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Abstract 

In this article, we go beyond earlier limits in the analysis by using algebraic 

polynomials to compute the topological indices for hexagonal cage 

networks. We investigate hexagonal cage networks of different orders and 

copies by introducing M-Polynomials and Forgotten polynomials, and we 

derive novel closed formulae and conclusions for a broad range of 

topological indices. We also create an efficient technique to compute 

𝑯𝑿𝑪𝒏
𝒎, a pivotal polynomial, as part of our work. In addition to computing, we 

apply algebraic polynomials to the analysis of these indices, providing more 

insights into their structural significance in hexagonal cage networks. This work 

illuminates the algebraic underpinnings of these intricate networks and broadens 

the scope of topological index computation, with implications for a variety of 

scientific domains. These polynomials allow us to calculate several features of 

the network, such as the first and second Zagreb, modified Zagreb, General 

Randić, inverse General Randić, harmonic, symmetric division, inverse sum, 

and so on. There are now new closed formulae and outcomes available. 

Additionally, we offer a technique for calculating the polynomial 𝑯𝑿𝑪𝒏
𝒎. We 

also use algebraic polynomials to analyses all of the aforementioned 

indices. 
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1 Introduction and preliminary results 

Suppose we have a structure that is made up of dots that are joined together with line segment, if 

there is no dot in that particular structure that is connected with a line segment to itself and there are 

no two dots that are joined by more than one-line segment, we call that particular structure a graph, 

the set of dots in that particular structure is called vertices and set of line joining the dots is called the 

edges [1]. 

A graph can be recognized by a numerical number, network, matrix which represent the whole 

graph. There are lots of ways for the given information on mutual connectors of atoms in molecules 

can measured. A diagrammatically representation, which one may be easily describe through graphs by 

organic chemists because of its closed resembles of structural formula [2]. A chemical graph is a labeled 

graph whose vertices correspond to the atoms of the compound and edges correspond to chemical 

bonds. 

A topological index is parameter mathematically derived from graph structure. It is used to better 

under- stand the molecular structure. These indices are beneficial for the better study of properties of 

many chemical molecules. Lots of research have been conducted on topological indices of different 

classes of graphs like line graph, chemical molecular, nanotubes, nanotories and face- connected cube 

lattice [3, 4]. A topological index is a Mathematical formula that can be applied to any graph which 

models some molecular structure. From this index, it is possible to analyze Mathematical values and further 

investigation of some physio-chemical properties of molecule. Therefore, it is an efficient method in avoiding 

expensive and time-consuming laboratory experiments [5, 6]. 

These methods are based on graph-theoretical concepts and were first introduced by Harry Wiener 

during the years 1947-1948. Wiener investigated the physical and chemical properties of a series of 

(branched) alkanes such as boiling point at atmospheric pressure, heat of isomerization, and heat of 

vaporization [7]. He postulated that these properties depend solely on the number, kind, and structural 

arrangement of the atoms. In the case of alkane isomers, the kind and number of atoms is constant. 

Then the variations in the property in question depend solely on the structural arrangement of the 

atoms. He further assumed that these properties would satisfy a linear formula of the type 

 

 𝑋 = 𝑎𝑊 + 𝑏𝑃 + 𝑐 (1.1) 

where a, b and c are two constants for a given isomeric group and W and P are two topological indices defined 

by Wiener and described below. All the way, in this paper we assume Γ to be finite, simple and connected 

network with 𝑉(Γ) = Vertex set, 𝐸 = 𝐸(Γ) = Edge family and 𝑑𝑣 = vertex degree. 

Definition 1. For any graph Γ = (𝑉, 𝐸) the 𝑀-polynomial [6] is described as: 

 𝑀(Γ; 𝑥, 𝑦) = 𝑓(𝑥, 𝑦) = ∑  

𝑖≤𝑗

𝑚𝑖𝑗(Γ)𝑥𝑖𝑦𝑗  

where 𝑚𝑖𝑗(Γ) represent number of edges 𝑢𝑣 ∈ 𝐸(Γ) such that {𝑑𝑢(Γ), 𝑑𝑣(Γ)} = {𝑖, 𝑗}. 
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Definition 2. Let Γ = (𝑉, 𝐸) be any graph, then formula for forgotten polynomial of Γ is given by: 

 𝐹(Γ; 𝑥) = ∑  

𝑢𝑣∈𝐸(Γ)

𝑥[(𝑑𝑢)2+(𝑑𝑣)2]  

 The first and oldest topological index based on degree is the Randić index [8] denoted by 𝑅 (
1

2
) (𝐺), 

 𝑅 (
1

2
) (𝐺) = ∑  

𝑢𝑣∈𝐸(𝐺)

1

√𝑑𝑢𝑑𝑣

 (1.2) 

The general Randić index [9, 10] denoted by 

 

 𝑅𝛼(𝐺) = ∑  

𝑢𝑣∈𝐸(𝐺)

[𝑑(𝑢)𝑑(𝑣)]𝛼 (1.3) 

and defined as where 𝛼 = 1,
1

2
, −1,

−1

2
 

Another topological index the Zagreb index is denoted by 𝑀1(𝐺) is very vital topological index 

and the founder of this index are Gutman and Rinajstic [11], defined as 

 𝑀𝐼(𝐺) = ∑  

𝑢𝑣∈𝐸(𝐺)

[𝑑(𝑢) + 𝑑(𝑣)]. (1.4) 

For more detail about this index one can see [12–15]. Estrada et al. [16] introduced one of the well-

known connectivity topological index namely atom-bond connectivity ( 𝐴𝐵𝐶 ) index [17] defined as 

 𝐴𝐵𝐶(𝐺) = ∑  

𝑢𝑣∈𝐸(𝐺)

√
𝑑(𝑢)𝑑(𝑣) − 2

𝑑(𝑢)𝑑(𝑣)
 (1.5) 

 Geometric index (𝐺𝐴) index has its own importance [18 − 22], very important and well-known index defined as, 

 𝐺𝐴(𝐺) = ∑  

𝑢𝑣∈𝐸(𝐺)

2√𝑑(𝑢)𝑑(𝑣)

𝑑(𝑢) + 𝑑(𝑣)
 (1.6) 

Deutsch and Klavžar figured out some prominent topological indices which are achieved with the help of 𝑀 

polynomial [6] and are given in Table 1 given below. 

Table 1: Formulae of some prominent topological descriptors depending on M-polynomial 

Topological Descriptors Formulae based on M-polynomial 

First Zagreb index (𝐷𝑥 + 𝐷𝑦)𝑓(𝑥, 𝑦) 

Second Zagreb index (𝐷𝑥𝐷𝑦)𝑓(𝑥, 𝑦) 

Modified Second Zagreb index (𝑆𝑥𝑆𝑦)𝑓(𝑥, 𝑦) 
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General Randić index 𝐷𝑥
𝛼𝐷𝑦

𝛼𝑓(𝑥, 𝑦) 

Inverse Randić index 𝑆𝑥
𝛼𝑆𝑦

𝛼𝑓(𝑥, 𝑦) 

Symmetric Division Index (𝐷𝑥𝑆𝑦 + 𝑆𝑥𝐷𝑦)𝑓(𝑥, 𝑦) 

Harmonic Index 2𝑆𝑥𝐽𝑓(𝑥, 𝑦) 

Inverse sum Index 𝑆𝑥𝐽𝐷𝑥𝐷𝑦𝑓(𝑥, 𝑦) 

Augmented Zagreb Index 𝑆𝑥
3𝑄−2𝐽𝐷𝑥

3𝐷𝑦
3𝑓(𝑥, 𝑦) 

 

where 𝐷𝑥𝑓 = 𝑥
∂𝑓

∂𝑥
, 𝐷𝑦𝑓 = 𝑦

∂𝑓

∂𝑦
, 𝑆𝑥𝑓 = ∫

0

𝑥
 
𝑓(𝑡,𝑦)

𝑡
𝑑𝑡, 𝑆𝑦𝑓 = ∫

0

𝑦
 
𝑓(𝑥,𝑡)

𝑡
𝑑𝑡,  

𝐽(𝑓(𝑥, 𝑦)) = 𝑓(𝑥, 𝑥), 𝑄𝛼𝑓 = 𝑥𝛼𝑓. 

All formulae presented in table 1 will be calculated for 𝑥 = 𝑦 = 1. 
 

2 Main Results 

 We derive the topological indices of the generalized hexagonal cage network graph 𝐻𝑋𝐶𝑛
𝑚 of order 𝑛 with 𝑚 

copies. In this work, the mathematical property of general Randić index and general Zagreb index. Also Zagreb 

index of some general chains are studied and hence their special cases are considered where 𝑛 denotes the order 

of the hexagonal cage and then we derive some explicit expressions of the same for other degree based 

topological indices such as Zagreb indices, Hyper Zagreb index, redefined Zagreb index, general first Zagreb 

index, general Randić index, Atom Bond connectivity index is also studied for hexagonal cage network. 

 

2.1 Hexagonal Cage network 𝑯𝑿𝑪𝒏
𝒎 drawing algorithm 

Step-1: Find two hexagonal 𝑛-dimensional networks, which denoted as 𝐻𝑋1(𝑛), and 𝐻𝑋2(𝑛),  respectively.  

      In 𝐻𝑋1(𝑛), each 𝐻𝑋2(𝑛), boundary vertex is connected to its mirror image vertex by an edge. The graph is 

called the hexagonal cage network of two layers, as shown in Figure 1. 

      In this paper 𝐸(𝐺) is used for the edge of the graph and 𝑣(𝑄) is used for the vertex of the graph and 𝑑𝑟 is the 

degree of the vertex 𝑟 ∈ 𝑉(𝐺) 

Extend this hexagonal cage network for order 𝑛 for 𝑚 copies. That is generalize HXCn
m for 𝑚 copies. 

A hexagonal cage with order 𝑛 and 𝑚 copies can be seen in the above illustration. This indicates 

that the hexagonal rings in the cage are layered on top of one another in 𝑛 × 𝑚 layers. With gaps 

between the rings that permit movement between the layers, the layers are organized to give the 

impression of being a maze. There are numerous uses for hexagonal cages in computers, chemistry, and 
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physics with order 𝑛 and 𝑚 copies. Physics has examined this structure as a model for several other 

systems, including Colloidal crystals are arrays of colloidal particles that self-assemble. It has been shown 

that hexagonal cage structures exist in colloidal crystals shaped like spheres, rods, and other shapes. 

Materials with a periodic structure that have the ability to regulate light propagation are called photonic 

crystals. Utilizing hexagonal cage architectures, photonic crystals with distinct optical characteristics have 

been produced. It has proven possible to develop artificial materials with unusual optical properties, such 

a negative refractive index, by using hexagonal cage arrangements. This may result in novel optical 

applications like super lenses and cloaking devices. 

Hexagonal cage structures have been investigated in chemistry as a means of encasing and delivering 

molecules. New catalysts for chemical processes have been created using hexagonal cage architectures. 

see figure 1 

 

Figure 1: Generalized cage network 

In this work, we formulate the different topological indices of Hexagonal cage network of order 𝑛 

with 𝑚 copies.  Let 𝐻𝑋𝐶𝑛
𝑚 be the hexagonal cage network taking 𝑚 copies of 𝐻𝑋𝐶𝑛

𝑚 and joining each 

vertex of 𝐻𝑋𝐶𝑛
𝑚, we get the hexagonal cage network graph of the 𝐻𝑋𝐶𝑛

𝑚. The edge set of 𝐻𝑋𝐶𝑛
𝑚 can 

be partitioned into the following subsets. 

 
𝐸1(𝐻𝑋𝐶𝑛

𝑚) = {𝑒 = 𝑢𝑣; 𝑑(𝑢) = 4, 𝑑(𝑣) = 5},

𝐸2(𝐻𝑋𝐶𝑛
𝑚) = {𝑒 = 𝑢𝑣; 𝑑(𝑢) = 𝑑(𝑣) = 5},

𝐸3(𝐻𝑋𝐶𝑛
𝑚) = {𝑒 = 𝑢𝑣; 𝑑(𝑢) = 5, 𝑑(𝑣) = 6},

𝐸4(𝐻𝑋𝐶𝑛
𝑚) = {𝑒 = 𝑢𝑣; 𝑑(𝑢) = 6, 𝑑(𝑣) = 6},

 

such that ∣ 𝐸1(𝐻𝑋𝐶𝑛
𝑚| = 20 + 4𝑚, |𝐸2(𝐻𝑋𝐶𝑛

𝑚)| = 6𝑚 + 6𝑛 − 30, |𝐸3(𝐻𝑋𝐶𝑛
𝑚 ∣= 40𝑚 + 40𝑛 − 30, and 

|𝐸4(𝐻𝑋𝐶𝑛
𝑚)| = 94𝑚 + 94𝑛 − 516. 
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Theorem 2.1. Let  𝐻𝑋𝐶𝑛
𝑚 be the hexagonal network, then M and Forgotten Polynomials of of 𝐻𝑋𝐶𝑛

𝑚 are: 

𝑀(𝐻𝑋𝑛; 𝑥, 𝑦) = (20 − 4𝑚)𝑥4𝑦5 + (6𝑚 + 6𝑛 − 30)𝑥5𝑦5 + (40𝑚 + 40𝑛 − 30)𝑥5𝑦6 + (94𝑚 + 94𝑛 − 516)𝑥6𝑦6

𝐹(𝐻𝑋𝑛; 𝑥) = (20 + 4𝑚)𝑥41 + (6𝑚 + 6𝑛 − 30)𝑥50 + (40𝑚 + 40𝑛 − 30)𝑥61 + (94𝑚 + 94𝑛 − 30)𝑥72  

        

        Proof: We know total vertices and total edges of 𝐻𝑋𝑛 are given by |𝑉(𝐻𝑋𝑛)| = 3𝑛2 − 3𝑛 + 1 and 

|𝐸(𝐻𝑋𝑛)| = 9𝑛2 − 15𝑛 + 6 respectively. Table 2 presents edge partition of hexagonal network. We can 

rewrite 

Table 2: Degrees based edge partitioning of a graph 𝐻𝑋𝑛. 

 

(𝑑𝑢, 𝑑𝑣): 𝑢𝑣 ∈ 𝐸(𝐻𝑋𝑛) (4,5) (5,5) (5,6) (6,6) 

Number of edges 20 + 4 m 6 m + 6n − 30 40𝑚 + 40𝑛 − 30 94𝑚 + 94𝑛 − 516 

     

 

information given in table 2 in the following form. 
 

𝐸1(𝐻𝑋𝑛) = {𝑢𝑣 ∈ 𝐸(𝐻𝑋𝑛): 𝑑𝑢 = 4, 𝑑𝑣 = 5} |𝐸1(𝐻𝑋𝑛)| = 20 + 4𝑚

𝐸2(𝐻𝑋𝑛) = {𝑢𝑣 ∈ 𝐸(𝐻𝑋𝑛): 𝑑𝑢 = 5, 𝑑𝑣 = 5} |𝐸2(𝐻𝑋𝑛)| = 6𝑚 + 6𝑛 − 30

𝐸3(𝐻𝑋𝑛) = {𝑢𝑣 ∈ 𝐸(𝐻𝑋𝑛): 𝑑𝑢 = 5, 𝑑𝑣 = 6} |𝐸3(𝐻𝑋𝑛)| = 40𝑚 + 40𝑛 − 30

𝐸4(𝐻𝑋𝑛) = {𝑢𝑣 ∈ 𝐸(𝐻𝑋𝑛): 𝑑𝑢 = 6, 𝑑𝑣 = 6} |𝐸2(𝐻𝑋𝑛)| = 94𝑚 + 94𝑛 − 516

 

Using definition 1, we get 

𝑀(𝐻𝑋𝑛; 𝑥, 𝑦) = ∑  

𝑖≤𝑗

 𝑚𝑖𝑗𝑥𝑖𝑦𝑗

 = ∑  

4≤5

 𝑚45𝑥4𝑦5 + ∑  

5≤5

 𝑚55𝑥5𝑦5 + ∑  

5≤6

 𝑚56𝑥5𝑦6 + ∑  

6≤6

 𝑚66𝑥6𝑦6

 = |𝐸1(𝐻𝑋𝑛)|𝑥4𝑦5 + |𝐸2(𝐻𝑋𝑛)|𝑥5𝑦5 + |𝐸3(𝐻𝑋𝑛)|𝑥5𝑦6 + |𝐸4(𝐻𝑋𝑛)|𝑥6𝑦6

 

𝑀(𝐻𝑋𝑛; 𝑥, 𝑦) = (20 + 4𝑚)𝑥4𝑦5 + (6𝑚 + 6𝑛 − 30)𝑥5𝑦5 + (40𝑚 + 40𝑛 − 30)𝑥5𝑦6 + (94𝑚 + 94𝑛
− 516)𝑥6𝑦6 

 

using the definition of Forgotten Polynomial, we get 
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𝐹(𝐻𝑋𝑛; 𝑥)  = ∑  

𝑢𝑣∈𝐸(Γ)

 𝑥[(𝑑𝑢)2+(𝑑𝑣)2]

 = ∑  

𝑢𝑣∈𝐸1(𝐻𝑋𝑛)

 𝑚45𝑥41 + ∑  

𝑢𝑣∈𝐸2(𝐻𝑋𝑛)

 𝑚55𝑥50 + ∑  

𝑢𝑣∈𝐸3(𝐻𝑋𝑛)

 𝑚56𝑥61

 + ∑  

𝑢𝑣∈𝐸4(𝐻𝑋𝑛)

 𝑚66𝑥72

 = (20 + 4𝑚)𝑥41 + (6𝑚 + 6𝑛 − 30)𝑥50 + (40𝑚 + 40𝑛 − 30)𝑥61 + (94𝑚 + 94𝑛 − 516)𝑥72

 

 

Theorem 2.2. For Hexagonal cage network of 𝐻𝑋𝐶𝑛
𝑚, first Zagrab, second zagrab, and general Randić indices are given 

by: 

1 𝑀1( 𝐻𝑋𝐶𝑛
𝑚

) = 1664𝑚𝑛 + 1628𝑛 − 6642 

2 𝑀2( 𝐻𝑋𝐶𝑛
𝑚

) = 4814𝑚𝑛 + 4734𝑛 − 19826 

3 𝑅𝛼( 𝐻𝑋𝐶𝑛
𝑚

) = 20−𝛼(20 + 4𝑚) + 25−2𝛼(6𝑚 + 6𝑛 − 30) + 30−𝛼(40𝑚 + 40𝑛 − 30) + 6−2𝛼(40𝑚 + 40𝑛 − 30) 

Now, using derivation formulae of topological indices over M-polynomial from table 1, we get 
 

1 First Zagreb Index = 𝑀1(𝐻𝑋𝑛) = (𝐷𝑥 + 𝐷𝑦)𝑓(𝑥, 𝑦)|
𝑥=𝑦=1

= 1664𝑚 + 1628𝑛 − 6642 

2 Second Zagreb Index = 𝑀2(𝐻𝑋𝑛) = 𝐷𝑦𝐷𝑥𝑓(𝑥, 𝑦)|
𝑥=𝑦=1

= 4814𝑚 + 4734𝑛 − 19826 

3 Generalized Randić Index = 𝑅𝛼(𝐻𝑋𝑛) = 𝐷𝑥
𝛼𝐷𝑦

𝛼𝑓(𝑥, 𝑦)|
𝑥=𝑦=1

= 20−𝛼(20 + 4𝑚) 

+25−2𝛼(6𝑚 + 6𝑛 − 30) + 30−𝛼(40𝑚 + 40𝑛 − 30) + 6−2𝛼(40𝑚 + 40𝑛 − 30) 

Proof: Let 𝑀(𝐻𝑋𝑛; 𝑥, 𝑦) = 𝑓(𝑥, 𝑦) = (20 + 4𝑚)𝑥4𝑦5 + (6𝑚 + 6𝑛 − 30)𝑥5𝑦5 + (40𝑚 + 40𝑛 −

30)𝑥5𝑦6 + (94𝑚 + 94𝑛 − 516)𝑥6𝑦6 

First, we apply the operators, illustrated in derivation table 1, on M-polynomial function as follows. 

First Zagreb Index = 𝑀1(𝐻𝑋𝑛) = (𝐷𝑥 + 𝐷𝑦)𝑓(𝑥, 𝑦)|
𝑥=𝑦=1

= 

9(20 + 4𝑚) + 10(6𝑚 + 6𝑛 − 30) + 11(40𝑚 + 40𝑛 − 30) + 12(94𝑚 + 94𝑛 − 516) 

First Zagreb Index = 𝑀1(𝐻𝑋𝑛) = 1664𝑚 + 1628𝑛 − 6642 

 

𝑀2(𝐻𝑋𝑛) = 𝐷𝑦𝐷𝑥𝑓(𝑥, 𝑦)|
𝑥=𝑦=1

= 4814𝑚 + 4734𝑛 − 19826 

𝑀2(𝐺) = 20(20 + 4𝑚)𝑥3𝑦4 + 25(6𝑛 + 6𝑚 − 30)𝑥4𝑦4 + 11(40𝑚 + 40𝑛 − 190)𝑥4𝑦5 + 12(94𝑛 + 94𝑚 − 516)𝑥5𝑦5

𝑀2(𝐺) = 20(20 + 4𝑚) + 25(6𝑛 + 6𝑚 − 30) + 11(40𝑚 + 40𝑛 − 190) + 12(94𝑛 + 94𝑚 − 516)
 

at x = y = 1 
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𝑀2(𝐺) = 4814𝑚 + 4734𝑛 − 19826

𝑀2(𝐺) = 4814𝑚 + 4734𝑛 − 19826
 

at x = y = 1 

𝐷𝑥
𝛼𝐷𝑦

𝛼𝑓(𝑥, 𝑦)  = 20𝛼(20 + 4𝑚)𝑥4𝑦5 + 252𝛼(6𝑛 + 6𝑚 − 30)𝑥5𝑦5 + 30𝛼(40𝑚 + 40𝑛 − 190)𝑥5𝑦6

 +62𝛼(94𝑛 + 94𝑚 − 516)𝑥5𝑦620−𝛼(20 + 4𝑚)𝑥4𝑦5 + 25−2𝛼(6𝑛 + 6𝑚 − 30)𝑥5𝑦5

 +30−𝛼(40𝑚 + 40𝑛 − 190)𝑥5𝑦6 + 6−2𝛼(94𝑛 + 94𝑚 − 516)𝑥5𝑦6

 

see Figure 2a, Figure 2b, Figure 2c 

 

  

 

(a) Zagreb 1 (b) Zagreb 2 

 

 

 

(c) General Randić 

 

The number of copies, 𝑚 raises the first Zagreb index. This indicates that when the number of copies rises, 
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the cage gets increasingly branched. As the number of copies, 𝑚 increases, the second Zagreb index drops. 

This implies that as the number of copies rises, the cage gets less complex. The Randić index of the 

hexagonal cage of order 𝑛 and 𝑚 copies are plotted in a three-dimensional (3D) graph, demonstrating a rise 

with both the cage’s order (𝑛) and number of copies(𝑚). This indicates that as 𝑛 and 𝑚 increase, the cage 

gets more complex. These findings help to forecast the features of the hexagonal cage of order 𝑛 and 𝑚 copies 

as well as to comprehend its construction. For instance, the cage appears to be more porous because it 

branches out more as the order rises. It appears that the cage could be simpler to synthesize because it gets 

less complex as the number of copies rises. This may lead to the conclusion that a good model for a 

complicated system is the hexagonal cage with order 𝑛 and 𝑚 copies. Complex systems can self-organize 

due to their large number of interconnected components. Similar in structure, the hexagonal cage of order 𝑛 

and 𝑚 copies consist of several interconnected hexagonal rings. It has the capacity to self-organize into 

many patterns and shapes. 

 

Theorem 2.3. let 𝐻𝑋𝐶𝑛
𝑚 the hexagonal cage network work of order 𝑛 with 𝑚 copies then the modiefied second 

Zegrab index is given by 

𝑚𝑀
2 (𝐺) = 𝑆𝑥𝑆𝑦𝑓(𝑥, 𝑦) ∣ 𝑥 = 𝑦 = 1 

and its final result of order 𝑛 with 𝑚 copies 

𝑚𝑀
2 (𝐺) = 53.40𝑚 + 49.20𝑛 − 1 

 

Proof: let 𝐻𝑋𝐶𝑛
𝑚 the hexagonal cage network work of order 𝑛 with 𝑚 copies then the modiefied second Zegrab 

index is defined as   

 

𝑀(𝐻𝑋𝑛; 𝑥, 𝑦) = ∑  

𝑖≤𝑗

 𝑚𝑖𝑗𝑥𝑖𝑦𝑗

 = ∑  

4≤5

 𝑚45𝑥4𝑦5 + ∑  

5≤5

 𝑚55𝑥5𝑦5 + ∑  

5≤6

 𝑚56𝑥5𝑦6 + ∑  

6≤6

 𝑚66𝑥6𝑦6

 = |𝐸1(𝐻𝑋𝑛)|𝑥4𝑦5 + |𝐸2(𝐻𝑋𝑛)|𝑥5𝑦5 + |𝐸3(𝐻𝑋𝑛)|𝑥5𝑦6 + |𝐸4(𝐻𝑋𝑛)|𝑥6𝑦6

𝑀(𝐻𝑋𝑛; 𝑥, 𝑦) =  (20 + 4𝑚)𝑥4𝑦5 + (6𝑚 + 6𝑛 − 30)𝑥5𝑦5 + (40𝑚 + 40𝑛 − 30)𝑥5𝑦6 + (94𝑚 + 94𝑛 − 516)𝑥6𝑦6

 

 

Now we first find 

𝑆𝑥 = ∫  
𝑥

0

𝑓(𝑥, 𝑦)

𝑥
𝑑𝑥 

𝑀(𝐻𝑋𝑛; 𝑥, 𝑦) = (20 + 4𝑚)𝑥4𝑦5 + (6𝑚 + 6𝑛 − 30)𝑥5𝑦5 + (40𝑚 + 40𝑛 − 30)𝑥5𝑦6 + (94𝑚 + 94𝑛 − 516)𝑥6𝑦6 
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 ∫  
𝑥

0

 
𝑓(𝑥, 𝑦)

𝑥
𝑑𝑥

= ∫  
𝑥

0

(20 + 4𝑚)𝑥4𝑦5 + (6𝑚 + 6𝑛 − 30)𝑥5𝑦5 + (40𝑚 + 40𝑛 − 30)𝑥5𝑦6 + (94𝑚 + 94𝑛 − 516)𝑥6𝑦6𝑑𝑥

=
1

4
(20 + 4𝑚)𝑥4𝑦5 +

1

5
(6𝑚 + 6𝑛 − 30)𝑥4𝑦5 +

1

5
(40𝑚 + 40𝑛 − 30)𝑥4𝑦6 +

1

5
(94𝑚 + 94𝑛 − 516)𝑥5𝑦6

=  (5 + 𝑚)𝑥4𝑦5 +
1

5
(6𝑚 + 6𝑛 − 30)𝑥4𝑦5 + (8𝑚 + 8𝑛 − 6)𝑥5𝑦5 +

1

5
(94𝑚 + 94𝑛 − 516)𝑥6𝑦6

=  (𝑚 + 5)𝑥4𝑦5 +
1

5
(6𝑚 + 6𝑛 − 30)𝑥4𝑦5 + (8𝑚 + 8𝑛 − 6)𝑥5𝑦5 +

1

5
(94𝑚 + 94𝑛 − 516)𝑥6𝑦6

 

 

Now we first find 

𝑆𝑦 = ∫  
𝑥

0

𝑓(𝑥, 𝑦)

𝑦
𝑑𝑥 

𝑀(𝐻𝑋𝑛; 𝑥, 𝑦) = (20 + 4𝑚)𝑥4𝑦5 + (6𝑚 + 6𝑛 − 30)𝑥5𝑦5 + (40𝑚 + 40𝑛 − 30)𝑥5𝑦5 + (94𝑚 + 94𝑛

− 516)𝑥5𝑦5 

∫  
𝑦

0
 
𝑓(𝑥, 𝑦)

𝑦
𝑑𝑥

= ∫  
𝑦

0
(20 + 4𝑚)𝑥3𝑦4 + (6𝑚 + 6𝑛 − 30)𝑥4𝑦4 + (40𝑚 + 40𝑛 − 30)𝑥4𝑦4 + (94𝑚 + 94𝑛 − 516)𝑥5𝑦4𝑑𝑥

 =
1

5
(20 + 4𝑚)𝑥3𝑦5 +

1

5
(6𝑚 + 6𝑛 − 30)𝑥4𝑦5 +

1

5
(40𝑚 + 40𝑛 − 30)𝑥5𝑦5 +

1

5
(94𝑚 + 94𝑛 − 516)𝑥5𝑦5

 

𝑚𝑀
2 (𝐺) = 𝑆𝑥𝑆𝑦𝑓(𝑥, 𝑦) ∣ 𝑥 = 𝑦 = 1 

𝑚𝑀
2 (𝐺) =  (𝑚 + 5)𝑥4𝑦5 +

1

5
(6𝑚 + 6𝑛 − 30)𝑥4𝑦5 + (8𝑚 + 8𝑛 − 6)𝑥5𝑦5 +

1

5
(94𝑚 + 94𝑛 − 516)𝑥6𝑦6

1

5
(20 + 4𝑚)𝑥3𝑦5 +

1

5
(6𝑚 + 6𝑛 − 30)𝑥4𝑦5 +

1

5
(40𝑚 + 40𝑛 − 30)𝑥5𝑦5 +

1

5
(94𝑚 + 94𝑛 − 516)𝑥5𝑦5

 

𝑚𝑀
2 (𝐺) = 𝑆𝑥𝑆𝑦𝑓(𝑥, 𝑦) ∣ 𝑥 = 𝑦 = 1

𝑚𝑀
2 (𝐺) =

16021

300
+

14761

300
+ 1

 

 

The 3D plot of modified second Zagreb index is in figure, also can be seen that dependent variables used 

in the above index on the involved parameters. 
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n 

 

 

(a) Modified Zagreb 

 

This could lead to the conclusion that the complexity of the hexagonal cage of order n and m copies can be 

accurately determined by the modified Zagreb index. Since the modified Zagreb index is a topological 

index, it is determined solely by the graph’s structure and does not take into account the particular kinds of 

atoms or bonds that are there. It can therefore be used as a helpful tool to compare the complexity of 

various graphs. 

Theorem 2.4. let  𝐻𝑋𝐶𝑛
𝑚 the hexagonal cage network work of order 𝑛 with 𝑚 copies then the inverse General 

Randić index is 

𝑅𝑅𝛼(𝐺) = (𝑆𝑥
𝛼𝑆𝑦

𝛼)𝑀(𝐺, 𝑥, 𝑦)|
𝑥=𝑦=1

=
334

5
𝑚 +

226

5
𝑛 −

1147

5
 

 

Proof. let 𝐻𝑋𝐶𝑛
𝑚 the hexagonal cage network work of order 𝑛 with 𝑚 copies then the inverse General Randić 

index is defined as  

𝑅𝑅𝛼(𝐺) = (𝑆𝑥
𝛼𝑆𝑦

𝛼)𝑀(𝐺, 𝑥, 𝑦) ∣ 𝑥 = 𝑦 = 1 

𝑀(𝐻𝑋𝑛; 𝑥, 𝑦) = ∑ 𝑚𝑖𝑗𝑥𝑖𝑦𝑗

𝑖≤𝑗

 

 = ∑ 𝑚45𝑥4𝑦5

4≤5

 + ∑ 𝑚55𝑥5𝑦5

5≤5

  + ∑ 𝑚56𝑥5𝑦6

5≤6

 + ∑ 𝑚66𝑥6𝑦6

6≤6

 

 = |𝐸1(𝐻𝑋𝑛)|𝑥4𝑦5 + |𝐸2(𝐻𝑋𝑛)|𝑥5𝑦5 + |𝐸3(𝐻𝑋𝑛)|𝑥5𝑦6 + |𝐸4(𝐻𝑋𝑛)|𝑥6𝑦6

 

 

𝑀(𝐻𝑋𝑛; 𝑥, 𝑦) = (20 + 4𝑚)𝑥4𝑦5 + (6𝑚 + 6𝑛 − 30)𝑥5𝑦5 + (40𝑚 + 40𝑛 − 30)𝑥5𝑦6 + (94𝑚 + 94𝑛 − 516)𝑥6𝑦6 
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Now we first find 

𝑆𝑥 = ∫  
𝑥

0

𝑓(𝑥, 𝑦)

𝑥
𝑑𝑥 

𝑀(𝐻𝑋𝑛; 𝑥, 𝑦) = (20 + 4𝑚)𝑥4𝑦5 + (6𝑚 + 6𝑛 − 30)𝑥5𝑦5 + (40𝑚 + 40𝑛 − 30)𝑥5𝑦6 + (94𝑚

+ 94𝑛 − 516)𝑥6𝑦6 

 ∫  
𝑥

0

𝑓(𝑥, 𝑦)

𝑥
𝑑𝑥

= ∫  
𝑥

0

(20 + 4𝑚)𝑥4𝑦5 + (6𝑚 + 6𝑛 − 30)𝑥5𝑦5 + (40𝑚 + 40𝑛 − 30)𝑥5𝑦6 + (94𝑚 + 94𝑛 − 516)𝑥6𝑦6𝑑𝑥

=
1

4
(20 + 4𝑚)𝑥4𝑦5 +

1

5
(6𝑚 + 6𝑛 − 30)𝑥4𝑦5 +

1

5
(40𝑚 + 40𝑛 − 30)𝑥4𝑦6 +

1

5
(94𝑚 + 94𝑛 − 516)𝑥5𝑦6

=  (5 + 𝑚)𝑥4𝑦5 +
1

5
(6𝑚 + 6𝑛 − 30)𝑥4𝑦5 + (8𝑚 + 8𝑛 − 6)𝑥5𝑦5 +

1

5
(94𝑚 + 94𝑛 − 516)𝑥6𝑦6

=  (𝑚 + 5)𝑥4𝑦5 +
1

5
(6𝑚 + 6𝑛 − 30)𝑥4𝑦5 + (8𝑚 + 8𝑛 − 6)𝑥5𝑦5 +

1

5
(94𝑚 + 94𝑛 − 516)𝑥6𝑦6

 

Now we first find 

𝑆𝑦 = ∫  
𝑥

0

𝑓(𝑥, 𝑦)

𝑦
𝑑𝑥 

𝑀(𝐻𝑋𝑛; 𝑥, 𝑦) = (20 + 4𝑚)𝑥4𝑦5 + (6𝑚 + 6𝑛 − 30)𝑥5𝑦5 + (40𝑚 + 40𝑛 − 30)𝑥5𝑦5 + (94𝑚

+ 94𝑛 − 516)𝑥5𝑦5 

 

 

∫  
𝑦

0

𝑓(𝑥, 𝑦)

𝑦
𝑑𝑥 = ∫  

𝑦

0

(20 + 4𝑚)𝑥3𝑦4 + (6𝑚 + 6𝑛 − 30)𝑥4𝑦4 + (40𝑚 + 40𝑛 − 30)𝑥4𝑦4 + (94𝑚 + 94𝑛 − 516)𝑥5𝑦4𝑑𝑥

 =
1

5
(20 + 4𝑚)𝑥3𝑦5 +

1

5
(6𝑚 + 6𝑛 − 30)𝑥4𝑦5 +

1

5
(40𝑚 + 40𝑛 − 30)𝑥5𝑦5 +

1

5
(94𝑚 + 94𝑛 − 516)𝑥5𝑦5

 

𝑚𝑀
2 (𝐺) = 𝑆𝑥𝑆𝑦𝑓(𝑥, 𝑦) ∣ 𝑥 = 𝑦 = 1 

𝑅𝑅𝛼(𝐺)  = (𝑆𝑥𝑆𝑦)𝑀(𝐺, 𝑥, 𝑦) = (𝑚 + 5)𝑥4𝑦5 +
1

5
(6𝑚 + 6𝑛 − 30)𝑥4𝑦5 + (8𝑚 + 8𝑛 − 6)𝑥5𝑦5

 +
1

5
(94𝑚 + 94𝑛 − 516)𝑥6𝑦6

1

5
(20 + 4𝑚)𝑥3𝑦5 +

1

5
(6𝑚 + 6𝑛 − 30)𝑥4𝑦5

 +
1

5
(40𝑚 + 40𝑛 − 30)𝑥5𝑦5 +

1

5
(94𝑚 + 94𝑛 − 516)𝑥5𝑦5

 

taking both sides 𝛼, we get 
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𝑅𝑅𝛼(𝐺)  = (𝑆𝑥
𝛼𝑆𝑦

𝛼)𝑀(𝐺, 𝑥, 𝑦) = (𝑚 + 5)𝑥4𝑦5 +
1

5
(6𝑚 + 6𝑛 − 30)𝑥4𝑦5 + (8𝑚 + 8𝑛 − 6)𝑥5𝑦5

 +
1

5
(94𝑚 + 94𝑛 − 516)𝑥6𝑦6

1

5
(20 + 4𝑚)𝑥3𝑦5 +

1

5
(6𝑚 + 6𝑛 − 30)𝑥4𝑦5

 +
1

5
(40𝑚 + 40𝑛 − 30)𝑥5𝑦5 +

1

5
(94𝑚 + 94𝑛 − 516)𝑥5𝑦5

 

𝑅𝑅𝛼(𝐺)  = (𝑆𝑥
𝛼𝑆𝑦

𝛼)𝑀(𝐺, 𝑥, 𝑦) = (𝑚 + 5 + 4 +
4

5
) 𝑥4𝑦5 + (

6

5
𝑚 +

6

5
𝑛 − 6 +

6

5
+

6

5
𝑛 − 5) 𝑥5𝑦6

 +(8𝑚 + 8𝑛 − 6 + 8𝑚 + 8𝑛 − 6)𝑥5𝑦6 + (
94

5
𝑚 +

94

5
𝑛 −

516

5
+

94

5
𝑚 +

94

5
𝑛 −

516

5
) 𝑥5𝑦5

 

 

𝑅𝑅𝛼(𝐺) = (𝑆𝑥
𝛼𝑆𝑦

𝛼)𝑀(𝐺, 𝑥, 𝑦)|
𝑥=𝑦=1

=
54

5
𝑚 +

12

5
𝑚 +

12

5
𝑛 − 11 + 16𝑚 + 16𝑛 − 12 +

188

5
𝑚 +

188

5
𝑛 −

1032

5
 

 

𝑅𝑅𝛼(𝐺) = (𝑆𝑥
𝛼𝑆𝑦

𝛼)𝑀(𝐺, 𝑥, 𝑦)|
𝑥=𝑦=1

=
334

5
𝑚 +

226

5
𝑛 −

1147

5
 

 

The 3D plot of inverse general Randić index is shown in the figure, also can be seen 

that dependent variables used in the above index on the involved parameters. 

Figures Modified the second Zagreb 

index plotted in 3D Inverse Randić 

index plotted in 3D 

 

(a) Inverse Randić 
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n Theorem 2.5. let 𝐻𝑋𝐶𝑛
𝑚 the hexagonal cage network work of order 𝑛 with 𝑚 copies then 

the Symetric index is  

𝑆𝑆𝐷(𝐺) = |𝐷𝑥𝛿𝑦 + 𝛿𝑥𝐷𝑦|
𝑥=𝑦=1

 anditsfinalresultis 

𝑆𝑆𝐷(𝐺) =
17889

100
𝑚 +

17289

100
𝑛 − 557

 

Proof.  

∫  
𝑦

0

 
𝑓(𝑥, 𝑦)

𝑦
𝑑𝑥 = ∫  

𝑦

0

  (20 + 4𝑚)𝑥3𝑦4 + (6𝑚 + 6𝑛 − 30)𝑥4𝑦4 + (40𝑚 + 40𝑛 − 30)𝑥4𝑦4 + (94𝑚 + 94𝑛 − 516)𝑥5𝑦4𝑑𝑥

 =
1

5
(20 + 4𝑚)𝑥4𝑦5 +

1

5
(6𝑚 + 6𝑛 − 30)𝑥4𝑦5 +

1

5
(40𝑚 + 40𝑛 − 30)𝑥5𝑦5 +

1

5
(94𝑚 + 94𝑛 − 516)𝑥5𝑦5

 

Now 

𝐷𝑥𝛿𝑦 = 4(20 + 4𝑚)𝑥3𝑦4 + 5(6𝑚 + 6𝑛 − 30)𝑥4𝑦5 + 5(40𝑚 + 40𝑛 − 30)𝑥4𝑦6 + 6(94𝑚 + 94𝑛 − 516)𝑥5𝑦5

𝑆𝑥 = ∫  
𝑥

0

 
𝑓(𝑥, 𝑦)

𝑥
𝑑𝑥

 

𝑀(𝐻𝑋𝑛; 𝑥, 𝑦) = (20 + 4𝑚)𝑥4𝑦5 + (6𝑚 + 6𝑛 − 30)𝑥5𝑦5 + (40𝑚 + 40𝑛 − 30)𝑥5𝑦6 + (94𝑚

+ 94𝑛 − 516)𝑥6𝑦6 

 ∫  
𝑥

0

 
𝑓(𝑥, 𝑦)

𝑥
𝑑𝑥

= ∫  
𝑥

0

(20 + 4𝑚)𝑥4𝑦5 + (6𝑚 + 6𝑛 − 30)𝑥5𝑦5 + (40𝑚 + 40𝑛 − 30)𝑥5𝑦6 + (94𝑚 + 94𝑛 − 516)𝑥6𝑦6𝑑𝑥

=
1

4
(20 + 4𝑚)𝑥4𝑦5 +

1

5
(6𝑚 + 6𝑛 − 30)𝑥4𝑦5 +

1

5
(40𝑚 + 40𝑛 − 30)𝑥4𝑦6 +

1

5
(94𝑚 + 94𝑛 − 516)𝑥5𝑦6

 

 = (5 + 𝑚)𝑥4𝑦5 +
1

5
(6𝑚 + 6𝑛 − 30)𝑥4𝑦5 + (8𝑚 + 8𝑛 − 6)𝑥5𝑦5 +

1

5
(94𝑚 + 94𝑛 − 516)𝑥6𝑦6

 = (𝑚 + 5)𝑥4𝑦5 +
1

5
(6𝑚 + 6𝑛 − 30)𝑥4𝑦5 + (8𝑚 + 8𝑛 − 6)𝑥5𝑦5 +

1

5
(94𝑚 + 94𝑛 − 516)𝑥6𝑦6

 

𝛿𝑥𝐷𝑦 = 5(𝑚 + 5)𝑥4𝑦4 +
1

5
(6𝑚 + 6𝑛 − 30)𝑥5𝑦4 + 6(8𝑚 + 8𝑛 − 6)𝑥5𝑦5 + 6(94𝑚 + 94𝑛

− 516)𝑥6𝑦5 

 

𝑆𝑆𝐷(𝐺)  = |𝐷𝑥𝛿𝑦 + 𝛿𝑥𝐷𝑦|
𝑥=𝑦=1

= [4(20 + 4𝑚)𝑥3𝑦4 + 5(6𝑚 + 6𝑛 − 30)𝑥4𝑦5 + 5(40𝑚 + 40𝑛 − 30)𝑥4𝑦6

+6(94𝑚 + 94𝑛 − 516)𝑥5𝑦5] [(𝑚 + 5)𝑥4𝑦5 +
1

5
(6𝑚 + 6𝑛 − 30)𝑥4𝑦5 + (8𝑚 + 8𝑛 − 6)𝑥5𝑦5

+
1

5
(94𝑚 + 94𝑛 − 516)𝑥6𝑦6]
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𝑆𝑆𝐷(𝐺) = |𝐷𝑥𝛿𝑦 + 𝛿𝑥𝐷𝑦|
𝑥=𝑦=1

=
17889

100
𝑚 +

17289

100
𝑛 − 557 

The 3D plot of symmetric division index is shown in the figure, also can be seen 

that dependent variables used in the above index on the involved parameters. 

 

(a) Inverse Randić 

 

Figures index plotted in 3D. 

 

Theorem 2.6. let 𝐻𝑋𝐶𝑛
𝑚 the hexagonal cage network work of order 𝑛 with 𝑚 copies then 

the Harmonic index is defined as  

𝐻(𝐺) = 2𝛿𝑥𝐽𝑀(𝐺; 𝑥, 𝑦)|𝑥=𝑦=1 
𝐻(𝐺) = 2𝛿𝑥𝐽𝑀(𝐺; 𝑥, 𝑦)|𝑥=𝑦=1

𝐻(𝐺) = 288𝑚 + 280𝑛 − 1112
 

Proof.  

 
𝑀(𝐻𝑋𝑛; 𝑥, 𝑦)  = (20 + 4𝑚)𝑥4𝑦5 + (6𝑚 + 6𝑛 − 30)𝑥5𝑦5 + (40𝑚 + 40𝑛 − 30)𝑥5𝑦5 + (94𝑚 + 94𝑛 − 516)𝑥5𝑦5

𝐽𝑓(𝑥, 𝑦)  = 𝐽𝑓(𝑥, 𝑥)𝐽𝑓(𝑥, 𝑦) = (20 + 4𝑚)𝑥9 + (6𝑚 + 6𝑛 − 30)𝑥10 + (40𝑚 + 40𝑛 − 30)𝑥11

 +(94𝑚 + 94𝑛 − 516)𝑥12

 

𝛿𝑥  = ∫  
𝑥

0

 
𝑓(𝑥, 𝑦)

𝑥
𝑑𝑥 =

1

7
(20 + 4𝑚)𝑥7 +

1

10
(6𝑚 + 6𝑛 − 30)𝑥10 +

1

11
(40𝑚 + 40𝑛 − 30)𝑥11

 +
1

12
(94𝑚 + 94𝑛 − 516)𝑥12
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n 

𝐻(𝐺)  = 2𝛿𝑥𝐽𝑀(𝐺; 𝑥, 𝑦)|𝑥=𝑦=1 = 2(20 + 4𝑚) + 2(6𝑚 + 6𝑛 − 30) + 2(40𝑚 + 40𝑛 − 30)

 +2(94𝑚 + 94𝑛 − 516)
 

𝐻(𝐺) = 2𝛿𝑥𝐽𝑀(𝐺; 𝑥, 𝑦)|𝑥=𝑦=1

= 2(20 + 4𝑚) + 2(6𝑚 + 6𝑛 − 30) + 2(40𝑚 + 40𝑛 − 30) + 2(94𝑚 + 94𝑛
− 516) … 

 
𝐻(𝐺) = 2𝛿𝑥𝐽𝑀(𝐺; 𝑥, 𝑦)|𝑥=𝑦=1

= 288𝑚 + 280𝑛 − 1112
 

 

 

(a) Inverse Randić 

Theorem 2.7. let  𝐻𝑋𝐶𝑛
𝑚 the hexagonal cage network work of order 𝑛 with 𝑚 copies then 

the Inverse sum index is defined as  

𝐼(𝐺) = 𝛿𝑥𝐷𝑋𝐷𝑌𝑀(𝐺; 𝑥, 𝑦)|𝑥=𝑦=1

  

𝐼(𝐺) = 5054𝑚 + 4974𝑛 − 20006
 

Proof.  

 

𝑀(𝐻𝑋𝑛; 𝑥, 𝑦) = (20 + 4𝑚)𝑥4𝑦5 + (6𝑚 + 6𝑛 − 30)𝑥5𝑦5 + (40𝑚 + 40𝑛 − 30)𝑥5𝑦6 + (94𝑚

+ 94𝑛 − 516)𝑥6𝑦6 

 

𝐷𝑦 = 5(20 + 4𝑚)𝑥4𝑦5 + 5(6𝑚 + 6𝑛 − 30)𝑥5𝑦5 + 6(40𝑚 + 40𝑛 − 30)𝑥5𝑦6 + 6(94𝑚 + 94𝑛

− 516)𝑥6𝑦6 
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𝐷𝑋𝐷𝑦 = 20(20 + 4𝑚)𝑥9 + 25(6𝑚 + 6𝑛 − 30)𝑥10 + 36(40𝑚 + 40𝑛 − 30)𝑥11 + 36(94𝑚 + 94𝑛

− 516)𝑥12 

𝑆𝑥 = ∫  
𝑥

0

 
𝑓(𝑥, 𝑦)

𝑥
𝑑𝑥 

𝛿𝑥𝐽𝐷𝑥𝐷𝑦𝑓(𝑥, 𝑦)

=
20(20 + 4𝑚)𝑥9

9
+ 25

(6𝑚 + 6𝑛 − 30)𝑥10

10
+ 36

(40𝑚 + 40𝑛 − 30)𝑥11

11

+ 36
(94𝑚 + 94𝑛 − 516)𝑥12

12
 

𝛿𝑥𝐽𝐷𝑥𝐷𝑦𝑓(𝑥, 𝑦) = 5054𝑚 + 497𝑛 − 20006 

 

(a) Inverse Randić 

 

 

Conclusion 

We study the closed-form M-Polynomials for 𝑛-order hexagonal cage networks with m 

copies in this paper. We analyse a large collection of popular topological indices, such as the 

Randić index and the first, second, and third Zagreb indices. We have made significant 

contributions to the field of hexagonal cage networks by developing a number of closed-

form indices, including the General Randić index, Inverse General Randić index, Symmetric 

division index, Harmonic index, and Inverse sum index. These indices have provided new 

insights into the physical, chemical, and biological characteristics of hexagonal cage 

networks, such as their strength, boiling point, fracture toughness, and heat of formation. 
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Furthermore, we offer computer-aided evaluations of these indices along with 

corresponding parameters, emphasizing their robust associations with molecular 

structures. 
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