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Abstract

Highly realistic Video deepfakes are major threats to information integrity, online trust, and
security. Whereas more lightweight models like BNNs pre-trained on ViTs have demonstrated
potential to scale to efficient real-time deepfake detection in pretrained centralized settings,
they are still prone to data privacy, heterogeneity, and scalability issues in real world
applications where data are distributed and data are often limited. To overcome such
difficulties, we set out a federated lightweight deepfake detection structure that will expand
BNN+VIT classifiers into a similar and secretive setting. This framework presents three new
modules: Adaptive Feature Fusion (AFF), where the spatial, frequency and semantics features
are weighted adaptively to enhance intra-frame robustness; Temporal Transformer Fusion
(TTF), a module to capture time-varying irregularities by modeling time correlations; and
Federated Knowledge Distillation (FedKD), a framework that uses lightweight student models
deployed at devices to inherit robustness of a central teacher model without data transfer.
Experiments on DFDC, FaceForensics++ and OpenForensics show that our approach reaches
an accuracy of 97.5% and an AUC of 98.3 with just 2.4 GFLOPs beating state-of-the-art
models, including CNN, MesoNet, EfficientNetV2-M, and ViT-B/32, whilst being efficient in
deployment. With the synthesized lightweight effectiveness with federated scalability and
privacy, the presented framework is feasible and broadly applicable to real-life forensic and
security use cases.

Keyword: Deepfake Detection, Knowledge Distillation, Adaptive Feature Fusion, Temporal
Transformers

1. Introduction

With the appearance of powerful generative models, especially the generative adversarial
networks (GANs) and diffusion-based models, it is now possible to create hyper-realistic
manipulated media, commonly called deepfakes [16][28]. These artificial videos and images
can be easily used to mimic human appearance and actions with great detail, and human sight
can hardly be distinguished between genuine and manipulated materials. Although deepfake
technologies have potential applications in filmmaking, education, and accessibility[24], thei
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malicious applications have been of concern with privacy breeches, misinformation campaigns,
political propaganda, and digital fraud [4] [30] [9].

The evolution of deepfake generators is progressing at a rather explosive rate thus a research
community that focuses on detecting deepfakes is also flourishing. Conventional deception
tactics were based on artifacts that were created manually like inappropriate eye blinking [18],
head pose inconsistency [30] or physiological inconsistency [2]. These early detectors became
outdated as the methods of generative detection developed. CNN-based methods, especially
XceptionNet [5], and MesoNet [29] allowed achieving highly accurate detection by
automatically finding discriminative spatial features. Transformer-based models, like Vision
Transformers (ViTs) [10] or even multimodal CLIP-ViT [26] have demonstrated good
generalization to different manipulation methods.

However, although these advances have been made, there are two challenges that still exist.
Next, computational cost: state-of-the-art models like ViT and EfficientNetV2-M [6] realize
their performance using billions of FLOPs, and are therefore not suited to real-time deployment
on resource-limited devices. Second, generalization and privacy: the mass of embodied
detectors presumes centralized training plots, where large annotations are accessible, but in the
real world, data are partitioned among several sources (i.e. news agencies, social media
platforms, forensic labs in different regions). Collecting such data can be problematic in terms
of privacy and legal issues [25] and naive distributed training does not always succeed with
non-IID (not independent and identically distributed) data distributions [15].

Recently there has been work on trying to address efficiency by binarizing weights and
activations in a Binary Neural Network (BNN) to access {—1, +1}, which reduces FLOPs and
memory requirement by a large factor [7][20][21]. This has been applied to the task of detecting
deepfakes, where lightweight BNN classifiers with ViTs (Lanzino et al., 2024) have appeared
to be possible in real-time. However, these works are restricted to the centralized data, which
makes their adaptability to various manipulations in the real world. Along this line, federated
learning (FL) has become one of the new paradigms of collaborative privacy-preserving
training [25]. By supporting the collaborative training of a shared model by multiple clients
without access to raw data, FL should offer privacy compliance as well as the scale. However,
FL to deepfake detection poses certain challenges: client data are usually non-IID, model
performance can drop on absence of robust aggregation strategies, and lightweight student
models may not achieve the same performance as heavy teacher models.

To fill these gaps, the proposed offering in this paper is a federated lightweight deepfake
detection system that can incorporate the effectiveness of BNN+ViT-based detectors into the
federated learning scenario but with new feature modeling and knowledge transfer methods.
The framework brings three innovations. First, an Adaptive Feature Fusion (AFF) model which
adaptively combines multiple-domain features, spatial, frequency and semantic
representations, in order to better withstand a difference in resolution and compression. Second
Temporal Transformer Fusion (TTF) module, which's formulation explicitly represents
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consistency across frames, and is able to recognize subtle temporal deviations, e.g. unnatural
blinks or lip-sync errors. Third, a Federated Knowledge Distillation (FedKD) process that
allows student models in client nodes to be light (low capacity) and yet advantageous in terms
of solidity compared to a central full-precision teacher model despite the heterogeneity of the
data distribution and the uneven correspondence.

The major contributions of this paper can be summarized as follows:

1. We propose a federated privacy preserving deep fake detection framework that
combines lightweight BNN+ViT classifiers with temporal and feature adaptive
modelling.

2. We present two new modules intra-frame feature weighting (AFF) and temporal
inconsistencies (TTF).

3. Unbiased FedKD enables training lightweight client models to generalize well by
inheriting robustness of a central teacher by overcoming challenges of non-IID data in
federated contexts.

4. We perform significant experiments on DFDC, FaceForensics++, and OpenForensics
and demonstrate that our framework obtains 97.5 percent accuracy and 98.3 percent
AUC using 2.4 GFLOPs, surpassing CNN, MesoNet, and ViT as well as Efficient-
NetV2-M and standalone BNN models.

The rest of the paper is organized as the following. Section 2 provides a summary of the
surrounding research in deepfake detection, lightweight neural networks and federated
learning. Section 3 pitches in with the description of the proposed methodology, such as AFF,
TTF, and FedKD. Section 4 describes the experimental setup, but Section 5 reports results, and
they are analyzed, as well as compared to baseline and an ablation study. Section 6 presents
directions of future research.

2. Related Work
2.1 Deepfake Detection Approaches

Initial deepfake detection efforts used manually-designed cues that use physiological and
geometric anomalies. Eye behavior has been shown to be capable of detecting synthetic
material with eye blinking patterns described by Li et al. (2018) showing a 98 percent success
rate in detecting synthetic items. Yang et al. (2019) used inconsistent head poses to discriminate
between synthetic and real imagery. Likewise, Agarwal et al. (2020) discussed lip-sync issues
to detect tamper. These methods could not perform well on general and unconstrained settings,
despite being effective and valuable in constrained settings.

The emergence of bigger datasets like FaceForensics++ (Rossler et al., 2019) and DeepFake
Detection Challenge (DFDC) (Dolhansky et al., 2020) allowed the penetration of data-drive
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deep learning methods into the area of research to become dominant. Recent CNN-based
detectors are more discriminative as they are able to capture subtle facial artifacts (e.g.
XceptionNet (Chollet, 2017) and MesoNet (Xia et al., 2022)). Some of the more recent studies
incorporated frequency-based features (Durall et al., 2020) and attention modules (Zhao et al.,
2021) into the mix to determine low-level inconsistencies.

Transformers have contributed more to the field Vision Transformers (ViTs) developed by
Dosovitskiy et al. (2021) are able to model global dependencies. This was later expanded to
multimodal embeddings with CLIP (Radford et al. 2021) and the fact that EfficientNetV2-M
also showed competitive cross-dataset performance (Coccomini et al. 2023). Nevertheless,
these high-capacity variants usually have some billions of floating-point operations, which
makes them not suitable to be implemented on time-sensitive or edge platforms.

Summary State-of-the-art detectors have shown great performance accuracies, but have two
limitations: (i) they are not computationally efficient and can therefore not be used in forensic
or embedded systems, and (ii) they assume centralized training which is not true in real-life
scenarios where data is often fragmented and privacy-sensitive.

2.2 Lightweight Neural Networks for Efficiency

In a bid to address the computational cost of deep models, light weight architectures have been
investigated. BNNs train weights and activations to be {-1,+1}, which saves Floating-point
operations and memory bandwidth to a significant degree. The mixture of Liu et al. (2018)
incorporating Bi-Real Net, and Liu et al. (2020) with ReActNet was introduced by preserving
the gradient information during the training stage, and by using the optimized activation
functions, respectively. These models deliver significant efficiency improvements and are
therefore interesting in mobile and at the edge.

In a deepfake detection setting, lightweight techniques are a recent development. Lanzino et
al. (2024) considered the problem of real-time detection of deepfakes by constructing BNN-
based classifiers, which are efficient but lack generalization relative to more cumbersome
CNNs or transformers. On the same note, Chen et al. (2023) used transformer heads with BNNs
to finetune the bias-variance tradeoff.

Notwithstanding, lightweight models have two constant problems: (i) loss of representational
power that makes them weak at reflecting minute artifacts in manipulated videos, and (ii) they
require centralized training, which hurts their flexibility to diverse real-world data. This
indicates the necessity of the mechanisms which will enable lightweight detectors to utilize
knowledge transfer without affecting the deployment efficiency.

2.3 Federated Learning for Vision and Media Forensics

Federated Learning (FL) has become an approach to distributed privacy-preserving model
training (McMahan et al., 2017). Rather than passing raw data to a central server and trainin
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a single model, local models are trained on client devices and subsequently transferring updated
versions of the model to the central hub, then merged along with these other updates using a
group of aggregation techniques, like FedAvg. The method has been used to great success in
non-sensitive tasks, like next-word prediction (Hard et al., 2018) and medical imaging (Sheller
et al., 2020).

Recent research has generalized FL to the visual media forensics. In another study, TI2Net by
Liu et al.(2023) was a federated model that used temporal identity inconsistency as a tool to
detect deepfakes. An approach based on Graph Neural Networks and used in an FL architecture
was studied by El-Gayar et al. (2024), recording an enhanced resilience to cross-dataset
perturbation. Nevertheless, several difficulties have not been fully solved: the client data is not
always IID, which results in a drop in performance; clients with a small computing power can
hardly approach the performance of the server; communication cost limits scalability (Kairouz
etal., 2021).

Knowledge distillation has been suggested as a solution FedKD can trade-off between accuracy
and efficiency by enabling a centralized teacher to distill knowledge to the lightweight client
students (Li et al., 2022). Its usage to detect deepfake, however, has not been extensively
explored, especially in terms of lightweight models like BNN+ViT that are potential candidates
of real-time forensic tools.

2.4 Summary and Research Gap

The three crucial insights of the literature are available. On the one hand, deepfake detection
algorithms have evolved beyond handcrafted feature identification to CNN and transformer-
based solutions, but these are computationally expensive, to the point that they are not feasible
to use in practice. Second, efficient neural networks, e.g., BNNs, are not robust during training
when trained in isolation. Third, federated learning offers an exciting approach to privacy-
preserving collaboration but has limitations of non-IID and has not been adapted to media
forensics.

This paper fills these shortcomings by developing a federated lightweight deepfake detection
framework that combines BNN+ViT classifier with Adaptive Feature Fusion (AFF), Temporal
Transformer Fusion (TTF) and Federated Knowledge Distillation (FedKD). Compared with
previous works, our system is more accurate, efficient and privacy preserving at the same time,
and is applicable in forensic and security applications in practice.

3. Proposed Methodology

We proffer a federated lightweight deepfake detection mechanism, which can combine
efficiency, robustness, and privacy protection. The system is based on BNN+ViT lightweight
classifiers, but they are extended to the federated collaborative environment. The framework is
augmented with three new modules, namely: Adaptive Feature Fusion (AFF) that aims to
provide robust intra-frame representation, Temporal Transformer Fusion (TTF) that aims
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provide inter-frame consistency modeling, and Federated Knowledge Distillation (FedKD) that
aims to provide privacy-preserving knowledge distillation to transfer robustness. A general
diagram of the pipeline is presented in Figure 1, where client devices can communicate with
the central server throughout the training process in a data privacy-preserving manner.
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Figurel. Overall Architecture of the proposed model
3.1 Client-Side Model Design

The client devices have a compact deepfake detection model that is optimised to run efficiently
on resources. The local model has three parts in it:

1. Preprocessing and Multi-Domain Features: The entered videos are preprocessed by
sampling them with a frequency of 10 frames per second and deleted those that are
duplicates of each other using a perceptual hash as well as aligning face features using
some YOLOvV3-Tiny [1]. Multi-domain features composed include RGB embeddings
of spatial appearance, HOG descriptors [8] of local gradients, DWT [23] of frequency
cues, and semantic features are encoded by ResNet-50 embeddings [14] obtained in
each frame.
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2. Adaptive Feature Fusion (AFF): Instead of a simple concatenation of equivalently
weighted features, AFF dynamically weights modalities. There are weights given to
each of the features in each domain according to which according to softmax attention:

exp(w' x;)

X exp(wT X,-)

ZAFF — Z“i Xj

i

;

The fused representation is:

ensuring that discriminative modalities (e.g., frequency under compression) dominate.

3. Lightweight BNN+VIiT Classifier: The output of the AFF is input into a BNN encoder,
where the weights and activation are binarized -1,+1 to realize FLOPs and memory
reduction [7][20]. A ViT head processes the binarized features as patch embeddings,
that take into account global dependencies across the face. This hybrid BNN+ViT has
the trade-off between lightweight inferences and transformer-level reasoning.

3.2 Temporal Transformer Fusion (TTF)

As much as AFF boosts the resilience of intra-frames, artifacts introduced by deepfake tend to
appear in the temporal context (irregular blinking, lip-syncing). To address this, we employ a
temporal transformer module that processes sequences of fused features {z.}'_,. Temporal
attention is computed as:

) QKT
Attention(Q, K, V) = softmax 1%
Jds
where Q, K,V are trained projections of the sequence features. The TTF module can ensure
temporal coherence due to a connection between the adjacent frames that mutes spurious

fluctuations. The impact of TTF will also be confirmed at a later point in Table 2 (ablation
study), where it is observed that the performance improves when TTF is added.

3.3 Server-Side Teacher Model

A complete-precision teacher model (ResNet-50 + ViT) is stored at the central server. The
teacher is not deployed at the edge and is a robust aggregator unlike a client model. The teacher
creates soft targets (logits that have a temperature scaling) during the training rounds and clients
distill on the basis of these targets. This enables BNN+ViT students that are very light to acquire
robustness without the need of having access to large-scale training dataset.

3.4 Federated Knowledge Distillation (FedKD)

Training is a federated-round process as shown in Figure 1. Each round is comprised of:

Volume 49 Issue 3 (August 2025)
https://powertechjournal.com



. * Power System Technology

Y ISSN:1000-3673

Received: 16-06-2025 Revised: 05-07-2025 Accepted: 22-08-2025

1. Local Training: Every client is provided a BNN+ViT method which is trained on local
non-sharing data. Loss includes cross-entropy on hard labels plus distillation from
teacher logits:

Lreakp = (1 = DLcg(y, Pseudent) + AT*KL(Pfqcher | | Pirudent)
where T is temperature and A balances the two terms.
2. Model Update: The clients post encrypted updates and not raw data on the server.
3. Server Aggregation: The server applies FedAvg [25] to merge updates.

4. Knowledge Distillation: The teacher further refines outputs and broadcasts distilled
updates back to clients.

This mechanism minimizes the typical performance regression of non-IID federated training
[15], a fact we validate in Table 1 where FedKD-enabled training outperforms non-federated
scenarios in terms of accuracy.

3.5 Overall Workflow

The full pipeline, illustrated in Figure 1, integrates these components:
1. Video preprocessing and multi-domain feature extraction.

AFF for adaptive intra-frame fusion.

TTF for temporal reasoning across sequences.

BNN+VIT classifier for efficient decision-making.

A

FedKD framework for collaborative federated training under privacy constraints.

Together, these elements produce a model that is accurate, efficient, and privacy-preserving,
as later confirmed in Section 5 (Results and Discussion).

4. Experimental Setup

In order to determine the effectiveness of the proposed federated lightweight framework, the
experiments that were performed included a series of experiments conducted across various
datasets, training procedures and evaluation metrics. This section explains the used datasets,
preprocessing pipeline, federated learning configuration and training.

4.1 Datasets

We evaluated the framework on three widely used deepfake detection benchmarks:

e DeepFake Detection Challenge (DFDC) [9]: he dataset is comprised of more than
100,000 such manipulated videos produced via several methods of synthesis. It depict
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varied scenarios and settings of compression, hence can be benchmarked in
generalizing.

e FaceForensics++ (FF++) [27]: A dataset of manipulated videos generated by
FaceSwap, Face2Face, DeepFakes and NeuralTextures. It offers both high-quality and
compressed versions, allowing the robustness analysis with respect to the video
compression level.

e OpenForensics [32]: A recent dataset that contains a large number and diversity of
manipulations under unconstrained natural conditions. It puts the focus on scalability
and cross-dataset testing.

The combination of these datasets covers all types of manipulations, different settings of
compression, and real-world distributions, thus allowing us to test both efficiency and
generalization.

4.2 Preprocessing

Videos were then coherently sampled at 10 frames per second. Duplicate frames were filtered
using perceptual hashing to prevent duplication and faces cropped and aligned using YOLOvV3-
Tiny[1]. As in previous studies [29], all faces were rescaled at a common resolution of 224 224
pixels. RGB features, Histogram of Oriented Gradients (HOG) [8], Discrete Wavelet Transform
(DWT) [23], and ResNet-50 embeddings [14] were obtained as multi-domain features. These
embeddings are used in the input to Adaptive Feature Fusion (AFF) module.

4.3 Federated Learning Setup

We simulated a federated environment with three client nodes, each holding a distinct dataset
partition:

e Client 1: DFDC.
e Client 2: FF++.
e Client 3: OpenForensics.

This separating simulates non-IID assumptions since each client may see different distributions
and types of manipulations. Each of the clients is learnt with a BNN+ViT lightweight classifier
in a local environment, augmented with AFF and TTF modules.

The complete precise teacher model (ResNet-50 + ViT) is stored at a central server. After every
federated round, local client updates are aggregated by FedAvg [25], which is then subjected
to FedKD where the teacher re-distributes soft targets to clients. Figure 1 shows the workflow,
where the arrows reflect two-way communication between clients and central server.
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4.4 Evaluation Metrics

To comprehensively assess performance, we report both classification effectiveness and
computational efficiency.

Classification Metrics

Let TP (true positives), TN (true negatives), FP (false positives), and FN (false negatives)
denote outcomes of classification.

e Accuracy measures the overall correctness of the model:

TP+ TN
TP+TN+ FP +FN

Accuracy =

o Precision quantifies reliability of positive predictions:

TP

Precision = m

e Recall (or True Positive Rate, TPR) measures the fraction of actual positives correctly
detected:

TP

Recall = ————
= TP+ FN

e Fl-score is the harmonic mean of precision and recall:

Precision - Recall

Fl=2-
Precision + Recall

e True Negative Rate (TNR) measures the ability to correctly classify authentic
samples:

TN
TN + FP

e Area Under the ROC Curve (AUC) is computed as:

TNR =

1
AUC = fTPR(FPR) d(FPR)
0

where FPR = FP / (FP + TN) and ROC denotes the Receiver Operating Characteristic curve.

Efficiency Metrics

To evaluate deployment suitability, we report floating-point operations (FLOPs) and
inference latency.

e FLOPs are estimated as the number of multiply—accumulate (MAC) operations:
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L
FLOPs = Z(z Cin - Coyr - K2 -H-W)
=1

where C;;,, and C,,,;Cout denote input/output channels, K is kernel size, and H X W the spatial
dimension.

o Inference Time is measured as average processing time per frame (s/frame) across test
videos.

5. Results and Discussion

This section describes the empirical analysis of the suggested federated lightweight deepfake
detection system. We compare it first with state-of-the-art baselines (Section 5.1), followed by
studies of efficiency in terms of FLOPs and inference time (Section 5.2), and analysis of
ablations to isolate the contributions of AFF, TTF, and FedKD (Section 5.3).

5.1 Comparison with Baseline Models

Table 1. Performance comparison of the proposed model with existing deepfake detection

models.
Accuracy | AUC | FLOPs

Model (%) %) | (G)
CNN (baseline) 89.2 90.8 |32
MesoNet [29] 91.4 92.6 |2.8
Bi-Real Net [20] 91.2 92.1 1.9
ReActNet [21] 93.4 943 | 2.1
ViT-B/32 [10] 95.6 96.4 | 8.6
EfficientNetV2-M [6] 95 96.1 10.5
Proposed (AFF + TTF + FedKD,

BNN4ViT) 97.5 983 |24

Table 1 shows the comparison results of the proposed method versus the baseline model, such
as CNN, MesoNet [29], EfficientNetV2-M [6], ViT-B/32 [10], Bi-Real Net [20], and ReActNet
[21]. The proposed framework has the best accuracy of 97.5, and highest AUC of 98.3
compared to all the baselines.

A relevant example is that whereas ViT-B/32 has 95.6% accuracy, it comes with the cost of 8.6
GFLOPs, and the same accuracy is achieved by EfficientNetV2-M at the cost of 10.5 GFLOPs.
Our approach achieves this goal of producing high accuracy but with a much lower 2.4
GFLOPs which is highly applicable in real-time forensics. The LW baseline models (Bi-Real
Net and ReActNet) represent lower FLOPs but significantly worse accuracy (91.2 and 93.4
respectively).
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These results confirm that the suggested combination of BNN+ViT trained networks
augmented with AFF, TTF and FedKD offers an acceptable parity between the performance
and efficiency.
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Figure 2 Baseline Comparison of Deepfake Detection Models

The results are visualized in Figure 2 in terms of accuracy (green bars), AUC (blue bars) and
FLOPs (red line) of all methods. The proposed method is manifestly the best in that it is placed
in the upper-right quadrant of high performance and low cost, unlike transformer baselines,
which clustered further up on the FLOPs.

5.2 Efficiency Analysis

Efficiency is essential to real world deployment. The proposed framework records an average
inference time of 0.021 seconds per frame, based upon the RTX 4090 hardware resulting in a
frame rate of 47 frames per second, which indicates a real-time fulfillment.

Table 1 also provides FLOPs, confirming that our method only requires 2.4 GFLOPs, in
contrast to ViT-B/32 and EfficientNetV2-M, which use 8.6 GFLOPs and 10.5 GFLOPs,
respectively. Memory consumption is also lower, at only ~350 MB in illustrated cases, far less
than >800 MB used by transformer-based baselines.

This efficiency is attributed to the BNN encoder that achieves FLOPS savings through
binarization and federated training protocol which allows lightweight client to inherit
robustness with a lightweight backbone without the need of it locally.

Volume 49 Issue 3 (August 2025)
https://powertechjournal.com



. * Power System Technology

o

Y ISSN:1000-3673

Received: 16-06-2025 Revised: 05-07-2025 Accepted: 22-08-2025
5.3 Ablation Study
Table 2. Ablation study showing the effect of AFF, TTF, and FedKD on performance and
efficiency
. Accuracy | AUC | FLOPs

Configuration (%) @) | (G)

BNN + ViT (baseline) 94.2 95.6 |2

+ AFF 96.5 972 |22

+ AFF + TTF 97.2 984 |23

+ AFF + TTF + FedKD (Proposed) | 97.5 98.3 |24

To evaluate the contribution of each proposed component, we conducted an ablation study.
Table 2 reports the results for four configurations: baseline BNN+ViT, +AFF, +AFF+TTF, and
+AFF+TTF+FedKD (full model).

The introduction of the AFF module boosted accuracy by 2.3 percent (94.2 percent and 96.5
percent) through a focus on discriminating modalities namely, frequency cues in the
compressed videos. Adding the TTF module increased accuracy to 97.2% which further
demonstrates the significance of temporal consistency modeling. Lastly, the addition of FedKD
achieved the highest accuracy of 97.5% and AUC of 98.3%, which demonstrates that non-I1ID
issues in federated learning can be overcome when using knowledge transfer via the central
teacher.
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Figure 3 Ablation Study: Contribution of AFF, TFF and FedKD

Figure 3 shows this development, charting accuracy (green bars) AUC (blue bars) and FLOPs
(red line). The traffic pattern supports that there is a positive contribution of each module, an:
negligible increase in computational cost. Significantly, FedKD offers the grea
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improvement in robustness without proportional boost of FLOPs, because distillation happens
during training and not inference.

5.4 Discussion

These findings indicate three insights. First, multi-domain adaptive fusion (AFF) can play an
important role in generalization across techniques of compression and manipulation. Second,
temporal modeling (TTF) is needful to find nuance inconsistencies that failure to detect by the
static detectors. Third, federated knowledge distillation (FedKD) unites lightweight classes of
models with robustness, allowing student models to directly gain the performance of more
heavy teachers; this is possible without compromising privacy.

Collectively, the above contributions support why the proposed paradigm works better than
large models (EfficientNetV2-M, ViT-B/32) and small models (BNN, ReActNet), providing a
balanced solution that is precise, efficient and scalable.

6. Conclusion and Future Work

In this article, we suggest a federated lightweight framework to detect deepfakes based on the
extension of efficient BNN+VIT classifiers into the privacy-preserving collaborative learning
environment. The framework proposes three new mechanisms Adaptive Feature Fusion (AFF),
which automatically focuses on discriminative modalities in spatial, frequency, and semantic
domains; Temporal Transformer Fusion (TTF), which learns temporal consistency among
sequential frames to detect fine-grained anomalies; Federated Knowledge Distillation
(FedKD), allowing lightweight student models to exist on client nodes and inherit robustness
on a teacher model in a central location, and preserve privacy.

Extensive experiments on DFDC, FaceForensics++, and OpenForensics show the efficiency of
the introduced framework. Our approach demonstrates better results than heavier backbones
using transformers (e.g., ViT-B/32, EfficientNetV2-M) and lightweight BNNs (e.g., Bi-Real
Net, ReActNet) as characterised by 97.5% accuracy and 98.3% AUC at a rate of merely 2.4
GFLOPs. The ablation outcomes in Table 2 and Figure 3 confirm the role of each of the
proposed elements, with FedKD yielding the maximum robustness improvement in regard to
non-IID training conditions in a federated setting.

The innovation of this contribution is the deformalization of the fact that the process of
integration of federated learning and lightweight deepfake detection models can be effectively
implemented, with the possibility of operating the models in a privacy-sensitive and distributed
environment (social networks, investigation services, local data storage facilities, etc.). By
contrast to the previous methods that either do not include the privacy parameter or only restore
a limited degree of privacy, the framework fulfills the three criteria of accuracy, efficiency, and
privacy preservation simultaneously.
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Promising though it is, this study has its limitations. Second, the scope is mostly concerned
with visual deepfakes, visual plus audio deepfakes, and does not include multimodal
manipulations that involve the use of other modalities (text) in addition to visual and audio
manipulations. Second, FedKD removes some of the non-IID challenges, but in the future,
deepfake generators may present previously unseen artifacts that have to be continually
adapted. Lastly, communication overhead when used in large-scale deployment of federation
could further be optimized.

The area of future work will address three directions: We intend to apply the framework to
multimodal detection, combining audio and speech signal as well as visual clues. Second, we
will integrate adaptive federated optimization algorithms that lower the communication
overheads and accelerate convergence when the client numbers are large. Third we will explore
self-supervised and lifelong learning techniques that will allow the model to generalize to new
manipulation techniques without needing to be trained comprehensively. Overall, this paper
develops a generalizable, efficient and privacy-preserving deepfake detection model that
bridges the divide between edge deployment and federated implementation. We argue that the
system proposed will lead to a good starting point in the area of real-world forensic and security
where accuracy and privacy of the data is the dire concern.
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