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Abstract

Accurate and interpretable classification of brain tumors from magnetic resonance imaging
(MRI) is critical for effective diagnosis and treatment planning. This study presents an
ensemble-based deep learning framework that combines MobileNetV2 and DenseNetl121
convolutional neural networks (CNNs) using a soft voting strategy to classify three common
brain tumor types: glioma, meningioma, and pituitary adenoma. The models were trained and
evaluated on the Figshare dataset using a stratified 5-fold cross-validation protocol. To enhance
transparency and clinical trust, the framework integrates an Explainable Al (XAI) module
employing Grad-CAM++ for class-specific saliency visualization, alongside a symbolic
Clinical Decision Rule Overlay (CDRO) that maps predictions to established radiological
heuristics.

The ensemble classifier achieved superior performance compared to individual CNNs, with an
accuracy of 91.7%, precision of 91.9%, recall of 91.7%, and F1-score of 91.6%. Grad-CAM++
visualizations revealed strong spatial alignment between model attention and expert-annotated
tumor regions, supported by Dice coefficients up to 0.88 and IoU scores up to 0.78. Clinical
rule activation further validated model predictions in cases with distinct morphological
features. A human-centered interpretability assessment involving five board-certified
radiologists yielded high Likert-scale scores for both explanation usefulness (mean = 4.4) and
heatmap-region correspondence (mean = 4.0), reinforcing the framework's clinical relevance.

Overall, the proposed approach offers a robust, interpretable, and generalizable solution for
automated brain tumor classification, advancing the integration of deep learning into clinical
neurodiagnostics.
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1. Introduction

Brain tumors are among the most life-threatening neurological disorders, often requiring early
detection and precise classification to inform treatment strategies and improve patient
outcomes [1]. Magnetic Resonance Imaging (MRI) remains the gold standard for non-invasive
visualization of brain lesions due to its high spatial resolution and soft tissue contrast [2].
However, interpreting MRI scans manually is time-consuming, requires specialized expertise,
and is prone to inter-observer variability. These challenges have spurred growing interest in
computational methods—particularly deep learning—as decision-support tools to assist
radiologists in brain tumor diagnosis [3].

Despite advances in imaging technology, diagnosing brain tumors from MRI remains a
complex task due to the heterogeneity of tumor morphology, overlapping visual characteristics
among tumor types, and varying intensity patterns across patients and imaging conditions [4].
Gliomas, meningiomas, and pituitary adenomas, for instance, often present similar features in
early stages, making them difficult to differentiate without extensive radiological experience.
Furthermore, class imbalance in real-world datasets and subtle boundary definitions in diffuse
tumors such as gliomas present additional obstacles to accurate automated classification [5].

Convolutional Neural Networks (CNNs) have emerged as powerful tools for medical image
analysis due to their ability to automatically extract and learn hierarchical feature
representations [6,7]. Numerous studies have demonstrated the success of CNNs in classifying
brain tumors from MRI scans, surpassing traditional machine learning approaches that rely on
handcrafted features. Transfer learning has further enhanced performance by enabling pre-
trained networks to adapt to limited medical datasets, thereby improving convergence speed
and generalization [8]. In parallel with its growing role in medical imaging, Artificial
Intelligence (AI) has witnessed transformative applications across a wide range of fields,
including cybersecurity [9-11], control systems [12,13], energy management [14],
transmitarray antenna design [15], condition assessment of infrastructure [16], sorting
algorithms [17], and urban design [18]. These diverse domains demonstrate Al's potential not
only in data-driven decision-making but also in optimizing complex systems where traditional
models fall short. The successful deployment of Al in such critical sectors further underscores
its promise in high-stakes medical applications like brain tumor diagnosis—where precision,
efficiency, and interpretability are equally vital.

Nevertheless, conventional CNN models have notable limitations. First, individual CNN
architectures are prone to overfitting, especially when trained on small or imbalanced datasets.
Second, their predictions often lack transparency—earning them the label of “black-box”
models—which hinders clinical adoption. Lastly, no single architecture can consistently
outperform others across all scenarios due to differences in network depth, parame
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efficiency, and feature extraction capacity. As a result, reliance on a single CNN model may
limit diagnostic robustness in complex, real-world cases [6, 19].

To address these limitations, recent research has turned toward ensemble learning and
explainable Al (XAI) techniques. Ensemble methods combine the strengths of multiple CNN
architectures, reducing variance and improving generalization by aggregating predictions [20].
Meanwhile, XAI techniques such as Gradient-weighted Class Activation Mapping (Grad-
CAM-++) help visualize the regions in an image that contribute most to a model’s decision,
offering a layer of transparency that is essential in clinical contexts. The integration of
ensemble strategies with interpretability mechanisms presents a promising pathway for
developing trustworthy and high-performing diagnostic systems [21].

This study proposes a novel deep learning framework for brain tumor classification from MRI
that integrates two complementary CNN architectures—MobileNetV2 and DenseNet121—
using a soft voting ensemble strategy. In addition to achieving high classification performance,
the model incorporates an Explainable Al module based on Grad-CAM++ and a symbolic
Clinical Decision Rule Overlay to enhance interpretability. The objective is to build a robust,
accurate, and human-interpretable model suitable for clinical decision support in neuro-
oncology.

2. Literature Review

2.1. Brain Tumor Types and Diagnostic Challenges

Brain tumors are among the most life-threatening and complex pathologies affecting the human
central nervous system, with a wide range of subtypes that differ in origin, morphology, growth
rate, and clinical prognosis [1]. The most prevalent tumor types include gliomas, which
originate in the glial cells and often exhibit diffuse, infiltrative patterns; meningiomas, which
arise from the meninges and are typically well-circumscribed; and pituitary adenomas, which
are in the sellar region and generally present with hormonal symptoms. Differentiating these
tumors based solely on radiological appearances is challenging due to overlapping features
such as size, shape, and enhancement patterns across MRI modalities [22].

The diagnosis of brain tumors using magnetic resonance imaging (MRI) remains the gold
standard in clinical practice, offering superior soft-tissue contrast and multi-planar capability.
However, MRI interpretation is time-consuming and highly dependent on radiologist expertise,
which can lead to diagnostic variability. Moreover, early-stage tumors or those with atypical
presentations may evade accurate identification, leading to delays in treatment or
misclassification. Given the critical role of early and precise diagnosis in treatment planning,
there is a growing demand for automated systems that can support radiologists in interpreting
MRI scans with higher consistency and accuracy [4, 23].

Despite advancements in medical imaging, brain tumor classification continues to face sever.
hurdles, particularly when tumors exhibit mixed characteristics or are located in ambi
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anatomical regions. Standard machine learning approaches [24,25], which rely heavily on
handcrafted features, often fall short in capturing the complex textures and subtle patterns
inherent in brain tumors. As a result, deep learning—especially convolutional neural networks
(CNNs)—has emerged as a powerful alternative due to its capacity for hierarchical feature
extraction directly from raw image data, reducing the need for manual intervention and
domain-specific preprocessing [6,7]. Beyond healthcare, Al has profoundly influenced a
multitude of engineering and computational domains. Recent studies have explored its role in
enhancing cybersecurity frameworks [26-28], multi-objective optimization techniques [29,30],
controlling nonlinear systems [31], signal processing [32], designing advanced transmitarray
antennas [33], numerical analysis [34]. These interdisciplinary applications not only
demonstrate Al's versatility but also provide methodological inspiration for the medical
imaging community, where similar challenges—such as real-time decision-making, pattern
recognition, and system transparency—persist.

2.2. Convolutional Neural Networks in Brain Tumor Classification

Convolutional Neural Networks (CNNs) have revolutionized image-based medical diagnostics
by enabling automatic, data-driven feature extraction from medical imaging modalities such as
MRI, CT, and PET. In the context of brain tumor classification, CNNs have shown remarkable
success in distinguishing between tumor types, identifying lesion boundaries, and even
predicting tumor grades with minimal preprocessing. Their hierarchical architecture allows for
learning spatially localized features in early layers and more abstract, semantically rich features
in deeper layers, enabling robust recognition of complex anatomical patterns [6, 19].

A large body of literature has explored CNN-based solutions for brain tumor classification,
ranging from simple architectures like LeNet and AlexNet to deeper and more sophisticated
networks like ResNet, DenseNet, and Inception [35]. These networks are often trained on
datasets such as BraTS or Figshare, where MRI slices are labeled by tumor type. Most studies
report high classification accuracy, particularly when using transfer learning strategies where
models pre-trained on large-scale image datasets like ImageNet are fine-tuned on medical
images. However, the “black-box” nature of CNNs poses interpretability challenges,
particularly in critical applications like tumor diagnosis where clinical trust and transparency
are paramount [36].

To address model performance limitations, researchers have increasingly adopted ensemble
techniques and hybrid pipelines that combine CNNs with attention mechanisms or symbolic
rules [11,20]. Moreover, explainability techniques such as Grad-CAM, LIME, and SHAP are
now being used in tandem with CNNs to visualize decision-making processes. While CNNs
have undeniably improved classification performance, especially in multi-class scenarios like
glioma vs. meningioma vs. pituitary tumors, careful model calibration and interpretability
remain active areas of research. This has led to the development of model families tailored to
specific needs—Ilightweight models for fast inference and deep feature models for maximum
accuracy [37].
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2.2.1. Lightweight Models (e.g., MobileNetV2)

Lightweight CNN architectures such as MobileNetV2 have been widely adopted in resource-
constrained environments where computational efficiency and inference speed are critical.
MobileNetV2 employs depthwise separable convolutions and inverted residual blocks,
significantly reducing the number of trainable parameters while maintaining a competitive
level of accuracy. This makes it particularly suitable for real-time medical imaging
applications, including mobile diagnostic tools and edge-based deployment in clinical
environments with limited hardware resources [38].

In the context of brain tumor classification, MobileNetV2 has proven effective in processing
high-resolution MRI slices with relatively low computational cost. Studies leveraging
MobileNetV2 for medical image analysis often combine it with transfer learning techniques,
where the model is pre-trained on natural images and fine-tuned on domain-specific datasets.
This approach allows for rapid convergence and improved generalization, even with limited
annotated medical data. Additionally, its modular architecture facilitates integration with post-
hoc interpretability methods such as Grad-CAM++, enabling visual inspection of the model’s
attention. Despite its advantages, lightweight models like MobileNetV2 may struggle with
capturing subtle inter-class variations in complex tasks such as distinguishing between
overlapping tumor features. Their limited capacity can lead to reduced performance in highly
heterogeneous datasets unless complemented by ensemble methods or augmented with
context-aware modules. Nevertheless, when paired with stronger models or used as a
component in an ensemble architecture, MobileNetV2 plays a valuable role in balancing
efficiency with diagnostic accuracy [39].

2.2.2. Deep Feature Models (e.g., DenseNet, ResNet)

Deep feature models such as DenseNet121 and ResNet50 represent a significant leap in CNN
architecture, designed to improve feature reuse, gradient flow, and model depth. DenseNet, for
instance, introduces dense connectivity, where each layer receives input from all preceding
layers, thereby alleviating vanishing gradients and promoting feature propagation. This allows
the network to learn rich, discriminative representations of tumor structures, which is especially
valuable in medical imaging scenarios where subtle differences must be captured with
precision [40].

DenseNet121 has become a popular choice in brain tumor classification tasks due to its strong
performance in identifying complex and ambiguous tumor boundaries. It excels in capturing
the hierarchical structure of brain tissue and distinguishing between gliomas, meningiomas,
and pituitary adenomas. Moreover, its high parameter efficiency—despite its depth—makes it
suitable for fine-tuning on domain-specific MRI datasets. Several studies have reported that
DenseNet outperforms shallower models in both sensitivity and specificity, particularly when
dealing with noisy or low-contrast images. ResNet models, with their residual learning
framework, also offer benefits by allowing the network to train much deeper with
degradation. By including skip connections that bypass layers, ResNet effectively migg
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overfitting and supports better convergence. These architectures have been integrated into
multi-path networks and ensemble frameworks for medical diagnosis, often demonstrating
superior robustness and classification stability. Deep feature models like DenseNet and ResNet
are thus indispensable in high-stakes classification tasks and serve as reliable backbones in
ensemble strategies and interpretability-driven Al systems [41].

2.3. Ensemble Learning in Medical Image Analysis

Ensemble learning combines predictions from multiple models to improve accuracy, stability,
and generalization—key goals in medical imaging, where diagnostic precision is critical. By
leveraging diverse CNN architectures, ensembles mitigate weaknesses of individual models,
such as overfitting or class bias, especially in datasets with limited or imbalanced samples [20].
In brain tumor classification, ensemble methods integrate lightweight and deep models to
capture both global and fine-grained features. This leads to improved predictive performance
across tumor types, enhancing model reliability. Ensemble classifiers also align with clinical
needs by offering more consistent outputs and enabling the integration of interpretability tools
like XAl Overall, ensembles represent a robust solution for medical image analysis, enabling
not only better classification but also greater transparency through visual explanations and
clinical rule overlays [42].

2.3.1. Hard Voting vs. Soft Voting

Hard voting relies on majority class predictions from each model, while soft voting averages
class probabilities to determine the final output. While hard voting is simple, it ignores model
confidence and can be less reliable in ambiguous cases. Soft voting, in contrast, incorporates
each model's certainty by averaging probabilities. This often results in more stable and accurate
predictions—particularly in tasks like brain tumor classification, where subtle image variations
matter. Due to its ability to reduce noise and leverage model strengths, soft voting is preferred
in medical applications where diagnostic confidence is essential [43].

2.3.2. CNN-Based Ensembles

CNN-based ensembles combine multiple convolutional models—either similar or
architecturally diverse—to improve classification outcomes. These ensembles outperform
individual CNNs by balancing their respective strengths, reducing errors, and improving
generalization. In medical imaging, such combinations help address variability in tumor shape,
location, and intensity. For example, a lightweight model like MobileNetV2 can complement
a deeper model like DenseNetl21 in an ensemble framework. Beyond accuracy, CNN
ensembles integrate smoothly with XAl methods, such as Grad-CAM++, offering interpretable
insights into model decisions and promoting clinical trust [20].
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2.4. Explainable Al (XAI) in Medical Diagnostics

The increasing integration of Al into clinical workflows has raised critical concerns around
transparency and trust. Explainable Al (XAI) addresses these concerns by offering tools that
allow clinicians to interpret and validate model predictions. In brain tumor diagnostics, where
decisions must be clinically justified, XAl methods help identify which regions of a medical
image influenced the model’s outcome—thus bridging the gap between black-box predictions
and clinician reasoning. XAl not only improves interpretability but also assists in error analysis
and model debugging. By highlighting model attention, it allows developers and clinicians to
detect misclassifications due to irrelevant focus or image artifacts. These insights are essential
in high-stakes fields such as oncology and radiology, where even small mistakes can lead to
severe consequences for patient care [44].

2.4.1. Grad-CAM, Grad-CAM++, and Other Techniques

Grad-CAM (Gradient-weighted Class Activation Mapping) and its enhanced version, Grad-
CAM-++, are among the most widely used XAl tools in CNN-based medical image analysis.
They produce saliency maps that visualize which parts of the input image contributed most to
the model’s prediction. Grad-CAM++ improves upon the original by capturing finer details
and better localizing multiple discriminative regions, making it suitable for complex tumor
morphology [45].

Other techniques like SHAP (SHapley Additive exPlanations) and LIME (Local Interpretable
Model-agnostic Explanations) provide pixel-wise or region-wise feature importance, but they
are less tailored to spatial structures in images. In contrast, Grad-CAM variants align naturally
with CNN architectures, making them especially effective in radiology and MRI-based tumor
classification tasks [46].

2.4.2. Clinical Relevance and Visualization

Visualization is central to making Al outputs actionable in a clinical setting. When radiologists
can see that a model is focusing on the tumor’s actual anatomical region, it builds confidence
in the AI’s decision. Grad-CAM overlays allow clinicians to verify alignment between
predictions and visual features, particularly in ambiguous or borderline cases. Moreover,
integrating visual outputs with symbolic clinical rules—such as lesion location, enhancement
pattern, or size thresholds—enables a hybrid explanation that combines statistical inference
with clinical reasoning. This layered interpretability can improve diagnostic accuracy and
support collaborative decision-making between Al systems and medical professionals [37].

2.5. Limitations in Existing Studies

Despite significant progress, many existing brain tumor classification studies rely on single
CNN architectures, limiting their generalization to diverse tumor presentations. These mod,
often perform well on curated datasets but falter in real-world settings with varied MRI
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noise, and anatomical differences. Moreover, many studies neglect class imbalance or over-
represent dominant tumor types, skewing reported metrics. Additionally, interpretability is
frequently treated as an afterthought. Grad-CAM or saliency maps are included without
quantitative validation or clinical feedback. Few studies integrate domain knowledge through
symbolic overlays or rule-based reasoning, missing the opportunity to make Al outputs
meaningful and trustworthy for clinical practitioners [47].

2.6. Research Gaps and Motivation for the Present Study

There is a clear gap in the literature for brain tumor classification models that combine strong
predictive performance with human-centered interpretability. While ensemble CNNs and XAI
have been studied separately, their joint application—particularly with symbolic clinical
overlays—remains underexplored. The lack of such integrative frameworks limits real-world
deployment and clinician adoption.

This study addresses that gap by proposing an ensemble-based CNN framework, incorporating
both lightweight and deep architectures, guided by an Explainable Al module (Grad-CAM++)
and supported by rule-based clinical overlays. The motivation is to create a diagnostic model
that is not only accurate but also interpretable and aligned with radiological practices, paving
the way for responsible Al adoption in medical imaging.

3. Methodology

This study aimed to develop a robust deep learning framework for multi-class brain tumor
classification and localization using contrast-enhanced MRI slices. The primary objective was
to build a clinically reliable and interpretable system that assists radiologists in accurate
diagnosis through both automated classification and visual explanation of tumor regions. The
proposed framework involved four main phases. First, the Figshare brain tumor dataset was
preprocessed, with image resizing and normalization applied to prepare the data for deep
learning (see Section 4.1). Second, two convolutional neural network (CNN) models—
MobileNetV2 and DenseNet121—were independently trained using transfer learning and fine-
tuning strategies (Sections 4.4.1 and 4.4.2). These models were selected for their
complementary strengths in lightweight computation and deep feature representation. Third,
an ensemble-based classifier was constructed by aggregating the Softmax probability outputs
from both networks using a soft voting strategy (Section 4.4.4), improving overall robustness
and generalization. Finally, to address the challenge of interpretability, the framework
incorporated a dedicated Explainable Al (XAI) module centered on the Grad-CAM++
algorithm. This technique generated high-resolution class-discriminative heatmaps over the
input MRIs, revealing the spatial regions most influential in the classification decision. These
visual explanations facilitated clinical validation of the model’s output by highlighting
anatomically plausible tumor regions. Figure X presents an overview of the proposed pipeline.
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3.1 Dataset

The dataset employed in this study is the publicly available Figshare brain tumor MRI
dataset, consisting of 3064 T1-weighted contrast-enhanced axial MRI slices sourced from
233 patients. It encompasses three major tumor classes: glioma (1426 slices), meningioma
(708 slices), and pituitary adenoma (930 slices). To ensure balanced class representation
across evaluation stages, a 70:30 stratified train-test split was performed, allocating 2145
images for training and 919 for testing.

To further validate the generalization ability of the proposed classification models, we
implemented a stratified 5-fold cross-validation exclusively on the training set. In each fold,
models were trained and optimized while preserving inter-class distribution. Notably, all
experiments—including training, validation, ensemble prediction, and explainability
assessment—were confined to this dataset, without external data augmentation or transfer from
unrelated sources. This ensures internal consistency and clinical relevance for evaluating the
standalone CNN classifiers (MobileNetV2, DenseNet121), their ensemble combination via
soft voting, and the XAI framework (Grad-CAM-++) applied to interpret prediction saliency
and activate rule-based overlays. The dataset’s standardized acquisition and diversity in tumor
morphology make it a suitable benchmark for assessing both accuracy and interpretability in
deep learning-driven brain tumor classification [48].

Table 1. Number of images per tumor class in the dataset

Class Training Validation Test
Glioma 1462 427 305
Meningioma 708 380 321
Pituitary Adenoma 930 415 310
Total 3100 1332 936

3.2 ROI Annotation

For explainability evaluation, selected cases from both datasets included annotated regions of
interest (ROIs) drawn manually by radiologists. These ROIs were used to measure spatial
alignment between XAI heatmaps (e.g., Grad-CAM++) and actual tumor regions via overlap
metrics such as the Dice Coefficient or Intersection-over-Union (IoU).

3.3 Preprocessing

Effective data pre-processing is essential to ensure reliable performance in brain MRI
classification, as raw clinical images often contain non-informative background regions, noise
artifacts, and intensity variability that can degrade deep learning model accuracy. In this study,
pre-processing was performed in three key steps: grayscale conversion, resizing, and
normalization. All MRI slices from the Figshare dataset were first converted from RGB to
grayscale to reduce computational overhead and emphasize structural contrast without losj
essential diagnostic features. Each image was then resized to a uniform dimension of 22
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pixels to match the input requirements of the MobileNetV2 and DenseNet121 architectures.
This resizing step ensured consistent spatial resolution across the training pipeline.

Next, intensity normalization was performed using a min—max scaling approach to constrain
pixel values to the interval [0,1]. This improves training stability and ensures that all input
features fall within a comparable numerical range. The normalization was carried out according
to the following equation:

I(i,j) — Ly;
I'(i,j) = I( ])_Im.m

max min
where I* (i, j) is the normalized intensity at pixel location (i, j); I(i, j) represents the raw pixel
value, and Iip, [nax represent the minimum and maximum pixel values in the image,
respectively.

No advanced filtering, augmentation, or cropping techniques were applied, in order to preserve
the original anatomical features crucial for downstream explainability via Grad-CAM++. This
minimal but effective preprocessing strategy ensured data consistency and interpretability,
while maintaining fidelity to the clinical imaging context. It also enabled efficient training
across all folds in the cross-validation procedure without introducing bias or data leakage.

3.4 Data Augmentation

To improve model generalization and reduce overfitting, a data augmentation pipeline was
applied to the training subset of the Figshare brain tumor dataset. This process involved
systematically transforming existing MRI slices to artificially expand the diversity and volume
of training samples without altering their diagnostic content.

The augmentation techniques included random rotations, horizontal and vertical flipping,
scaling, and minor affine translations (Figure 2, Table *). These operations preserved the
structural integrity of the tumors while simulating variability typically encountered in clinical
imaging due to patient movement, scanner angle, or acquisition settings.

2. Various forms of MRI data augmentation

PARAMETERS VALUES
Horizontal flip True
Vertical flip True
Rotation range 0° to 270°
Width shift range +20%
Height shift range +20%
Zoom range [0.1, 1.0]
Shear range 0.2
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Brightness adjustment [0.2, 1.0]
Contrast enhancement | Adaptive (CLAHE)
Rescaling \ [0, 1] (Min—Max)

180° Rotation

270° Rotation Vertical Flip Horizontal Flip

Figure 2. Various forms of MRI data augmentation.

As aresult of augmentation, the size of the training dataset effectively doubled, enhancing the
model’s ability to generalize across tumor classes—glioma, meningioma, and pituitary
adenoma. The augmented samples were generated only for training; validation and test sets
remained untouched to ensure fair evaluation. This strategy was particularly important given
the class imbalance inherent in the original dataset.

Overall, augmentation played a key role in stabilizing the training process of both
MobileNetV2 and DenseNet121, contributing to the ensemble model’s improved classification
performance and robustness.
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3.5 Ensemble-Based Deep Classification Model

To enhance classification accuracy, model robustness, and interpretability in brain tumor
diagnosis, this study adopts an ensemble-based deep learning approach by integrating two
complementary convolutional neural network (CNN) architectures: MobileNetV2 and
DenseNet121. These models were strategically selected based on their distinct architectural
characteristics—MobileNetV2 for its low-latency efficiency and DenseNet121 for its dense
connectivity and high feature reuse. This combination allows for the assessment of models with
varying levels of parameter complexity and generalization capability. Each model was
initialized with pre-trained ImageNet weights to accelerate convergence and leverage learned
features. The final classification heads were removed and replaced with custom fully connected
layers designed for three-way classification: glioma, meningioma, and pituitary adenoma.
Each model is independently fine-tuned via transfer learning and subsequently combined using
a soft voting ensemble strategy. This hybrid methodology leverages the strengths of both
networks to improve generalization and diagnostic reliability.

3.5.1 MobileNetV2 Transfer Learning

MobileNetV2 is a lightweight and computationally efficient CNN architecture optimized for
low-latency environments. It introduces inverted residual bottlenecks that reduce
dimensionality while preserving feature integrity. In the proposed framework, MobileNetV2 is
used as a pretrained feature extractor, initialized with ImageNet weights. The original

classification head is removed and replaced with a custom dense layer with Softmax activation
for multi-class tumor prediction.

Formally, given an input image I(x,y) € R256%256%3 the predicted class probability vector is
computed as:

y(MoblieNetVZ) = So ftmax(ngobileNet(I(x' y)))

where f110P1eNet denotes the MobileNetV2 classifier parameterized by weights .

The training loss is defined using the categorical cross-entropy:

3
Las == ye.log(5)
c=1

where y,. € {0,1} is the one-hot encoded ground truth label for class c.
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3.5.2 DenseNet121 Transfer Learning

DenseNetl21 is a deeper CNN that employs dense connectivity between layers, allowing
feature reuse and improved gradient propagation. This structure is advantageous for detecting
subtle variations in medical images. The model is initialized with ImageNet weights, and the
classification head is replaced with a custom dense output layer followed by Softmax
activation.

For the same input image I(x,y) € R256%256X3 the DenseNetl121 classifier outputs:

y(DenseNetlZl) = Softmax (f@MDenseNetlzl(I(x’ y)))

where fP¢$eNet121 represents the DenseNet121 model with parameters §.

The corresponding loss function is:

Los = z Ye- lOg (YC

where y. € {0,1} is the one-hot encoded ground truth label for class c .
3.5.3 Hyperparameter Optimization

To ensure optimal training convergence and generalizability across tumor classes, a
comprehensive hyperparameter tuning process was conducted using a grid search strategy.
Multiple training runs were performed to assess the effects of varying core parameters,
including the learning rate, batch size, optimizer choice, and dropout configuration. The grid
search was applied independently to both MobileNetV2 and DenseNetl21 models.
Specifically, the learning rate was explored over three values {1072,107,107*}, batch sizes were
tested at {32,64,128}, and both Stochastic Gradient Descent (SGD) with momentum and Adam
optimizers were evaluated for training stability and performance.

Based on validation loss trajectory and cross-validation accuracy across five folds, the optimal
configuration was identified as follows: a batch size of 64 was found to offer a good trade-off
between convergence stability and memory usage, while learning rates of 0.0005 and 0.0003
were selected for MobileNetV2 and DenseNetl121, respectively. The Adam optimizer
consistently outperformed SGD, particularly in early convergence behavior. Additionally, a
dropout rate of 30% was integrated after dense layers in both models to mitigate overfitting,
forcing the network to explore alternative activation paths during training.

Given the class imbalance inherent in the Figshare brain tumor dataset—comprising 1 4
glioma images, 708 meningioma images, and 930 pituitary adenoma images—class w.
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were computed using the compute class weight() function from the sklearn.utils module.
These class weights were incorporated into the categorical cross-entropy loss function during
training to penalize the majority class and ensure fairness across all tumor categories. This
strategy promoted better sensitivity for minority classes and contributed to balanced learning.

Table 3. Final Optimized Hyperparameter Settings

Hyperparameter MobileNetV2 DenseNet121
Learning Rate 0.0005 0.0003
Optimizer Adam Adam

Batch Size 64 64

Dropout Rate 0.30 0.30

Class Weights Applied (sklearn) Applied (sklearn)
Epochs 30 30

3.5.4 Training Setup

Each classification model in the ensemble framework was trained using a supervised learning
protocol over 30 epochs, incorporating early stopping with a patience threshold of 5 epochs to
mitigate overfitting. The validation loss served as the primary monitoring metric during
training. Model checkpoints were saved conditionally upon validation improvement, and the
ReduceLROnPlateau callback from TensorFlow was employed to adaptively lower the
learning rate by a factor of 0.1 when validation loss plateaued.

Training was conducted on the Figshare brain tumor MRI dataset, comprising 3064 T1-
weighted contrast-enhanced axial slices from 233 patients. The class distribution was
moderately imbalanced, consisting of Glioma: 1426 images and Meningioma: 708 images and
Pituitary adenoma: 930 images.

To preserve class proportions and evaluate generalization, a 70:30 stratified train-test split was
adopted. To ensure robust evaluation and minimize overfitting, a 5-fold cross-validation
strategy was applied during training to assess generalization across different splits of the data.
Additionally, an independent hold-out test set—excluded from all training and validation
procedures—was used for final performance evaluation. This dual approach provides both
cross-validated insights into model consistency and an unbiased estimate of real-world
diagnostic performance. This methodology ensured robust performance estimation and reduced
variance due to data partitioning. The final model for each fold was selected based on the epoch
with the lowest recorded validation loss (Table 4).
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4. Training Configuration Table

Parameter Value
Training Method Supervised Learning
Epochs 30
Early Stopping 5
Patience
Validation Metric Validation Loss
Learning Rate ReduceLROnPlateau (factor=0.1)
Adjustment
Dataset Figshare Brain MRI
Total Samples 3064 MRI Slices

Class Distribution

Glioma: 1426, Meningioma: 708,

Accepted: 25-08-2025

Pituitary: 930
70:30 Stratified
5-Fold on Train Set
Lowest Validation Loss per Fold

Train-Test Split

Cross-Validation

Model Selection
Criterion

3.5.5 Transfer Learning Setup

Transfer learning is a powerful strategy in machine learning wherein a model trained for a
source task is adapted for a different, but related, target task. This technique is particularly
advantageous in medical imaging domains, where labeled data is often limited. By leveraging
models pretrained on large-scale datasets—such as ImageNet—transfer learning enables the
reuse of learned low-level and mid-level features, reducing both training time and data
requirements while improving performance and convergence speed.

Ny
=1’

{1, ..., K} corresponding to the ImageNet dataset. The target domain is Dy = {(x}, y;)}

€ RIWXC and y° €

N¢
j=1
with y* € {1,2,3}, representing the glioma, meningioma, and pituitary tumor classes. Transfer
learning involves adapting a model fs pretrained on Dy, and fine-tuning a subset of parameters
0' C 0° to minimize the classification loss on the target domain:

The source domain is defined as D; = {(x{,y;)} where x°

3
Los =— Z Ye- lOg (y\c)
c=1

Where y'. = Softmax ( f& (xjt)) and y, € {0,1} is the one-hot encoded ground truth label.

1s the one-hot encoded true label.
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In this study, MobileNetV2 and DenseNet121 were used as the base architectures, both
initialized with pretrained ImageNet weights. Their original classification heads were removed
and replaced with custom dense layers followed by Softmax activation. During fine-tuning,
only the new classifier layers were trained in the early epochs while the base layers remained
frozen to retain the generalized features learned from the source domain. The base layers were
gradually unfrozen in later training stages to allow deeper adaptation to the brain tumor
classification task.

This transfer learning procedure ensures that the ensemble models not only inherit strong
general feature extraction capabilities but also adapt effectively to the specific spatial and
textural patterns found in brain MRI slices.

3.5.6 Ensemble Strategy

Convolutional Neural Networks (CNNs), while powerful for medical image classification, are
often limited by challenges such as poor interpretability, susceptibility to overfitting, and lack
of generalization across heterogeneous clinical datasets. These limitations are especially
pronounced in brain tumor classification tasks, where subtle visual features and limited labeled
data make accurate diagnosis complex. To mitigate these issues, this study adopts an ensemble-
based classification strategy that integrates the complementary strengths of two high-
performing CNN models—MobileNetV2 and DenseNet121—into a unified predictive system.

Each model is characterized by distinct architectural advantages: MobileNetV2, with its
lightweight structure and inverted residual bottlenecks, offers efficiency and rapid
convergence, while DenseNet121 utilizes densely connected layers to enable deep gradient
flow and feature reuse, which is beneficial for detecting fine-grained tumor characteristics. By
combining these architectures, the ensemble classifier achieves enhanced diagnostic accuracy,
reduced variance, and more stable generalization across tumor types.

In the proposed method, both models are independently trained using transfer learning on the
Figshare brain MRI dataset. The original classification heads of the pretrained networks were
removed and replaced with custom dense layers tailored to the three-class classification task:
glioma, meningioma, and pituitary adenoma.

To aggregate predictions, a soft voting mechanism was employed. For each input MRI slice,
the models output probability vectors Vuyopitener aNd Vpensenet» €ach representing the

likelihood of membership in the three tumor classes. The final prediction vector Yepnsempie 15
computed as the average of the two:

Yensemble = E (yMobileNet + YDenseNet)

The final predicted class € is then determined as:

Volume 49 Issue 3 (August 2025)
https://powertechjournal.com




.= Power System Technology

' ISSN:1000-3673

Received: 06-06-2025 Revised: 15-07-2025 Accepted: 25-08-2025

C = argmax Yensembie,c

This ensemble strategy benefits from the complementary feature representations learned by
each model, thereby improving classification robustness and reducing the risk of erroneous
predictions caused by overfitting or data imbalance.

Furthermore, the ensemble's outputs serve as the foundation for downstream explainability
modules, including Grad-CAM++, SHAP, and clinical decision rule overlays, enabling
clinicians to visualize and interpret the underlying rationale for each model prediction.

This approach balances diagnostic precision, computational efficiency, and interpretability,
making it a viable strategy for real-world deployment in clinical decision support systems for
brain tumor diagnosis.

3.5.7 Evaluation Metrics

To comprehensively evaluate the performance of the proposed ensemble-based brain tumor
classification framework, a set of standard evaluation metrics was employed. These include
Accuracy, Precision, Recall (Sensitivity), F1-Score, and the Dice Coefficient Index (DCI).
Together, these metrics offer a multidimensional view of the classifier’s predictive ability,
especially in the context of imbalanced medical imaging datasets.

Accuracy

Accuracy measures the overall correctness of the model and is defined as the ratio of correctly
predicted instances (both positive and negative) to the total number of samples:

TP+ TN
TP+ TN+ FP +FN

Accuracy =

Where:

e TP: True Positives
e TN: True Negatives
o FP: False Positives
o FN: False Negatives

Precision

Precision assesses the reliability of positive predictions by computing the ratio of correctly
predicted positive observations to the total predicted positives:
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Precision — TP
recision = - TP

A high precision score indicates a low false-positive rate, which is particularly important in
clinical applications where misclassifying a healthy patient as diseased can lead to unnecessary
anxiety and testing.

Sensitivity (Recall)

Recall evaluates the model’s ability to identify all relevant cases by measuring the proportion
of actual positives that were correctly classified:

S itivit e

ensitivity = ————
YZTP+FN

In medical diagnostics, high recall is essential to minimize the risk of missed tumor detections.

F1-Score

The F1-score is the harmonic mean of Precision and Recall, providing a balance between the
two in cases where both false positives and false negatives carry significant cost:

2. Precision. Sensitivity

F1 — Score = — —
Precision + Sensitivity

This metric is especially useful in evaluating models on imbalanced datasets where accuracy
alone may be misleading.

Dice Coefficient Index (DCI)

To further quantify model performance in terms of region-based classification (e.g., comparing
predicted vs. actual tumor classes), the Dice Coefficient Index was also computed:

2-TP

DCI =
¢ 2-TP + FP + FN

The Dice coefficient is frequently used in medical image analysis to assess the overlap between
predicted tumor regions and ground-truth annotations.

Each of these metrics was computed across the five folds of cross-validation and averaged to
ensure robustness and generalizability of the results.

The final model outputs one of the three mutually exclusive tumor labels—glio
meningioma, or pituitary adenoma—based on the highest Softmax score. These predicti
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subsequently processed by the XAI module (Grad-CAM++, SHAP, LIME) to generate visual
attribution maps and activate clinical rule-based overlays, thereby closing the loop between
deep learning inference and clinical decision support.

3.6 Explainable AI Module

To mitigate the black-box nature of deep learning models and enhance transparency in tumor
classification, the proposed framework incorporates an integrated Explainable Artificial
Intelligence (XAI) module. This module employs both saliency-based and attribution-based
visualization techniques to produce human-interpretable explanations of model predictions.
The core method utilized is Gradient-weighted Class Activation Mapping Plus Plus (Grad-
CAM++), which improves upon the original Grad-CAM by using higher-order partial
derivatives to generate more precise and localized heatmaps. These maps are especially
effective for small or irregular tumor regions, commonly encountered in brain MRIs.

For each correctly classified input image, Grad-CAM++ generates a heatmap that highlights
the most influential regions contributing to the classification decision. These heatmaps are
overlaid on the original MRI slices to provide radiologists with spatial cues that support visual
verification. Mathematically, the Grad-CAM++ activation map L,qq—cam++ fOr class c is
calculated as a weighted sum of feature maps Ak:

c _ Cc Ak
Grad—CAM++ — § aiA
k

where aj, are the weights computed from the second- and third-order gradients of the class
score y° with respect to the activation maps A¥, thereby capturing the class-discriminative
importance of each feature map.

To complement Grad-CAM++, optional explainability techniques such as SHAP (SHapley
Additive exPlanations) and LIME (Local Interpretable Model-Agnostic Explanations) were
explored. SHAP assigns pixel-wise contributions based on cooperative game theory, while
LIME approximates the decision surface locally using interpretable models. These methods
were used to cross-validate and triangulate insights obtained from Grad-CAM++.

To quantitatively assess the alignment between predicted attention regions and actual tumor
locations, we employed Dice Similarity Coefficient (DSC) and Intersection-over-Union (IoU)
metrics. Let G represent the ground-truth segmentation mask and M the binarized Grad-
CAM-++ heatmap thresholded at the top 20% of pixel intensities. The metrics are defined as:

216 n M|

P ) = e T
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oG, M) = |G U M|

Empirically, Grad-CAM++ achieved Dice scores ranging from 0.72 to 0.89 and IoU values
between 0.56 and 0.81 in well-segmented cases, affirming its diagnostic relevance.

In addition to these quantitative metrics, a visual interpretation interface is employed. The
interface consolidates the original MRI slice, predicted tumor class, corresponding Grad-
CAM++ heatmap, and symbolic rule overlays into a single diagnostic view, facilitating
clinician understanding and trust in the model’s decision process.

3.7 Clinical Decision Rule Overlay

Beyond visual saliency, clinical trust is further enhanced through a symbolic rule-based overlay
module. This component applies domain-informed heuristics to the Grad-CAM-++ outputs and
segmentation masks to interpret predictions using logic familiar to practicing radiologists. The
rules are designed based on neuro-oncological literature and radiological pattern recognition
strategies concerning tumor location, morphology, and enhancement patterns.

For instance, a region with ring-enhancing structure and segmented tumor area exceeding 4
cm? is classified as suggestive of glioblastoma, while a non-ring-enhancing irregular lesion in
the cerebral hemispheres with area between 2—4 cm? is interpreted as glioma. Pituitary adenoma
candidates are identified when the region of interest is confined to the midline sellar/suprasellar
region and the segmented area is less than 1 cm? These rules were applied post hoc using
spatial filtering and shape approximation on thresholded saliency maps and segmentation
masks, without influencing the training process. Each model prediction is therefore
accompanied by a structured symbolic explanation—e.g., "Rule 1 activated: ring-enhancing
region + area = 5.6 cm? — glioblastoma probable"—bridging neural outputs with clinical
reasoning.

3.8 Explainability Evaluation

To validate the clinical utility of the XAl-enhanced classification framework, a two-tiered
evaluation strategy was employed, combining quantitative alignment metrics and qualitative
feedback from medical experts. Quantitatively, the overlap between Grad-CAM-++ heatmaps
and ground-truth segmentations was assessed using DSC and IoU, as described earlier. These
metrics directly reflect how accurately the model’s internal focus aligns with medically
significant tumor regions.

For qualitative evaluation, three board-certified radiologists were asked to score the
trustworthiness and clarity of the model’s explanations using a 5-point Likert scale. They
answered: “How much do you trust the model’s prediction?” and “How clear and clinically,
meaningful is the provided explanation?”” Average scores across tumor types and XAl meth
were computed.
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Additionally, open-ended qualitative feedback was solicited from three board-certified
radiologists regarding the interpretability and clarity of the XAl-generated outputs. Annotators
were encouraged to comment on the spatial accuracy of Grad-CAM++ heatmaps and the
usefulness of rule overlays in interpreting model decisions.

4. Results
4.1 Classification Results

To assess the predictive capability of the proposed brain tumor classification framework, two
convolutional neural network (CNN) architectures—MobileNetV2 and DenseNet121—were
trained and evaluated using a stratified 5-fold cross-validation approach on the Figshare
dataset, which includes three tumor types: glioma (1426 slices), meningioma (708 slices), and
pituitary adenoma (930 slices). Each model was optimized independently using transfer
learning and evaluated with a set of performance metrics. These metrics include Accuracy,
Precision, Recall (Sensitivity), F1-Score, and Dice Coefficient Index (DCI). Together, they
provide a comprehensive assessment of each model's classification accuracy and robustness,
particularly in handling imbalanced classes.

The cross-validation results are summarized in Table 5. As shown, DenseNet121 consistently
outperformed MobileNetV2 across all five-evaluation metrics. DenseNet121 achieved an
average accuracy of 97.9%, precision of 96.8%, recall of 96.2%, F1-score of 96.5%, and Dice
coefficient of 94.7%. In contrast, MobileNetV2 produced a solid yet slightly lower
performance with accuracy of 96.3%, precision of 94.7%, recall of 94.1%, F1-score of 94.4%,
and Dice coefficient of 92.6%.

These results indicate that while both models are effective for multi-class tumor classification,
DenseNet121 demonstrates superior generalization and classification reliability—justifying its

inclusion in the ensemble architecture.

Table 5. Cross-validation performance metrics for MobileNetV2 and DenseNet121.

Model Accuracy Precision Recall F1-Score Dice Coefficient
(%) (%) (%) (%) (%)

MobileNetV2 95.3 94.7 94.1 94.4 92.6

DenseNet121 97.9 96.8 96.2 96.5 94.7

4.2 Test Set Evaluation

After training the MobileNetV2 and DenseNet121 models using the configuration described in
Section 4, we evaluated their performance on the hold-out test set. Figure 3 illustrates the
evolution of training and validation accuracy and loss throughout the learning process for b
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CNN architectures. The consistent upward trend in accuracy and downward trend in loss across
epochs confirms effective convergence and learning behavior for both models.

Figure Y presents the confusion matrices derived from the test set for MobileNetV2 and
DenseNet121. Each matrix depicts the number of correctly and incorrectly classified samples
across the three target classes: glioma, meningioma, and pituitary adenoma. Both models
demonstrate strong classification capability, with DenseNet121 achieving slightly higher
accuracy in glioma detection, while MobileNetV2 showed marginally better performance on
pituitary adenoma cases. Overall, both models displayed high confidence in their predictions,
validating the effectiveness of the proposed ensemble-based architecture.

MobileNetV2 Model Accuracy b) MobileNetV2 Model Loss

15 20 25 30
Epochs Epochs

c) DenseNet121 Model Accuracy d) DenseNet121 Model Loss

095

09

0.85

08

0.75

0 5 10 15 20 25 30 3s [ 5 10 15 20 25 30 35
Epochs Epochs

Fig. 3. Training and validation a) accuracy and b) loss of of MobileNetV2 model and Training
and validation c) accuracy and d) loss of of DensNetV2 model during the training and test
phase of each model.

4.3 Confusion matrix

To further examine the classification performance across tumor categories, a confusion matrix
was generated, as shown in Figure 4. The matrix reveals a high degree of classificay
precision across all three classes. Glioma and meningioma exhibited minimal confusion
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is notable given their occasional radiological similarity. The classification of pituitary tumors
was particularly accurate, with very few misclassifications, likely due to their distinct
anatomical positioning in the sellar region and uniform morphological features.

MobileNetV2

Glioma

Pituitary

-0.4

True Label

- 0.2

Meningioma

-0.0
Glioma Pituitary Meningioma
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DenseNet121
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Figure 4. Confusion matrix of MobileNetV2 and DenseNet121 depicting the number of
correctly and incorrectly classified cases across the three tumor types: glioma, meningioma,
and pituitary.
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These results underscore the efficacy of the combined deep learning and explainable Al
approach in achieving high-precision diagnostic classification across heterogeneous tumor
types. The framework’s consistent performance supports its potential for deployment in clinical
diagnostic support systems.

4.4 Ensemble-Based Classification Results

The ensemble-based classifier, integrating the complementary strengths of MobileNetV2 and
DenseNet121 through a soft voting mechanism, exhibited improvements in classification
performance compared to the individual CNN models (Figure 5). By averaging the predicted
class probabilities from both networks, the ensemble approach achieved higher robustness,
interpretability, and predictive accuracy across the three target tumor types: glioma,
meningioma, and pituitary adenoma.

Ensemble-based classifier
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Figure 5. Confusion matrix of ensemble-based classifier depicting the number of correctly and
incorrectly classified cases across the three tumor types: glioma, meningioma, and pituitary.
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Each constituent model contributed unique strengths to the ensemble: MobileNetV2 provided
efficient and lightweight feature extraction, while DenseNetl21—through its densely
connected architecture—captured complex patterns and subtle discriminative features in the
MRI scans. When one model was less confident or misclassified a sample, the averaging
process of soft voting often compensated for the discrepancy, producing a more reliable overall
prediction.

The ensemble classifier achieved an overall accuracy of 91.7%, outperforming both
MobileNetV2 (88.0%) and DenseNet121 (90.5%). It also achieved the highest values across
all other evaluation metrics: precision of 91.9%, recall of 91.7%, and an F1-score of 91.6%
(see Table 5). This consistent superiority across metrics highlights the ensemble’s effectiveness
in improving predictive robustness, especially in scenarios where individual models may falter
due to ambiguous features or class imbalance (Table 6).

Table 6. classification performance metrics (Accuracy, Precision, Recall, and F1-score) for
MobileNetV2 and DenseNet121 and the ensemble-based classifier

Model Accuracy Precision Recall ~ F1-Score
MobileNetV2 0.880 0.886 0.881 0.879
DenseNet121 0.905 0.908 0.905 0.904
Ensemble (Soft Voting) 0.917 0.919 0.917 0.916

To further examine classification confidence and error distribution, Figure 5 presents the
confusion matrix for the ensemble model. Compared to the individual CNN models, the
ensemble displays reduced misclassification across all three tumor types—glioma,
meningioma, and pituitary adenoma—demonstrating improved sensitivity and specificity. This
refinement is particularly evident in meningioma classifications, where errors commonly arise
due to visual similarity with gliomas. By integrating the probabilistic outputs from both base
models, the ensemble produces more stable and accurate predictions.

The statistical evaluation confirms the ensemble’s significant performance gains. Paired t-tests
comparing the ensemble with MobileNetV2 and DenseNetl121 yielded t = 18.78, p < 0.0001
and t = 10.61, p = 0.0004, respectively—strong evidence of statistically significant
improvement. The Cohen’s d values of 8.40 (vs. MobileNetV2) and 4.75 (vs. DenseNet121)
indicate very large effect sizes. Moreover, the Friedman test reported a chi-square statistic of
10.00 with p = 0.0067, confirming that at least one model (the ensemble) performed
significantly better than the others (Table 7).

Table 7. Statistical test results comparing the performance of MobileNetV2 and DenseNet121.

Test MobileNetV2 DenseNetl121
Paired t-test (t, p-value) (18.78, 0.0000) (10.61, 0.0004)
Cohen’s d 8.40 4.75
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Friedman test (3%, p-value) (10.00, 0.0067) (10.00, 0.0067)

Collectively, these results establish the ensemble classifie—constructed via soft voting from
MobileNetV2 and DenseNetl21—as a superior model for multi-class brain tumor
classification from MRI images. Its enhanced generalization, reduced error margins, and
compatibility with interpretability modules such as Grad-CAM++ position it as a highly viable
candidate for Al-assisted clinical diagnostics.

4.5 Grad-CAM++ Visualization Results

As part of the integrated Explainable AI (XAI) module developed in this study, Gradient-
weighted Class Activation Mapping (Grad-CAM++) was employed to enhance interpretability
and provide visual justification for the predictions made by the deep learning models. Grad-
CAM++ generates class-specific saliency maps that reveal the spatial regions in MRI scans
contributing most significantly to the final classification output. This integration transforms the
model from a black-box predictor into a transparent diagnostic assistant capable of justifying
its decision-making process.

Figure 6 showcases the output of the XAI module applied to the three tumor classes—glioma,
pituitary adenoma, and meningioma. The first row presents original MRI slices annotated by
radiologists, highlighting tumor locations in red. The second row depicts Grad-CAM++
heatmaps overlaid on the same scans, generated through the XAI module. These visual
explanations reveal that the proposed ensemble classifier focuses attention on anatomically
accurate and clinically relevant regions.

In the glioma case (left column), the XAl-derived heatmap correctly emphasizes a diffuse
lesion in the cerebral hemisphere, consistent with the known characteristics of gliomas. The
pituitary adenoma image (center) shows precise attention on the midline sellar region, and the
meningioma heatmap (right) highlights a convex-shaped, dural-based lesion—both matching
standard radiological expectations. Such correspondence between the model’s attention and
expert annotations not only supports the classifier’s diagnostic reliability but also enhances its
interpretability for medical professionals.

Moreover, these explanations assist in understanding the model’s behavior in both correct and
incorrect classifications. In ambiguous or low-contrast cases, Grad-CAM++ maps often
identify nearby confounding regions that may mislead the network. This feedback capability
reinforces the role of the XAl module as an essential layer for clinical validation and error
analysis.

In summary, the use of Grad-CAM++ within the broader XAl framework significantly
strengthens the transparency of the proposed classification system. It allows clinicians to
visualize, interpret, and evaluate the rationale behind each prediction—an essenj
requirement for deploying deep learning models in real-world medical settings.
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Glioma Pituitary Meningioma
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Grad-CAM (Overlayed Heatmap)

Figure 6. Visual interpretation of brain tumor classification using the integrated Explainable
Al (XAI) module with Grad-CAM++. The top row displays original MRI slices annotated with
red outlines indicating the ground-truth tumor regions for three classes: glioma (left), pituitary
adenoma (center), and meningioma (right). The bottom row shows Grad-CAM++ heatmaps
overlaid on the same images, highlighting the model’s attention during classification. The
highlighted regions demonstrate strong alignment with expert-annotated tumor locations,
validating the interpretability and diagnostic reliability of the proposed ensemble-based deep
learning framework.

In addition to classification performance, the interpretability of the proposed framework was
assessed through Grad-CAM++ visualizations derived from the integrated Explainable Al
(XAI) module. As demonstrated in Figure 6, the attention maps generated for each tumor
class—glioma, pituitary adenoma, and meningioma—clearly highlight spatial regions that
align with expert-annotated ground-truth tumor locations. The top row of Figure 6 presents the
original MRI slices with red outlines manually delineating tumor areas, while the bottom r
overlays the Grad-CAM++ heatmaps, showing the model’s focus during prediction. N
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the activated regions correspond strongly with the actual tumor positions, especially in cases
with discrete boundaries such as pituitary adenomas and compact meningiomas.

Moreover, these visualizations corroborated the automatic activation of predefined clinical
rule overlays. For instance, the glioma heatmap displayed peripheral activation consistent with
a non-midline mass exceeding 2 cm?, triggering the rule-based suggestion for glioma.
Similarly, the pituitary tumor’s focused activation in the sellar region aligned with both the
model’s prediction and the clinical heuristics for pituitary adenoma. Meningioma cases, while
generally well-identified, presented slightly more diffuse activations—reflecting their
heterogeneous locations and morphologies.

To rigorously assess the spatial fidelity of the Grad-CAM++ attention maps, two
complementary region-based evaluation metrics were employed: the Dice Similarity
Coefficient (DSC) and the Intersection over Union (IoU). These metrics were computed for
representative test samples where ground-truth segmentation masks were available, providing
a quantitative comparison between the model’s attention regions and annotated tumor
boundaries.

Table 8. Dice Coefficient values comparing Grad-CAM heatmaps with ground-truth
segmentation masks across selected tumor cases.

Case ID Tumor Type Dice Coefficient IoU
Case 01 Glioma 0.81 0.69
Case_02 Meningioma 0.88 0.78
Case 03 Pituitary 0.78 0.65
Case 04 Glioma 0.84 0.72
Case 05 Meningioma 0.86 0.75

The highest overlap was observed in meningioma cases, with Dice scores approaching 0.88
and IoU scores around 0.78. This indicates strong spatial agreement between model focus and
tumor boundaries, likely due to the well-circumscribed morphology of meningiomas in
contrast-enhanced MRIs. Glioma cases, while still achieving high Dice (0.81-0.84), exhibited
lower IoUs due to the infiltrative nature of gliomas, which leads to broader or diffuse
activations. Pituitary tumors showed moderate agreement, possibly due to their smaller size
and central location making them harder to localize with high resolution.

4.6 Clinical Rule Activation Results

To evaluate the integration of domain-specific knowledge into the interpretability framework,
a set of clinical decision rules was applied to a representative subset of test cases post-
classification. These rules, grounded in well-established radiological heuristics, served as
symbolic overlays that contextualize the deep learning model’s predictions and strength
interpretability.
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Table 9 summarizes the outputs from the Clinical Decision Rule Overlay (CDRO) module,
including predicted tumor types, whether a rule was triggered, a short rule description, and
whether the prediction conformed to the symbolic logic. As shown, three out of five cases
activated predefined rules based on morphological cues such as tumor size, enhancement
pattern, and anatomical location.

Table 9. Sample outputs from the clinical decision rule overlay module, including rule
activation and consistency with model predictions.

Case ID Tumor Type Model Rule Rule Description Prediction
Prediction Triggered Matches Rule

Case_01 Glioma Glioma Yes >4 cm? ring- Yes
enhancing —
glioblastoma

Case 02 Meningioma Meningioma No — N/A

Case_03 Pituitary Pituitary Yes Midline, <1 cm?* — Yes
pituitary

Case 04 Glioma Glioma Yes >4 cm?  ring- Yes
enhancing —
glioblastoma

Case 05 Meningioma Glioma No — N/A

These results show that whenever a rule was activated, the ensemble classifier's output matched
the expected diagnostic logic. In particular, Case_01 and Case_04 exhibit classic glioblastoma
traits—Ilarge, ring-enhancing lesions—confirmed by both Grad-CAM-++ visual attention maps
and rule-based overlays. Case_03, a pituitary adenoma, is correctly identified via the rule
concerning small, midline-anchored masses. Such alignment between model-driven
predictions, explainability heatmaps, and symbolic clinical rules enhances trust in the Al
system’s diagnostic reliability. Notably, in Case 05, a mismatch was observed where the
model predicted glioma for a case clinically labeled as meningioma—highlighting an
opportunity for model refinement or the addition of more nuanced symbolic logic.

4.7 Human-Centered Interpretability Assessment

To further evaluate the clinical utility and interpretability of the proposed X Al-integrated brain
tumor classification framework, a structured human-centered assessment was conducted
involving three board-certified radiologists (R1, R2, R3). Each expert independently reviewed
a curated subset of five representative test cases. These cases included the original MRI slice,
the Grad-CAM++ saliency map overlaid on the input, and any corresponding clinical rule
activation, offering a composite interpretive output.

Radiologists were asked to respond to two core questions using a S-point Likert scale (1 = No
at all, 5 = Extremely):

Volume 49 Issue 3 (August 2025)
https://powertechjournal.com



= Power System Technology

Y’ I1SSN:1000-3673

Received: 06-06-2025 Revised: 15-07-2025 Accepted: 25-08-2025

1. Usefulness of the Explanation — "How useful was the explanation in helping you
understand the model's prediction?"

2. Heatmap-Region Correspondence — "To what extent did the Grad-CAM++ heatmap
highlight the clinically expected region of concern?"

The average score for explanation usefulness was 4.4, while the average score for spatial
heatmap alignment was 4.0. These results suggest that the interpretability mechanisms built
into the XAI framework were broadly considered meaningful and clinically aligned with
expected tumor locations.

Qualitative comments from radiologists highlighted that the combination of visual saliency
(Grad-CAM++) and symbolic rule overlays provided a dual layer of explanation that
enhanced diagnostic confidence. While R3 mentioned occasional ambiguity in heatmap
localization—particularly in infiltrative glioma cases—most reviewers found the model’s
attention focus to be valid and informative.

Table 10. Likert-scale interpretability scores from participating radiologists.

Radiologist Usefulness of Heatmap Correspondence to
Explanation (1-5) Expected Region (1-5)
R1 5 5
R2 4 4
R3 4 3
R4 5 4
RS 4 4

These findings support the framework’s ability to bridge the gap between deep learning
predictions and clinical reasoning, fostering transparency, trust, and interpretability in Al-
assisted brain tumor diagnosis. Notably, Radiologist R3 commented that while most heatmaps
were well-aligned, a few exhibited diffuse attention in low-grade glioma cases, which affected
their clarity. This feedback underscores the value of integrating XAl with expert-in-the-loop
evaluation in the model refinement process.

5. Discussion

This study contributes to the expanding field of Al-assisted brain tumor diagnosis by proposing
a hybrid framework that combines ensemble learning with explainable Al techniques.
Compared to prior studies focused on individual CNN architectures, our findings confirm that
combining lightweight and deep feature models provides a more balanced and generalizable
approach to medical image classification. In contrast to earlier works that deployed single
CNNs for brain tumor classification, such as traditional VGG-based or ResNet models, our
ensemble strategy capitalized on architectural diversity to enhance decision robustness
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especially when distinguishing morphologically similar tumor types like gliomas and
meningiomas.

The superior performance of the ensemble model can be attributed to the complementary
design principles of its constituent networks. While MobileNetV2 efficiently captures high-
level patterns with minimal computational load, DenseNet121 contributes deeper and more
refined features through dense connections. Prior work by Mousa et al. [49,50] in multimodal
wound classification similarly indicate the advantage of integrating diverse model structures—
especially when dealing with complex or heterogeneous data such as medical images. The
present results suggest that tumor classification, much like wound localization, benefits from
layered perspectives in the model architecture.

Moreover, this research advances the growing demand for model transparency in medical
diagnostics. While previous studies have treated interpretability as a secondary goal, we
embedded explainability directly into the model architecture through Grad-CAM++ and
clinical rule overlays. This allowed us to go beyond predictive accuracy and offer meaningful
visual and symbolic explanations—a critical factor for clinical adoption. Our framework aligns
with recent trends in explainable medical Al, such as Najafi et al.’s [51] exploration of
adversarial vulnerability in MRI classification, which emphasizes not only resilience to attacks
but also the importance of model introspection for trust and verification.

One of the most compelling insights from this study is the value of hybrid explanation systems.
The dual use of Grad-CAM++ heatmaps and domain-informed symbolic logic bridged the gap
between data-driven predictions and human expert reasoning. This dual-layer explanation
proved especially useful in borderline or ambiguous cases where visual saliency alone might
be insufficient. Such interpretive depth reflects a broader movement toward "expert-in-the-
loop" frameworks that not only inform but also collaborate with clinicians—a concept echoed
in both diagnostic imaging and wider Al domains like cybersecurity, energy forecasting, and
intelligent control systems.

Ultimately, our findings reinforce the idea that effective Al in medicine must prioritize not only
accuracy but also clarity, context, and clinical alignment. The combination of ensemble models
with structured interpretability mechanisms offers a scalable pathway for achieving this
balance, and sets a strong foundation for future work integrating multimodal imaging,
segmentation, or real-time clinical deployment.

6. Conclusion

This study presents a comprehensive deep learning-based framework for brain tumor
classification from MRI scans, integrating both high predictive accuracy and clinical
interpretability. By leveraging the complementary strengths of two convolutional neural
network architectures—MobileNetV2 and DenseNet121—and combining them through a soft
voting ensemble strategy, the proposed model achieved enhanced classification performa
across three major tumor types: glioma, meningioma, and pituitary adenoma.
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DenseNet121 outperformed MobileNetV2 individually, the ensemble classifier demonstrated
the highest overall effectiveness, achieving an accuracy of 91.7%, precision of 91.9%, recall
0f 91.7%, and F1-score of 91.6%, thus surpassing both constituent models in every evaluation
metric.

Beyond classification accuracy, the framework incorporated an Explainable Artificial
Intelligence (XAI) module centered on Grad-CAM++ to enhance model transparency. This
integration allowed for class-specific saliency mapping, offering interpretable insights into the
CNN decision process. The Grad-CAM++ heatmaps showed strong spatial alignment with
expert-annotated tumor regions, especially for anatomically distinct tumors such as pituitary
adenomas and meningiomas. Quantitative validation using Dice Coefficient and Intersection-
over-Union (IoU) confirmed the reliability of the visual explanations. Additionally, the
integration of a Clinical Decision Rule Overlay (CDRO) helped align deep learning outputs
with radiological heuristics, enabling symbolic reasoning that bridges the gap between Al
prediction and clinical understanding.

The interpretability and clinical relevance of the system were further validated through a
human-centered assessment involving five board-certified radiologists. Their evaluations
yielded high average Likert-scale scores—4.4/5 for explanation usefulness and 4.0/5 for spatial
heatmap correspondence—highlighting the practical utility of the interpretability features.
Expert feedback emphasized the model’s potential as a decision-support system that enhances
diagnostic confidence, facilitates cross-checking in ambiguous cases, and improves trust in Al-
based recommendations.

In summary, the proposed ensemble-based classification framework—integrated with XAI
visualization and rule-based overlays—demonstrates robust diagnostic performance,
interpretability, and clinical alignment. These features collectively position the system as a
promising solution for real-world deployment in neurodiagnostic workflows. Future work may
explore expanding the framework to multi-modal imaging, integrating more nuanced rule logic
for atypical cases, and extending its capabilities to tumor segmentation and longitudinal
progression analysis.
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