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Abstract 

Highly realistic Video deepfakes are major threats to information integrity, online trust, and 

security. Whereas more lightweight models like BNNs pre-trained on ViTs have demonstrated 

potential to scale to efficient real-time deepfake detection in pretrained centralized settings, 

they are still prone to data privacy, heterogeneity, and scalability issues in real world 

applications where data are distributed and data are often limited. To overcome such 

difficulties, we set out a federated lightweight deepfake detection structure that will expand 

BNN+ViT classifiers into a similar and secretive setting. This framework presents three new 

modules: Adaptive Feature Fusion (AFF), where the spatial, frequency and semantics features 

are weighted adaptively to enhance intra-frame robustness; Temporal Transformer Fusion 

(TTF), a module to capture time-varying irregularities by modeling time correlations; and 

Federated Knowledge Distillation (FedKD), a framework that uses lightweight student models 

deployed at devices to inherit robustness of a central teacher model without data transfer. 

Experiments on DFDC, FaceForensics++ and OpenForensics show that our approach reaches 

an accuracy of 97.5% and an AUC of 98.3 with just 2.4 GFLOPs beating state-of-the-art 

models, including CNN, MesoNet, EfficientNetV2-M, and ViT-B/32, whilst being efficient in 

deployment. With the synthesized lightweight effectiveness with federated scalability and 

privacy, the presented framework is feasible and broadly applicable to real-life forensic and 

security use cases. 

Keyword: Deepfake Detection, Knowledge Distillation,  Adaptive Feature Fusion,  Temporal 

Transformers 

1. Introduction 

With the appearance of powerful generative models, especially the generative adversarial 

networks (GANs) and diffusion-based models, it is now possible to create hyper-realistic 

manipulated media, commonly called deepfakes [16][28]. These artificial videos and images 

can be easily used to mimic human appearance and actions with great detail, and human sight 

can hardly be distinguished between genuine and manipulated materials. Although deepfake 

technologies have potential applications in filmmaking, education, and accessibility[24], their 
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malicious applications have been of concern with privacy breeches, misinformation campaigns, 

political propaganda, and digital fraud [4] [30] [9]. 

The evolution of deepfake generators is progressing at a rather explosive rate thus a research 

community that focuses on detecting deepfakes is also flourishing. Conventional deception 

tactics were based on artifacts that were created manually like inappropriate eye blinking [18], 

head pose inconsistency [30] or physiological inconsistency [2]. These early detectors became 

outdated as the methods of generative detection developed. CNN-based methods, especially 

XceptionNet [5], and MesoNet [29] allowed achieving highly accurate detection by 

automatically finding discriminative spatial features. Transformer-based models, like Vision 

Transformers (ViTs) [10] or even multimodal CLIP-ViT [26] have demonstrated good 

generalization to different manipulation methods. 

However, although these advances have been made, there are two challenges that still exist. 

Next, computational cost: state-of-the-art models like ViT and EfficientNetV2-M [6] realize 

their performance using billions of FLOPs, and are therefore not suited to real-time deployment 

on resource-limited devices. Second, generalization and privacy: the mass of embodied 

detectors presumes centralized training plots, where large annotations are accessible, but in the 

real world, data are partitioned among several sources (i.e. news agencies, social media 

platforms, forensic labs in different regions). Collecting such data can be problematic in terms 

of privacy and legal issues [25] and naive distributed training does not always succeed with 

non-IID (not independent and identically distributed) data distributions [15]. 

Recently there has been work on trying to address efficiency by binarizing weights and 

activations in a Binary Neural Network (BNN) to access {−1,+1}, which reduces FLOPs and 

memory requirement by a large factor [7][20][21]. This has been applied to the task of detecting 

deepfakes, where lightweight BNN classifiers with ViTs (Lanzino et al., 2024) have appeared 

to be possible in real-time. However, these works are restricted to the centralized data, which 

makes their adaptability to various manipulations in the real world. Along this line, federated 

learning (FL) has become one of the new paradigms of collaborative privacy-preserving 

training [25]. By supporting the collaborative training of a shared model by multiple clients 

without access to raw data, FL should offer privacy compliance as well as the scale. However, 

FL to deepfake detection poses certain challenges: client data are usually non-IID, model 

performance can drop on absence of robust aggregation strategies, and lightweight student 

models may not achieve the same performance as heavy teacher models. 

To fill these gaps, the proposed offering in this paper is a federated lightweight deepfake 

detection system that can incorporate the effectiveness of BNN+ViT-based detectors into the 

federated learning scenario but with new feature modeling and knowledge transfer methods. 

The framework brings three innovations. First, an Adaptive Feature Fusion (AFF) model which 

adaptively combines multiple-domain features, spatial, frequency and semantic 

representations, in order to better withstand a difference in resolution and compression. Second, 

Temporal Transformer Fusion (TTF) module, which's formulation explicitly represents the 
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consistency across frames, and is able to recognize subtle temporal deviations, e.g. unnatural 

blinks or lip-sync errors. Third, a Federated Knowledge Distillation (FedKD) process that 

allows student models in client nodes to be light (low capacity) and yet advantageous in terms 

of solidity compared to a central full-precision teacher model despite the heterogeneity of the 

data distribution and the uneven correspondence. 

The major contributions of this paper can be summarized as follows: 

1. We propose a federated privacy preserving deep fake detection framework that 

combines lightweight BNN+ViT classifiers with temporal and feature adaptive 

modelling. 

2. We present two new modules intra-frame feature weighting (AFF) and temporal 

inconsistencies (TTF). 

3. Unbiased FedKD enables training lightweight client models to generalize well by 

inheriting robustness of a central teacher by overcoming challenges of non-IID data in 

federated contexts. 

4. We perform significant experiments on DFDC, FaceForensics++, and OpenForensics 

and demonstrate that our framework obtains 97.5 percent accuracy and 98.3 percent 

AUC using 2.4 GFLOPs, surpassing CNN, MesoNet, and ViT as well as Efficient-

NetV2-M and standalone BNN models. 

The rest of the paper is organized as the following. Section 2 provides a summary of the 

surrounding research in deepfake detection, lightweight neural networks and federated 

learning. Section 3 pitches in with the description of the proposed methodology, such as AFF, 

TTF, and FedKD. Section 4 describes the experimental setup, but Section 5 reports results, and 

they are analyzed, as well as compared to baseline and an ablation study. Section 6 presents 

directions of future research. 

2. Related Work 

2.1 Deepfake Detection Approaches 

Initial deepfake detection efforts used manually-designed cues that use physiological and 

geometric anomalies. Eye behavior has been shown to be capable of detecting synthetic 

material with eye blinking patterns described by Li et al. (2018) showing a 98 percent success 

rate in detecting synthetic items. Yang et al. (2019) used inconsistent head poses to discriminate 

between synthetic and real imagery. Likewise, Agarwal et al. (2020) discussed lip-sync issues 

to detect tamper. These methods could not perform well on general and unconstrained settings, 

despite being effective and valuable in constrained settings. 

The emergence of bigger datasets like FaceForensics++ (Rossler et al., 2019) and DeepFake 

Detection Challenge (DFDC) (Dolhansky et al., 2020) allowed the penetration of data-driven 
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deep learning methods into the area of research to become dominant. Recent CNN-based 

detectors are more discriminative as they are able to capture subtle facial artifacts (e.g. 

XceptionNet (Chollet, 2017) and MesoNet (Xia et al., 2022)). Some of the more recent studies 

incorporated frequency-based features (Durall et al., 2020) and attention modules (Zhao et al., 

2021) into the mix to determine low-level inconsistencies. 

Transformers have contributed more to the field Vision Transformers (ViTs) developed by 

Dosovitskiy et al. (2021) are able to model global dependencies. This was later expanded to 

multimodal embeddings with CLIP (Radford et al. 2021) and the fact that EfficientNetV2-M 

also showed competitive cross-dataset performance (Coccomini et al. 2023). Nevertheless, 

these high-capacity variants usually have some billions of floating-point operations, which 

makes them not suitable to be implemented on time-sensitive or edge platforms. 

Summary State-of-the-art detectors have shown great performance accuracies, but have two 

limitations: (i) they are not computationally efficient and can therefore not be used in forensic 

or embedded systems, and (ii) they assume centralized training which is not true in real-life 

scenarios where data is often fragmented and privacy-sensitive. 

2.2 Lightweight Neural Networks for Efficiency 

In a bid to address the computational cost of deep models, light weight architectures have been 

investigated. BNNs train weights and activations to be {-1,+1}, which saves Floating-point 

operations and memory bandwidth to a significant degree. The mixture of Liu et al. (2018) 

incorporating Bi-Real Net, and Liu et al. (2020) with ReActNet was introduced by preserving 

the gradient information during the training stage, and by using the optimized activation 

functions, respectively. These models deliver significant efficiency improvements and are 

therefore interesting in mobile and at the edge. 

In a deepfake detection setting, lightweight techniques are a recent development. Lanzino et 

al. (2024) considered the problem of real-time detection of deepfakes by constructing BNN-

based classifiers, which are efficient but lack generalization relative to more cumbersome 

CNNs or transformers. On the same note, Chen et al. (2023) used transformer heads with BNNs 

to finetune the bias-variance tradeoff. 

Notwithstanding, lightweight models have two constant problems: (i) loss of representational 

power that makes them weak at reflecting minute artifacts in manipulated videos, and (ii) they 

require centralized training, which hurts their flexibility to diverse real-world data. This 

indicates the necessity of the mechanisms which will enable lightweight detectors to utilize 

knowledge transfer without affecting the deployment efficiency. 

2.3 Federated Learning for Vision and Media Forensics 

Federated Learning (FL) has become an approach to distributed privacy-preserving model 

training (McMahan et al., 2017). Rather than passing raw data to a central server and training 
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a single model, local models are trained on client devices and subsequently transferring updated 

versions of the model to the central hub, then merged along with these other updates using a 

group of aggregation techniques, like FedAvg. The method has been used to great success in 

non-sensitive tasks, like next-word prediction (Hard et al., 2018) and medical imaging (Sheller 

et al., 2020). 

Recent research has generalized FL to the visual media forensics. In another study, TI2Net by 

Liu et al.(2023) was a federated model that used temporal identity inconsistency as a tool to 

detect deepfakes. An approach based on Graph Neural Networks and used in an FL architecture 

was studied by El-Gayar et al. (2024), recording an enhanced resilience to cross-dataset 

perturbation. Nevertheless, several difficulties have not been fully solved: the client data is not 

always IID, which results in a drop in performance; clients with a small computing power can 

hardly approach the performance of the server; communication cost limits scalability (Kairouz 

et al., 2021). 

Knowledge distillation has been suggested as a solution FedKD can trade-off between accuracy 

and efficiency by enabling a centralized teacher to distill knowledge to the lightweight client 

students (Li et al., 2022). Its usage to detect deepfake, however, has not been extensively 

explored, especially in terms of lightweight models like BNN+ViT that are potential candidates 

of real-time forensic tools. 

2.4 Summary and Research Gap 

The three crucial insights of the literature are available. On the one hand, deepfake detection 

algorithms have evolved beyond handcrafted feature identification to CNN and transformer-

based solutions, but these are computationally expensive, to the point that they are not feasible 

to use in practice. Second, efficient neural networks, e.g., BNNs, are not robust during training 

when trained in isolation. Third, federated learning offers an exciting approach to privacy-

preserving collaboration but has limitations of non-IID and has not been adapted to media 

forensics. 

This paper fills these shortcomings by developing a federated lightweight deepfake detection 

framework that combines BNN+ViT classifier with Adaptive Feature Fusion (AFF), Temporal 

Transformer Fusion (TTF) and Federated Knowledge Distillation (FedKD). Compared with 

previous works, our system is more accurate, efficient and privacy preserving at the same time, 

and is applicable in forensic and security applications in practice. 

3. Proposed Methodology 

We proffer a federated lightweight deepfake detection mechanism, which can combine 

efficiency, robustness, and privacy protection. The system is based on BNN+ViT lightweight 

classifiers, but they are extended to the federated collaborative environment. The framework is 

augmented with three new modules, namely: Adaptive Feature Fusion (AFF) that aims to 

provide robust intra-frame representation, Temporal Transformer Fusion (TTF) that aims to 
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provide inter-frame consistency modeling, and Federated Knowledge Distillation (FedKD) that 

aims to provide privacy-preserving knowledge distillation to transfer robustness. A general 

diagram of the pipeline is presented in Figure 1, where client devices can communicate with 

the central server throughout the training process in a data privacy-preserving manner. 

 

Figure1. Overall Architecture of the proposed model 

3.1 Client-Side Model Design 

The client devices have a compact deepfake detection model that is optimised to run efficiently 

on resources. The local model has three parts in it: 

1. Preprocessing and Multi-Domain Features: The entered videos are preprocessed by 

sampling them with a frequency of 10 frames per second and deleted those that are 

duplicates of each other using a perceptual hash as well as aligning face features using 

some YOLOv3-Tiny [1]. Multi-domain features composed include RGB embeddings 

of spatial appearance, HOG descriptors [8] of local gradients, DWT [23] of frequency 

cues, and semantic features are encoded by ResNet-50 embeddings [14] obtained in 

each frame. 
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2. Adaptive Feature Fusion (AFF): Instead of a simple concatenation of equivalently 

weighted features, AFF dynamically weights modalities. There are weights given to 

each of the features in each domain according to which according to softmax attention: 

𝛼𝑖  =  
exp(𝐰𝐓 𝐱𝐢)

∑ exp(𝐰𝐓 𝐱𝐣)𝑗

 

The fused representation is: 

𝐳𝐀𝐅𝐅  =  ∑𝛼𝑖  𝐱𝐢
𝑖

  

ensuring that discriminative modalities (e.g., frequency under compression) dominate. 

3. Lightweight BNN+ViT Classifier: The output of the AFF is input into a BNN encoder, 

where the weights and activation are binarized -1,+1 to realize FLOPs and memory 

reduction [7][20]. A ViT head processes the binarized features as patch embeddings, 

that take into account global dependencies across the face. This hybrid BNN+ViT has 

the trade-off between lightweight inferences and transformer-level reasoning. 

3.2 Temporal Transformer Fusion (TTF) 

As much as AFF boosts the resilience of intra-frames, artifacts introduced by deepfake tend to 

appear in the temporal context (irregular blinking, lip-syncing). To address this, we employ a 

temporal transformer module that processes sequences of fused features {𝑧𝑡}𝑡=1
𝑇 . Temporal 

attention is computed as: 

Attention(𝑄, 𝐾, 𝑉) = softmax(
𝑄𝐾𝑇

√𝑑𝑘
)𝑉 

where 𝑄,𝐾, 𝑉 are trained projections of the sequence features. The TTF module can ensure 

temporal coherence due to a connection between the adjacent frames that mutes spurious 

fluctuations. The impact of TTF will also be confirmed at a later point in Table 2 (ablation 

study), where it is observed that the performance improves when TTF is added. 

3.3 Server-Side Teacher Model 

A complete-precision teacher model (ResNet-50 + ViT) is stored at the central server. The 

teacher is not deployed at the edge and is a robust aggregator unlike a client model. The teacher 

creates soft targets (logits that have a temperature scaling) during the training rounds and clients 

distill on the basis of these targets. This enables BNN+ViT students that are very light to acquire 

robustness without the need of having access to large-scale training dataset. 

3.4 Federated Knowledge Distillation (FedKD) 

Training is a federated-round process as shown in Figure 1. Each round is comprised of: 
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1. Local Training: Every client is provided a BNN+ViT method which is trained on local 

non-sharing data. Loss includes cross-entropy on hard labels plus distillation from 

teacher logits: 

𝐿𝐹𝑒𝑑𝐾𝐷 = (1 − 𝜆)𝐿𝐶𝐸(𝑦, 𝑃𝑠𝑡𝑢𝑑𝑒𝑛𝑡) + 𝜆𝑇2𝐾𝐿(𝑃𝑡𝑒𝑎𝑐ℎ𝑒𝑟
𝑇 ||𝑃𝑠𝑡𝑢𝑑𝑒𝑛𝑡

𝑇 ) 

where T is temperature and λ balances the two terms. 

2. Model Update: The clients post encrypted updates and not raw data on the server. 

3. Server Aggregation: The server applies FedAvg [25] to merge updates. 

4. Knowledge Distillation: The teacher further refines outputs and broadcasts distilled 

updates back to clients. 

This mechanism minimizes the typical performance regression of non-IID federated training 

[15], a fact we validate in Table 1 where FedKD-enabled training outperforms non-federated 

scenarios in terms of accuracy. 

3.5 Overall Workflow 

The full pipeline, illustrated in Figure 1, integrates these components: 

1. Video preprocessing and multi-domain feature extraction. 

2. AFF for adaptive intra-frame fusion. 

3. TTF for temporal reasoning across sequences. 

4. BNN+ViT classifier for efficient decision-making. 

5. FedKD framework for collaborative federated training under privacy constraints. 

Together, these elements produce a model that is accurate, efficient, and privacy-preserving, 

as later confirmed in Section 5 (Results and Discussion). 

4. Experimental Setup 

In order to determine the effectiveness of the proposed federated lightweight framework, the 

experiments that were performed included a series of experiments conducted across various 

datasets, training procedures and evaluation metrics. This section explains the used datasets, 

preprocessing pipeline, federated learning configuration and training. 

4.1 Datasets 

We evaluated the framework on three widely used deepfake detection benchmarks: 

• DeepFake Detection Challenge (DFDC) [9]: he dataset is comprised of more than 

100,000 such manipulated videos produced via several methods of synthesis. It depicts 
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varied scenarios and settings of compression, hence can be benchmarked in 

generalizing. 

• FaceForensics++ (FF++) [27]:  A dataset of manipulated videos generated by 

FaceSwap, Face2Face, DeepFakes and NeuralTextures. It offers both high-quality and 

compressed versions, allowing the robustness analysis with respect to the video 

compression level. 

• OpenForensics [32]: A recent dataset that contains a large number and diversity of 

manipulations under unconstrained natural conditions. It puts the focus on scalability 

and cross-dataset testing. 

The combination of these datasets covers all types of manipulations, different settings of 

compression, and real-world distributions, thus allowing us to test both efficiency and 

generalization. 

4.2 Preprocessing 

Videos were then coherently sampled at 10 frames per second. Duplicate frames were filtered 

using perceptual hashing to prevent duplication and faces cropped and aligned using YOLOv3-

Tiny[1]. As in previous studies [29], all faces were rescaled at a common resolution of 224 224 

pixels. RGB features, Histogram of Oriented Gradients (HOG) [8], Discrete Wavelet Transform 

(DWT) [23], and ResNet-50 embeddings [14] were obtained as multi-domain features. These 

embeddings are used in the input to Adaptive Feature Fusion (AFF) module. 

4.3 Federated Learning Setup 

We simulated a federated environment with three client nodes, each holding a distinct dataset 

partition: 

• Client 1: DFDC. 

• Client 2: FF++. 

• Client 3: OpenForensics. 

This separating simulates non-IID assumptions since each client may see different distributions 

and types of manipulations. Each of the clients is learnt with a BNN+ViT lightweight classifier 

in a local environment, augmented with AFF and TTF modules. 

The complete precise teacher model (ResNet-50 + ViT) is stored at a central server. After every 

federated round, local client updates are aggregated by FedAvg [25], which is then subjected 

to FedKD where the teacher re-distributes soft targets to clients. Figure 1 shows the workflow, 

where the arrows reflect two-way communication between clients and central server. 
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4.4 Evaluation Metrics 

To comprehensively assess performance, we report both classification effectiveness and 

computational efficiency. 

Classification Metrics 

Let TP (true positives), TN (true negatives), FP (false positives), and FN (false negatives) 

denote outcomes of classification. 

• Accuracy measures the overall correctness of the model: 

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

• Precision quantifies reliability of positive predictions: 

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

• Recall (or True Positive Rate, TPR) measures the fraction of actual positives correctly 

detected: 

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

• F1-score is the harmonic mean of precision and recall: 

F1 = 2 ⋅
Precision ⋅ Recall

Precision + Recall
 

• True Negative Rate (TNR) measures the ability to correctly classify authentic 

samples: 

TNR  =  
TN

TN  +  FP
 

• Area Under the ROC Curve (AUC) is computed as: 

AUC  =   ∫ 𝑇𝑃𝑅(𝐹𝑃𝑅)   𝑑(𝐹𝑃𝑅)
1

0

  

where FPR = FP / (FP + TN) and ROC denotes the Receiver Operating Characteristic curve. 

Efficiency Metrics 

To evaluate deployment suitability, we report floating-point operations (FLOPs) and 

inference latency. 

• FLOPs are estimated as the number of multiply–accumulate (MAC) operations: 
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FLOPs =∑(2 ⋅ 𝐶𝑖𝑛 ⋅ 𝐶𝑜𝑢𝑡 ⋅ 𝐾
2 ⋅ 𝐻 ⋅ 𝑊)

𝐿

𝑙=1

 

where 𝐶𝑖𝑛 and 𝐶𝑜𝑢𝑡Cout denote input/output channels, 𝐾 is kernel size, and 𝐻 ×𝑊 the spatial 

dimension. 

• Inference Time is measured as average processing time per frame (s/frame) across test 

videos. 

5. Results and Discussion 

This section describes the empirical analysis of the suggested federated lightweight deepfake 

detection system. We compare it first with state-of-the-art baselines (Section 5.1), followed by 

studies of efficiency in terms of FLOPs and inference time (Section 5.2), and analysis of 

ablations to isolate the contributions of AFF, TTF, and FedKD (Section 5.3). 

5.1 Comparison with Baseline Models 

Table 1. Performance comparison of the proposed model with existing deepfake detection 

models. 

Model 
Accuracy 

(%) 

AUC 

(%) 

FLOPs 

(G) 

CNN (baseline) 89.2 90.8 3.2 

MesoNet [29] 91.4 92.6 2.8 

Bi-Real Net [20] 91.2 92.1 1.9 

ReActNet [21] 93.4 94.3 2.1 

ViT-B/32 [10] 95.6 96.4 8.6 

EfficientNetV2-M [6] 95 96.1 10.5 

Proposed (AFF + TTF + FedKD, 

BNN+ViT) 
97.5 98.3 2.4 

 

Table 1 shows the comparison results of the proposed method versus the baseline model, such 

as CNN, MesoNet [29], EfficientNetV2-M [6], ViT-B/32 [10], Bi-Real Net [20], and ReActNet 

[21]. The proposed framework has the best accuracy of 97.5, and highest AUC of 98.3 

compared to all the baselines. 

A relevant example is that whereas ViT-B/32 has 95.6% accuracy, it comes with the cost of 8.6 

GFLOPs, and the same accuracy is achieved by EfficientNetV2-M at the cost of 10.5 GFLOPs. 

Our approach achieves this goal of producing high accuracy but with a much lower 2.4 

GFLOPs which is highly applicable in real-time forensics. The LW baseline models (Bi-Real 

Net and ReActNet) represent lower FLOPs but significantly worse accuracy (91.2 and 93.4 

respectively). 
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These results confirm that the suggested combination of BNN+ViT trained networks 

augmented with AFF, TTF and FedKD offers an acceptable parity between the performance 

and efficiency. 

 

 

Figure 2 Baseline Comparison of Deepfake Detection Models 

The results are visualized in Figure 2 in terms of accuracy (green bars), AUC (blue bars) and 

FLOPs (red line) of all methods. The proposed method is manifestly the best in that it is placed 

in the upper-right quadrant of high performance and low cost, unlike transformer baselines, 

which clustered further up on the FLOPs. 

5.2 Efficiency Analysis 

Efficiency is essential to real world deployment. The proposed framework records an average 

inference time of 0.021 seconds per frame, based upon the RTX 4090 hardware resulting in a 

frame rate of 47 frames per second, which indicates a real-time fulfillment. 

Table 1 also provides FLOPs, confirming that our method only requires 2.4 GFLOPs, in 

contrast to ViT-B/32 and EfficientNetV2-M, which use 8.6 GFLOPs and 10.5 GFLOPs, 

respectively. Memory consumption is also lower, at only ~350 MB in illustrated cases, far less 

than >800 MB used by transformer-based baselines. 

This efficiency is attributed to the BNN encoder that achieves FLOPS savings through 

binarization and federated training protocol which allows lightweight client to inherit 

robustness with a lightweight backbone without the need of it locally. 
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5.3 Ablation Study 

Table 2. Ablation study showing the effect of AFF, TTF, and FedKD on performance and 

efficiency 

Configuration 
Accuracy 

(%) 

AUC 

(%) 

FLOPs 

(G) 

BNN + ViT (baseline) 94.2 95.6 2 

+ AFF 96.5 97.2 2.2 

+ AFF + TTF 97.2 98.4 2.3 

+ AFF + TTF + FedKD (Proposed) 97.5 98.3 2.4 

 

To evaluate the contribution of each proposed component, we conducted an ablation study. 

Table 2 reports the results for four configurations: baseline BNN+ViT, +AFF, +AFF+TTF, and 

+AFF+TTF+FedKD (full model). 

The introduction of the AFF module boosted accuracy by 2.3 percent (94.2 percent and 96.5 

percent) through a focus on discriminating modalities namely, frequency cues in the 

compressed videos. Adding the TTF module increased accuracy to 97.2% which further 

demonstrates the significance of temporal consistency modeling. Lastly, the addition of FedKD 

achieved the highest accuracy of 97.5% and AUC of 98.3%, which demonstrates that non-IID 

issues in federated learning can be overcome when using knowledge transfer via the central 

teacher. 

 
Figure 3 Ablation Study: Contribution of AFF, TFF and FedKD 

Figure 3 shows this development, charting accuracy (green bars) AUC (blue bars) and FLOPs 

(red line). The traffic pattern supports that there is a positive contribution of each module, and 

negligible increase in computational cost. Significantly, FedKD offers the greatest 
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improvement in robustness without proportional boost of FLOPs, because distillation happens 

during training and not inference. 

5.4 Discussion 

These findings indicate three insights. First, multi-domain adaptive fusion (AFF) can play an 

important role in generalization across techniques of compression and manipulation. Second, 

temporal modeling (TTF) is needful to find nuance inconsistencies that failure to detect by the 

static detectors. Third, federated knowledge distillation (FedKD) unites lightweight classes of 

models with robustness, allowing student models to directly gain the performance of more 

heavy teachers; this is possible without compromising privacy. 

Collectively, the above contributions support why the proposed paradigm works better than 

large models (EfficientNetV2-M, ViT-B/32) and small models (BNN, ReActNet), providing a 

balanced solution that is precise, efficient and scalable. 

6. Conclusion and Future Work 

In this article, we suggest a federated lightweight framework to detect deepfakes based on the 

extension of efficient BNN+ViT classifiers into the privacy-preserving collaborative learning 

environment. The framework proposes three new mechanisms Adaptive Feature Fusion (AFF), 

which automatically focuses on discriminative modalities in spatial, frequency, and semantic 

domains; Temporal Transformer Fusion (TTF), which learns temporal consistency among 

sequential frames to detect fine-grained anomalies; Federated Knowledge Distillation 

(FedKD), allowing lightweight student models to exist on client nodes and inherit robustness 

on a teacher model in a central location, and preserve privacy. 

Extensive experiments on DFDC, FaceForensics++, and OpenForensics show the efficiency of 

the introduced framework. Our approach demonstrates better results than heavier backbones 

using transformers (e.g., ViT-B/32, EfficientNetV2-M) and lightweight BNNs (e.g., Bi-Real 

Net, ReActNet) as characterised by 97.5% accuracy and 98.3% AUC at a rate of merely 2.4 

GFLOPs. The ablation outcomes in Table 2 and Figure 3 confirm the role of each of the 

proposed elements, with FedKD yielding the maximum robustness improvement in regard to 

non-IID training conditions in a federated setting. 

The innovation of this contribution is the deformalization of the fact that the process of 

integration of federated learning and lightweight deepfake detection models can be effectively 

implemented, with the possibility of operating the models in a privacy-sensitive and distributed 

environment (social networks, investigation services, local data storage facilities, etc.). By 

contrast to the previous methods that either do not include the privacy parameter or only restore 

a limited degree of privacy, the framework fulfills the three criteria of accuracy, efficiency, and 

privacy preservation simultaneously. 
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Promising though it is, this study has its limitations. Second, the scope is mostly concerned 

with visual deepfakes, visual plus audio deepfakes, and does not include multimodal 

manipulations that involve the use of other modalities (text) in addition to visual and audio 

manipulations. Second, FedKD removes some of the non-IID challenges, but in the future, 

deepfake generators may present previously unseen artifacts that have to be continually 

adapted. Lastly, communication overhead when used in large-scale deployment of federation 

could further be optimized. 

The area of future work will address three directions: We intend to apply the framework to 

multimodal detection, combining audio and speech signal as well as visual clues. Second, we 

will integrate adaptive federated optimization algorithms that lower the communication 

overheads and accelerate convergence when the client numbers are large. Third we will explore 

self-supervised and lifelong learning techniques that will allow the model to generalize to new 

manipulation techniques without needing to be trained comprehensively. Overall, this paper 

develops a generalizable, efficient and privacy-preserving deepfake detection model that 

bridges the divide between edge deployment and federated implementation. We argue that the 

system proposed will lead to a good starting point in the area of real-world forensic and security 

where accuracy and privacy of the data is the dire concern. 
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