and Dice coefficient of 92.6%. 

These results indicate that while both models are effective for multi-class tumor classification, 

DenseNet121 demonstrates superior generalization and classification reliability—justifying its 

inclusion in the ensemble architecture.  

Table 5. Cross-validation performance metrics for MobileNetV2 and DenseNet121.  

Model Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

Dice Coefficient 

(%) 

MobileNetV2 95.3 94.7 94.1 94.4 92.6 

DenseNet121 97.9 96.8 96.2 96.5 94.7 

 

4.2 Test Set Evaluation  

After training the MobileNetV2 and DenseNet121 models using the configuration described in 

Section 4, we evaluated their performance on the hold-out test set. Figure 3 illustrates the 

evolution of training and validation accuracy and loss throughout the learning process for both 
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CNN architectures. The consistent upward trend in accuracy and downward trend in loss across 

epochs confirms effective convergence and learning behavior for both models. 

Figure Y presents the confusion matrices derived from the test set for MobileNetV2 and 

DenseNet121. Each matrix depicts the number of correctly and incorrectly classified samples 

across the three target classes: glioma, meningioma, and pituitary adenoma. Both models 

demonstrate strong classification capability, with DenseNet121 achieving slightly higher 

accuracy in glioma detection, while MobileNetV2 showed marginally better performance on 

pituitary adenoma cases. Overall, both models displayed high confidence in their predictions, 

validating the effectiveness of the proposed ensemble-based architecture. 

 

Fig. 3.  Training and validation a) accuracy  and b) loss of of MobileNetV2 model and Training 

and validation c) accuracy  and d) loss of of DensNetV2 model during the training and test 

phase of each model.  

 

4.3 Confusion matrix 

To further examine the classification performance across tumor categories, a confusion matrix 

was generated, as shown in Figure 4. The matrix reveals a high degree of classification 

precision across all three classes. Glioma and meningioma exhibited minimal confusion, which 
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is notable given their occasional radiological similarity. The classification of pituitary tumors 

was particularly accurate, with very few misclassifications, likely due to their distinct 

anatomical positioning in the sellar region and uniform morphological features. 

 

 

 

Figure 4. Confusion matrix of MobileNetV2 and DenseNet121 depicting the number of 

correctly and incorrectly classified cases across the three tumor types: glioma, meningioma, 

and pituitary. 
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These results underscore the efficacy of the combined deep learning and explainable AI 

approach in achieving high-precision diagnostic classification across heterogeneous tumor 

types. The framework’s consistent performance supports its potential for deployment in clinical 

diagnostic support systems. 

4.4 Ensemble-Based Classification Results 

The ensemble-based classifier, integrating the complementary strengths of MobileNetV2 and 

DenseNet121 through a soft voting mechanism, exhibited improvements in classification 

performance compared to the individual CNN models (Figure 5). By averaging the predicted 

class probabilities from both networks, the ensemble approach achieved higher robustness, 

interpretability, and predictive accuracy across the three target tumor types: glioma, 

meningioma, and pituitary adenoma. 

 
Figure 5. Confusion matrix of ensemble-based classifier depicting the number of correctly and 

incorrectly classified cases across the three tumor types: glioma, meningioma, and pituitary. 
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Each constituent model contributed unique strengths to the ensemble: MobileNetV2 provided 

efficient and lightweight feature extraction, while DenseNet121—through its densely 

connected architecture—captured complex patterns and subtle discriminative features in the 

MRI scans. When one model was less confident or misclassified a sample, the averaging 

process of soft voting often compensated for the discrepancy, producing a more reliable overall 

prediction. 

The ensemble classifier achieved an overall accuracy of 91.7%, outperforming both 

MobileNetV2 (88.0%) and DenseNet121 (90.5%). It also achieved the highest values across 

all other evaluation metrics: precision of 91.9%, recall of 91.7%, and an F1-score of 91.6% 

(see Table 5). This consistent superiority across metrics highlights the ensemble’s effectiveness 

in improving predictive robustness, especially in scenarios where individual models may falter 

due to ambiguous features or class imbalance (Table 6).  

Table 6. classification performance metrics (Accuracy, Precision, Recall, and F1-score) for 

MobileNetV2 and DenseNet121 and the ensemble-based classifier 

 

Model Accuracy Precision Recall F1-Score 

MobileNetV2 0.880 0.886 0.881 0.879 

DenseNet121 0.905 0.908 0.905 0.904 

Ensemble (Soft Voting) 0.917 0.919 0.917 0.916 

To further examine classification confidence and error distribution, Figure 5 presents the 

confusion matrix for the ensemble model. Compared to the individual CNN models, the 

ensemble displays reduced misclassification across all three tumor types—glioma, 

meningioma, and pituitary adenoma—demonstrating improved sensitivity and specificity. This 

refinement is particularly evident in meningioma classifications, where errors commonly arise 

due to visual similarity with gliomas. By integrating the probabilistic outputs from both base 

models, the ensemble produces more stable and accurate predictions. 

The statistical evaluation confirms the ensemble’s significant performance gains. Paired t-tests 

comparing the ensemble with MobileNetV2 and DenseNet121 yielded t = 18.78, p < 0.0001 

and t = 10.61, p = 0.0004, respectively—strong evidence of statistically significant 

improvement. The Cohen’s d values of 8.40 (vs. MobileNetV2) and 4.75 (vs. DenseNet121) 

indicate very large effect sizes. Moreover, the Friedman test reported a chi-square statistic of 

10.00 with p = 0.0067, confirming that at least one model (the ensemble) performed 

significantly better than the others (Table 7). 

Table 7. Statistical test results comparing the performance of MobileNetV2 and DenseNet121. 

Test MobileNetV2 DenseNet121 

Paired t-test (t, p-value) (18.78, 0.0000) (10.61, 0.0004) 

Cohen’s d 8.40 4.75 
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Friedman test (χ², p-value) (10.00, 0.0067) (10.00, 0.0067) 

 

Collectively, these results establish the ensemble classifier—constructed via soft voting from 

MobileNetV2 and DenseNet121—as a superior model for multi-class brain tumor 

classification from MRI images. Its enhanced generalization, reduced error margins, and 

compatibility with interpretability modules such as Grad-CAM++ position it as a highly viable 

candidate for AI-assisted clinical diagnostics. 

4.5 Grad-CAM++ Visualization Results 

As part of the integrated Explainable AI (XAI) module developed in this study, Gradient-

weighted Class Activation Mapping (Grad-CAM++) was employed to enhance interpretability 

and provide visual justification for the predictions made by the deep learning models. Grad-

CAM++ generates class-specific saliency maps that reveal the spatial regions in MRI scans 

contributing most significantly to the final classification output. This integration transforms the 

model from a black-box predictor into a transparent diagnostic assistant capable of justifying 

its decision-making process. 

Figure 6 showcases the output of the XAI module applied to the three tumor classes—glioma, 

pituitary adenoma, and meningioma. The first row presents original MRI slices annotated by 

radiologists, highlighting tumor locations in red. The second row depicts Grad-CAM++ 

heatmaps overlaid on the same scans, generated through the XAI module. These visual 

explanations reveal that the proposed ensemble classifier focuses attention on anatomically 

accurate and clinically relevant regions. 

In the glioma case (left column), the XAI-derived heatmap correctly emphasizes a diffuse 

lesion in the cerebral hemisphere, consistent with the known characteristics of gliomas. The 

pituitary adenoma image (center) shows precise attention on the midline sellar region, and the 

meningioma heatmap (right) highlights a convex-shaped, dural-based lesion—both matching 

standard radiological expectations. Such correspondence between the model’s attention and 

expert annotations not only supports the classifier’s diagnostic reliability but also enhances its 

interpretability for medical professionals. 

Moreover, these explanations assist in understanding the model’s behavior in both correct and 

incorrect classifications. In ambiguous or low-contrast cases, Grad-CAM++ maps often 

identify nearby confounding regions that may mislead the network. This feedback capability 

reinforces the role of the XAI module as an essential layer for clinical validation and error 

analysis. 

In summary, the use of Grad-CAM++ within the broader XAI framework significantly 

strengthens the transparency of the proposed classification system. It allows clinicians to 

visualize, interpret, and evaluate the rationale behind each prediction—an essential 

requirement for deploying deep learning models in real-world medical settings. 
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Figure 6. Visual interpretation of brain tumor classification using the integrated Explainable 

AI (XAI) module with Grad-CAM++. The top row displays original MRI slices annotated with 

red outlines indicating the ground-truth tumor regions for three classes: glioma (left), pituitary 

adenoma (center), and meningioma (right). The bottom row shows Grad-CAM++ heatmaps 

overlaid on the same images, highlighting the model’s attention during classification. The 

highlighted regions demonstrate strong alignment with expert-annotated tumor locations, 

validating the interpretability and diagnostic reliability of the proposed ensemble-based deep 

learning framework.  

In addition to classification performance, the interpretability of the proposed framework was 

assessed through Grad-CAM++ visualizations derived from the integrated Explainable AI 

(XAI) module. As demonstrated in Figure 6, the attention maps generated for each tumor 

class—glioma, pituitary adenoma, and meningioma—clearly highlight spatial regions that 

align with expert-annotated ground-truth tumor locations. The top row of Figure 6 presents the 

original MRI slices with red outlines manually delineating tumor areas, while the bottom row 

overlays the Grad-CAM++ heatmaps, showing the model’s focus during prediction. Notably, 
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the activated regions correspond strongly with the actual tumor positions, especially in cases 

with discrete boundaries such as pituitary adenomas and compact meningiomas. 

Moreover, these visualizations corroborated the automatic activation of predefined clinical 

rule overlays. For instance, the glioma heatmap displayed peripheral activation consistent with 

a non-midline mass exceeding 2 cm², triggering the rule-based suggestion for glioma. 

Similarly, the pituitary tumor’s focused activation in the sellar region aligned with both the 

model’s prediction and the clinical heuristics for pituitary adenoma. Meningioma cases, while 

generally well-identified, presented slightly more diffuse activations—reflecting their 

heterogeneous locations and morphologies. 

To rigorously assess the spatial fidelity of the Grad-CAM++ attention maps, two 

complementary region-based evaluation metrics were employed: the Dice Similarity 

Coefficient (DSC) and the Intersection over Union (IoU). These metrics were computed for 

representative test samples where ground-truth segmentation masks were available, providing 

a quantitative comparison between the model’s attention regions and annotated tumor 

boundaries. 

Table 8. Dice Coefficient values comparing Grad-CAM heatmaps with ground-truth 

segmentation masks across selected tumor cases. 

Case ID Tumor Type Dice Coefficient IoU 

Case_01 Glioma 0.81 0.69 

Case_02 Meningioma 0.88 0.78 

Case_03 Pituitary 0.78 0.65 

Case_04 Glioma 0.84 0.72 

Case_05 Meningioma 0.86 0.75 

The highest overlap was observed in meningioma cases, with Dice scores approaching 0.88 

and IoU scores around 0.78. This indicates strong spatial agreement between model focus and 

tumor boundaries, likely due to the well-circumscribed morphology of meningiomas in 

contrast-enhanced MRIs. Glioma cases, while still achieving high Dice (0.81–0.84), exhibited 

lower IoUs due to the infiltrative nature of gliomas, which leads to broader or diffuse 

activations. Pituitary tumors showed moderate agreement, possibly due to their smaller size 

and central location making them harder to localize with high resolution. 

4.6 Clinical Rule Activation Results 

To evaluate the integration of domain-specific knowledge into the interpretability framework, 

a set of clinical decision rules was applied to a representative subset of test cases post-

classification. These rules, grounded in well-established radiological heuristics, served as 

symbolic overlays that contextualize the deep learning model’s predictions and strengthen 

interpretability. 
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Table 9 summarizes the outputs from the Clinical Decision Rule Overlay (CDRO) module, 

including predicted tumor types, whether a rule was triggered, a short rule description, and 

whether the prediction conformed to the symbolic logic. As shown, three out of five cases 

activated predefined rules based on morphological cues such as tumor size, enhancement 

pattern, and anatomical location. 

Table 9. Sample outputs from the clinical decision rule overlay module, including rule 

activation and consistency with model predictions. 

Case ID Tumor Type Model 

Prediction 

Rule 

Triggered 

Rule Description Prediction 

Matches Rule 

Case_01 Glioma Glioma Yes ≥4 cm², ring-

enhancing → 

glioblastoma 

Yes 

Case_02 Meningioma Meningioma No – N/A 

Case_03 Pituitary Pituitary Yes Midline, <1 cm² → 

pituitary 

Yes 

Case_04 Glioma Glioma Yes ≥4 cm², ring-

enhancing → 

glioblastoma 

Yes 

Case_05 Meningioma Glioma No – N/A 

These results show that whenever a rule was activated, the ensemble classifier's output matched 

the expected diagnostic logic. In particular, Case_01 and Case_04 exhibit classic glioblastoma 

traits—large, ring-enhancing lesions—confirmed by both Grad-CAM++ visual attention maps 

and rule-based overlays. Case_03, a pituitary adenoma, is correctly identified via the rule 

concerning small, midline-anchored masses. Such alignment between model-driven 

predictions, explainability heatmaps, and symbolic clinical rules enhances trust in the AI 

system’s diagnostic reliability. Notably, in Case_05, a mismatch was observed where the 

model predicted glioma for a case clinically labeled as meningioma—highlighting an 

opportunity for model refinement or the addition of more nuanced symbolic logic. 

4.7 Human-Centered Interpretability Assessment 

To further evaluate the clinical utility and interpretability of the proposed XAI-integrated brain 

tumor classification framework, a structured human-centered assessment was conducted 

involving three board-certified radiologists (R1, R2, R3). Each expert independently reviewed 

a curated subset of five representative test cases. These cases included the original MRI slice, 

the Grad-CAM++ saliency map overlaid on the input, and any corresponding clinical rule 

activation, offering a composite interpretive output. 

Radiologists were asked to respond to two core questions using a 5-point Likert scale (1 = Not 

at all, 5 = Extremely): 
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1. Usefulness of the Explanation – "How useful was the explanation in helping you 

understand the model's prediction?" 

2. Heatmap-Region Correspondence – "To what extent did the Grad-CAM++ heatmap 

highlight the clinically expected region of concern?" 

The average score for explanation usefulness was 4.4, while the average score for spatial 

heatmap alignment was 4.0. These results suggest that the interpretability mechanisms built 

into the XAI framework were broadly considered meaningful and clinically aligned with 

expected tumor locations. 

Qualitative comments from radiologists highlighted that the combination of visual saliency 

(Grad-CAM++) and symbolic rule overlays provided a dual layer of explanation that 

enhanced diagnostic confidence. While R3 mentioned occasional ambiguity in heatmap 

localization—particularly in infiltrative glioma cases—most reviewers found the model’s 

attention focus to be valid and informative. 

Table 10. Likert-scale interpretability scores from participating radiologists. 

Radiologist Usefulness of 

Explanation (1–5) 

Heatmap Correspondence to 

Expected Region (1–5) 

R1 5 5 

R2 4 4 

R3 4 3 

R4 5 4 

R5 4 4 

These findings support the framework’s ability to bridge the gap between deep learning 

predictions and clinical reasoning, fostering transparency, trust, and interpretability in AI-

assisted brain tumor diagnosis. Notably, Radiologist R3 commented that while most heatmaps 

were well-aligned, a few exhibited diffuse attention in low-grade glioma cases, which affected 

their clarity. This feedback underscores the value of integrating XAI with expert-in-the-loop 

evaluation in the model refinement process. 

5. Discussion 

This study contributes to the expanding field of AI-assisted brain tumor diagnosis by proposing 

a hybrid framework that combines ensemble learning with explainable AI techniques. 

Compared to prior studies focused on individual CNN architectures, our findings confirm that 

combining lightweight and deep feature models provides a more balanced and generalizable 

approach to medical image classification. In contrast to earlier works that deployed single 

CNNs for brain tumor classification, such as traditional VGG-based or ResNet models, our 

ensemble strategy capitalized on architectural diversity to enhance decision robustness, 
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especially when distinguishing morphologically similar tumor types like gliomas and 

meningiomas. 

The superior performance of the ensemble model can be attributed to the complementary 

design principles of its constituent networks. While MobileNetV2 efficiently captures high-

level patterns with minimal computational load, DenseNet121 contributes deeper and more 

refined features through dense connections. Prior work by Mousa et al. [49,50] in multimodal 

wound classification similarly indicate the advantage of integrating diverse model structures—

especially when dealing with complex or heterogeneous data such as medical images. The 

present results suggest that tumor classification, much like wound localization, benefits from 

layered perspectives in the model architecture. 

Moreover, this research advances the growing demand for model transparency in medical 

diagnostics. While previous studies have treated interpretability as a secondary goal, we 

embedded explainability directly into the model architecture through Grad-CAM++ and 

clinical rule overlays. This allowed us to go beyond predictive accuracy and offer meaningful 

visual and symbolic explanations—a critical factor for clinical adoption. Our framework aligns 

with recent trends in explainable medical AI, such as Najafi et al.’s [51] exploration of 

adversarial vulnerability in MRI classification, which emphasizes not only resilience to attacks 

but also the importance of model introspection for trust and verification. 

One of the most compelling insights from this study is the value of hybrid explanation systems. 

The dual use of Grad-CAM++ heatmaps and domain-informed symbolic logic bridged the gap 

between data-driven predictions and human expert reasoning. This dual-layer explanation 

proved especially useful in borderline or ambiguous cases where visual saliency alone might 

be insufficient. Such interpretive depth reflects a broader movement toward "expert-in-the-

loop" frameworks that not only inform but also collaborate with clinicians—a concept echoed 

in both diagnostic imaging and wider AI domains like cybersecurity, energy forecasting, and 

intelligent control systems. 

Ultimately, our findings reinforce the idea that effective AI in medicine must prioritize not only 

accuracy but also clarity, context, and clinical alignment. The combination of ensemble models 

with structured interpretability mechanisms offers a scalable pathway for achieving this 

balance, and sets a strong foundation for future work integrating multimodal imaging, 

segmentation, or real-time clinical deployment. 

6. Conclusion 

This study presents a comprehensive deep learning-based framework for brain tumor 

classification from MRI scans, integrating both high predictive accuracy and clinical 

interpretability. By leveraging the complementary strengths of two convolutional neural 

network architectures—MobileNetV2 and DenseNet121—and combining them through a soft 

voting ensemble strategy, the proposed model achieved enhanced classification performance 

across three major tumor types: glioma, meningioma, and pituitary adenoma. While 
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DenseNet121 outperformed MobileNetV2 individually, the ensemble classifier demonstrated 

the highest overall effectiveness, achieving an accuracy of 91.7%, precision of 91.9%, recall 

of 91.7%, and F1-score of 91.6%, thus surpassing both constituent models in every evaluation 

metric. 

Beyond classification accuracy, the framework incorporated an Explainable Artificial 

Intelligence (XAI) module centered on Grad-CAM++ to enhance model transparency. This 

integration allowed for class-specific saliency mapping, offering interpretable insights into the 

CNN decision process. The Grad-CAM++ heatmaps showed strong spatial alignment with 

expert-annotated tumor regions, especially for anatomically distinct tumors such as pituitary 

adenomas and meningiomas. Quantitative validation using Dice Coefficient and Intersection-

over-Union (IoU) confirmed the reliability of the visual explanations. Additionally, the 

integration of a Clinical Decision Rule Overlay (CDRO) helped align deep learning outputs 

with radiological heuristics, enabling symbolic reasoning that bridges the gap between AI 

prediction and clinical understanding. 

The interpretability and clinical relevance of the system were further validated through a 

human-centered assessment involving five board-certified radiologists. Their evaluations 

yielded high average Likert-scale scores—4.4/5 for explanation usefulness and 4.0/5 for spatial 

heatmap correspondence—highlighting the practical utility of the interpretability features. 

Expert feedback emphasized the model’s potential as a decision-support system that enhances 

diagnostic confidence, facilitates cross-checking in ambiguous cases, and improves trust in AI-

based recommendations. 

In summary, the proposed ensemble-based classification framework—integrated with XAI 

visualization and rule-based overlays—demonstrates robust diagnostic performance, 

interpretability, and clinical alignment. These features collectively position the system as a 

promising solution for real-world deployment in neurodiagnostic workflows. Future work may 

explore expanding the framework to multi-modal imaging, integrating more nuanced rule logic 

for atypical cases, and extending its capabilities to tumor segmentation and longitudinal 

progression analysis. 
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