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Abstract: 

Problem: 

The Yamuna River, a vital water source for multiple cities, faces severe pollution from 

industrial discharges, challenging the health of ecosystems and human populations. Existing 

methods to examine quality of water, particularly the Water Quality Index, rely on time-

consuming and costly data collection processes, and traditional predictive models struggle to 

adapt to evolving environmental challenges. This necessitates advanced approaches to 

accurately and timely predict WQI, crucial for effective management of water resources. 

Methodology: 

This research employs machine learning approaches to predict WQI, emphasizing the 

limitations of current models. The study explores the potential of several models. 

Additionally, a novel hybrid methodology is proposed, integrating Latent Semantic Analysis 

(LSA) for dimensionality reduction and Extreme Gradient Boosting for enhanced prediction.  

Evaluation: 

Water samples from nine diverse locations along the Yamuna River, with a focus on industrial 

areas, are collected and analysis is performed for various parameters. The calculated WQI is 

then subjected to various machine learning models and the proposed hybrid approach. The 

evaluation criteria include accuracy, responsiveness, and the ability to predict WQI based on 

limited, significant parameters. 

Results:  

The research demonstrates the effectiveness of proposed hybrid methodology in predicting 

WQI. The hybrid methodology, combining LSA and Extreme Gradient Boosting, achieves a 

remarkable maximum accuracy of 95.2%, surpassing other models and state-of-the-art 

techniques. The study contributes valuable insights into water quality assessment, offering a 
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data-driven, efficient, and accurate approach to predict WQI, essential for sustainable water 

resource management. 

Keywords:  Water Quality Index (WQI), Yamuna River, Machine Learning, Hybrid 

Approach, Latent Semantic Analysis (LSA), Extreme Gradient Boosting 

1. Introduction: 

Water, as a vital component of our environment, plays a critical role in sustaining life and 

supporting various ecosystems. In an era marked by rapid urbanization, industrialization, and 

agricultural expansion, ensuring the availability of clean and safe water has become an 

imperative for global well-being. Proximity to rivers has been advantageous, providing water 

for various purposes. However, balancing river water use is crucial for sustainable resource 

management and protecting ecosystems. Pollution sources, including industrial discharges, 

agriculture, and sewage, vary by region[1-3]. The River Yamuna faces severe pollution from 

industrial units in Delhi, Faridabad, Mathura, and Agra, with around 359 units releasing 

untreated wastewater. The Yamuna River in the Uttarkashi district of Uttarakhand. It's vital 

for several cities supporting drinking water, irrigation, and industries. Efforts are underway to 

address pollution through measures such as wastewater treatment, environmental regulations, 

and public awareness [4-5]. Preserving the Yamuna River requires effective pollution control, 

wastewater treatment, and public involvement for sustainable use. Different regions have 

developed water quality indices tailored to their needs, essential for summarizing data and 

guiding pollution control measures.  

The Water Quality Index (WQI) serves as a critical numerical index that assesses 

overall water quality conditions, to implement pollution control measures for safeguarding 

the Yamuna River ecosystem and human health. A crisp knowledge of water quality is 

essential, thus playing a pivotal role in evaluating the state of various water bodies to improve 

their management. Computation of the Water Quality Index involves considering multiple 

parameters such as pH, dissolved oxygen, turbidity, chemical oxygen demand (COD), 

biochemical oxygen demand (BOD), temperature, and the presence of pollutants, 

necessitating on-site data collection. However, the earlier method of computing various 

parameters through samples was labor-intensive, and was associated with high financial costs 

[6]. Therefore, the WQI is indispensable for ensuring the repeated and effective monitoring of 

water body quality, especially in regions prone to frequent pollution. So, for early 

identification of such sources [7] and to predict WQI is the one of the majors concerned of 

the researcher in the past.  

This work endeavors to explore several techniques to predict Water Quality Index, 

focussing on addressing the limitations of current models. Machine learning, a subfield of 

artificial intelligence, has demonstrated its efficacy in pattern recognition, data analysis, and 

prediction across diverse domains. By leveraging the capabilities of machine learning, this 

study aspires to enhance the accuracy and timeliness of WQI predictions, contributing to 
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more effective water resource management strategies[8]. 

This research aims to evaluate quality of water in the surroundings of industrial areas along 

the Yamuna River in Delhi, employing various parameters. The collected data is then utilized 

to compute WQI by employing numerous models namely, logistic regression (LR), Decision 

Tree(DT), Support Vector Machine (SVM), Naïve Bayes (NB), and XGBoost. To enhance the 

results, a novel hybrid methodology is proposed, integrating Latent Semantic Analysis and 

Extreme Gradient Boosting. Latent Semantic Analysis performs dimensionality reduction on 

the dataset features through singular value decomposition, enhancing feature representation. 

The improved features are then fed into the Extreme Gradient Boosting technique for further 

prediction. Extreme Gradient Boosting (XGBoost) is an optimized approach that takes inputs 

from multiple weak models to yield a robust prediction. The proposed hybrid approach 

achieves a maximum accuracy of 95.2%, outperform other state-of-the-art techniques. 

Notably, this high accuracy is achieved using only three of the most significant parameters, 

showcasing the efficacy of the proposed methodology. 

The main contribution of this work includes:  

• Last 8 years’ data (2013- 2021) is gathered from CPCB and converted into machine 

readable format for the further processing.  

• WQI is calculated on 9 sites of Delhi on four parameters such as pH, DO, BOD, 

COD. 

• Various models such as LR, NB, SVM, DT and XGBoost are applied. 

• A hybrid approach based on LSA (Latent Semantic Analysis) and XGBoost is 

proposed based on various parameters of water. 

2. Related work 

This section presents the work done on prediction of  WQI. 

Ahmed et.al.[6] explored various techniques based on Four input parameters. The results 

depict that gradient boosting was most efficient in prediction of WQI, and the multi-layer 

perceptron attains highest WQC classification accuracy at 85.07%. This proposed 

methodology achieved significant accuracy using minimal parameters set.  

 In another work, Wang et.al. [9] focused on model stacking approach. Microbial 

contamination in beach water poses risks to swimmers due to exposure to harmful pathogens. 

An ensemble approach known as model stacking was proposed for water quality assessment 

for beaches. Outputs from five machine learning models were fed as an input to another 

model. In this, accuracy rankings for the stacking model remained consistent for first two 

years, with average accuracy of 78%, 81%, and 82.3% respectively.  

Silberg et al. [10] utilized an approach that combined attribute-realization with SVM 

algorithm for Chao Phraya River. The study, based on a historical dataset spanning 2008-
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2019 and encompassing various parameters, followed a four-step process: data pre-

processing, attribute evaluation, exploration of mathematical functions. The study observed 

that different combinations of attributes and mathematical functions resulted in varied 

performance. Validation of the approach confirmed that proposed method proved to be a 

robust method for classifying river water quality, achieving an accuracy range of 0.86 to 0.95 

when using three to six attributes. This underscores the effectiveness of the AR-SVM 

approach in accurately categorizing the Chao Phraya River's water quality based on diverse 

attributes. 

Yilma et al. [11] sought to present a comprehensive assessment of pollution levels in The 

Little Akaki River. The approach employed neural network on twelve parameters gathered 

from 27 sites. The results indicated that, with the exception of one upstream site, all sampling 

locations were classified under the poor water quality category.  

In their study, Bui et al. [12] employed both standalone algorithms and data-mining 

algorithms on Iran Water Quality Index using six years of monthly data (2012 to 2018) in the 

Talar catchment. Hybrid algorithms demonstrated an enhancement, although this 

improvement was not uniform across all cases. 

In their work, Ding et al. [13] introduced a hybrid intelligent algorithm. The initial 

application of PCA serves to reduce data dimensionality by compressing 23 factors into 15 

indices following by Genetic algorithm to enhance the dimensions of the BPNN. The results 

attain an overall prediction rate of approximately 91%. 

In their study, Azad et al. [14] explored nature inspired and fuzzy systems to predict water 

quality in Gorganroud River water. ANFIS-DE model in accurately predicting Electrical 

Conductivity and Total Hardness in Gorganroud River water. 

Zhang et al. [15] introduced a hybrid model named HANN, to anticipate the overall 

performance of Drinking Water across China. The approach utilized monthly data from 45 

DWTPs. The resulting HANN model demonstrated excellent performance in simulating 

training datasets, exhibiting enhanced predictive accuracy. 

Further, Hassan et al. [8] employed several techniques to classify water quality across diverse 

locations in India. The previous studies are compared and are presented in Table 1. 

Table1. Comparative analysis of existing state-of-the-art techniques 

Author 

and 

Year 

Machine 

learning 

model used 

Dataset 

Used 

Water_Parameters Evaluation 

Metrics 

Results 
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Ding 

et.al., 

2014 

[13] 

PCA, GA 

,BPNN  

  River 

water 

Total 23 factors 

aggregated into 15 

parameters. 

Accuracy Total 

Overall 

prediction 

rate =91%  

Yilma 

et.al., 

2018 

[11] 

ANN Little 

Akaki 

River 

12 water parameters R2  R2 of 0.95 

was attained 

Azad 

et.al., 

2018 

[14] 

GA, Ant 

Colony 

Optimization 

and 

Differential 

Evolution 

Gorganroud 

River water 

Electrical 

Conductivity, 

Sodium Absorption 

Ratio, Total 

Hardness  

R2, RMSE, 

MAPE 

ANFIS 

exhibited the 

best 

performance 

Ahmed 

et.al., 

2019 

[6] 

Polynomial 

regression, 

GB, MLP 

   

-  

Temperature, 

Turbidity, pH,  TDS 

MAE, 

Accuracy 

MAE of 

1.9642 and 

2.7273 for 

WQI 

Accuracy = 

85.07% 

Zhang 

et.al., 

2019 

[15] 

Hybrid 

Statistical 

Model 

HANN, 

Integrating, 

ANN and 

GA 

DWTPs 

across 

China 

Temperature, 

Chemical Oxygen 

EC,CE 

Mean 

Squared 

Error 

Results 

indicated a 

close 

connection 

between 

DWTP 

water 

production 

and water 

quality and 

operational 

parameters 

Bui 

et.al., 

2020 

[12] 

RF, M5P, 

Data-Mining 

Algorithms 

Talar 

catchment 

of Iran 

All water quality 

parameters 

Pearson 

correlation 

coefficients 

FC and TS  

had the 

greatest and 

least impact. 

Wang 

et.al. 

2021 

[9] 

Model 

Stacking 

Beaches 

Dataset 

Dissolved Solid, 

pH, Temperature, 

BOD 

Accuracy accuracy of 

78%, 81%, 

and 82.3% 

respectively. 
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Silberg 

et.al., 

2021 

[10] 

AR and 

SVM 

Chao 

Phraya 

River  

NH3-N, TCB, FCB, 

BOD, DO, and 

Salanity 

Accuracy Attained an 

accuracy of  

0.86-0.95. 

Hassan 

et.al., 

2021 

[8] 

RF, NN, 

MLR, SVM, 

and BTM 

Various 

locations in 

India 

DO, BOD, EC Kappa 

coefficient, 

Accuracy 

The results 

highlighted 

several 

influencing 

factors. 

 

3. Research Methodology 

The proposed methodology is divided into various steps. Steps are explained below in detail; 

3.1 Dataset Collection 

To perform the data analysis, data is gathered from the government Central Pollution Control 

Board for different locations of Delhi Region. Data is provided for 9 regions/area for 4 

parameters for the years 2013 to 2021. Various location is represented trough L1 to L9. The 9 

locations of Yamuna River are presented in fig 1. 

 

                                                       Fig 1. Yamuna River Water Stations 
 

3.2. Data Preprocessing 

For the collected dataset, data is pre-processed by checking for missing values. Then, all the 

water quality parameters are normalized using min-max normalization approach. Then, 

normalized parameters are passed further for computation of Water Quality Index and further 

processing [16-17]. 

3.3 Water Quality Index (WQI) 
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Based on these four parameter presented in Table 2, WQI is calculated at each location from 

year 2013-2021 [18-19]. WQI is calculated using equations (1)-(4).  

Water Quality Index(WQI)=  
∑ 𝑊𝑖𝑞𝑖𝑖=𝑛

𝑖=1

∑ 𝑞𝑖
                             (1) 

Normalized value of each parameter = (
𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑉𝑎𝑙𝑢𝑒−𝑀𝑖𝑛 𝑉𝑎𝑙𝑢𝑒

𝑀𝑎𝑥 𝑉𝑎𝑙𝑢𝑒−𝑀𝑖𝑛 𝑉𝑎𝑙𝑢𝑒
) ∗ 100                             (2) 

Sub Index of each Parameter= (𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑉𝑎𝑙𝑢𝑒 ∗ 𝑊𝑒𝑖𝑔ℎ𝑡)                                          (3) 

WQI=
   ∑ 𝑆𝑢𝑏 𝐼𝑛𝑑𝑒𝑥 𝑜𝑓 𝐸𝑎𝑐ℎ 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟

∑ 𝑤𝑒𝑖𝑔ℎ𝑡𝑠
                                                                                         (4) 

The standard values the WQI is as per CPCB Delhi depicted in Table 2.  

 

           Table 2. WQI values and its Classification 

 

Fig.2 presents the framework of the proposed approach and various components of the 

framework are that are explained further. 

 

Fig.2. Framework of the proposed methodology 
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3.4 Machine Learning Models 

The dataset is now further split based on 70:30 ratios. On the train data, several models 

namely are applied. After Training the models on train data, the models are tested and WQI 

values are predicted. Further, the results are compared based on various evaluation metrics. 

3.5 Proposed Methodology 

After prediction of Water Quality Index, a new hybrid approach is proposed for improved 

results. In this hybrid methodology, after pre-processing of data, Laten Semantic Analysis is 

applied. Latent Semantic Analysis is used for Dimensionality reduction, which will further 

enhance the features or parameters of water i.e., BOD, COD, pH and Temperature. Latent 

Semantic Analysis works on the principle of Singular Vector Decomposition (SVD). It is 

applied to numerical parameters that involves leveraging the technique's ability to identify 

and enhance latent patterns, leading to a more informative feature representation. This 

enhanced representation can contribute to better insights and improved performance in 

prediction tasks. To ensure consistency in scale, the numerical data undergoes normalization 

before the application of Latent Semantic Analysis (LSA). Normalization is a critical step to 

enhance the effectiveness of LSA. Subsequently, Singular Value Decomposition is 

implemented on the term-document matrix. Following SVD, only the top k singular values 

and their corresponding columns in U and V matrices are retained. This selective retention 

reduces the dimensionality of the data while preserving the most. The working of LSA is 

represnted in Fig.3. 

 

Fig.3. Process of Latent Semantic Anlaysis 

In this, the reduced U matrix serves as a transformed representation of the original features, 

capturing latent semantic relationships between them, thus, an enhanced set of features is 

created that encapsulates the underlying structure and relationships within the numerical data. 

These features may highlight latent patterns or relationships in the numerical data that were 

not apparent in the original feature set. After feature enhancement, the data is reconstructed 

by multiplying the reduced U, Σ, and V^T matrices. The reconstructed matrix represents an 
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approximation of the original data with the enhanced features [20-22].  

Therefore, the improved features obtained through Latent Semantic Analysis (LSA) can be 

utilized for the subsequent training of Extreme Gradient Boosting which is an ensemble 

learning technique and constructs a robust predictive model. The mathematical model behind 

the XGBoost involves the iterative addition of weak learners to the ensemble while 

optimizing an objective function as shown in fig 4.  

 

Fig.4. Working of Extreme Gradient Boosting 

The objective function is the sum of the loss function over all training instances and a 

regularization term as depicted in Fig. 4.  The dataset with enhanced features (X_enhanced) is 

splitted. An XGBoost model is initialized with parameters like the objective (classification), 

number of boosting rounds (n_estimators), maximum tree depth (max_depth) and learning 

rate [23-25]. 

3.6. Pseudocode of the proposed approach 

Algorithm 1: For WQI and Class Assignment 

Input: A numerical dataset represented as a 

matrix X having n parameters  

𝑶𝒖𝒕𝒑𝒖𝒕: 𝑾𝑸𝑰, 𝑻𝒂𝒓𝒈𝒆𝒕 𝑽𝒂𝒓𝒊𝒂𝒃𝒍𝒆 𝒚 (𝒄𝒍𝒂𝒔𝒔) 

 

Step 1: Read the matrix f 

matrix = read_csv("sample matrix.csv") 

 

Step 2: Handle missing values 

X_processed = handle_missing_values(matrix) 

 

Step 3: Calculate Sub Index  

sub_index_values = 

calculate_sub_index(X_processed) 
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Step 4: Calculate Water Quality Index (WQI) based on sub-index values 

wqi_values = calculate_wqi(sub_index_values) 

 

 𝑺𝒕𝒆𝒑 𝟓: 𝑨𝒔𝒔𝒊𝒈𝒏 𝒄𝒍𝒂𝒔𝒔 𝒍𝒂𝒃𝒆𝒍𝒔 𝒃𝒂𝒔𝒆𝒅 𝒐𝒏 𝒔𝒕𝒂𝒏𝒅𝒂𝒓𝒅 𝑾𝑸𝑰 𝑣𝑎𝑙𝑢𝑒𝑠      

class_labels = assign_class_labels(wqi_values) 

𝑭𝒖𝒏𝒄𝒕𝒊𝒐𝒏𝒔 

 

function handle_missing_values(X):     # Handle missing values (e.g., replace with mean or 

median) 

    X_processed = impute_missing_values(X) 

  return X_processed 

 

  function calculate_sub_index(X): 

        sub_index_values = (Normalized Value*Weight) 

    return sub_index_values 

 

function calculate_wqi(sub_index_values): 

    Wqi_values = 
   ∑ 𝑆𝑢𝑏 𝐼𝑛𝑑𝑒𝑥 𝑜𝑓 𝐸𝑎𝑐ℎ 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟

∑ 𝑤𝑒𝑖𝑔ℎ𝑡𝑠
 

    return Wqi_values 

 

function assign_class_labels(wqi_values) # Assign class labels based on standard WQI 

values 

    class_labels = classify_wqi(wqi_values) 

    return class_labels 

 

Algorithm 2:  Hybrid Approach and Class Assignment for unknown parameters 

Input: Assume a numerical dataset represented 

as a matrix X having parameters and a Class 

label y  

Output:Target Varible y (class)for unknown 

parameters 

 

Step 1: Read the matrix  

matrix = read_csv("matrix1.csv") 

 

Step 2: Pre-processing and Normalize the data 

X_normalized = normalize(matrix) 

 

Step 3: Apply Singular Value Decomposition 

(SVD) 
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U, Sigma, Vt = svd(X_normalized) 

 

Step 4: Choose the number of components (k) to retain 

k = choose_k() 

 

Step 5: Retain the top k components 

U_k = U[:, :k] 

Sigma_k = Sigma[:k] 

Vt_k = Vt[:k, :] 

 

Step 6: Feature enhancement 

X_enhanced = U_k * Sigma_k * Vt_k 

 

Step 7: Split the data into training and testing sets 

X_train, X_test, y_train, y_test = train_test_split(X_enhanced, y, test_size=0.3, seed_value 

=42) 

 

Step 8: Initialize and configure the XGBoost model 

 xgb_model = XGBClassifier( 

    objective='binary:logistic', 

    num_rounds=100, 

    max_tree_depth=3, 

    learn_rate=0.1, 

    sampling_rate=0.7, 

    tree_colsample=0.7, 

    seed_value=42 

) 

Step 9: Train the XGBoost model on the training data 

   xgb_model.fit(X_train, y_train) 

 

Step 10: Make predictions on the test set 

y_pred = xgb_model.predict(X_test) 

 

Step 11: Evaluate the performance of the model 

accuracy = accuracy_score(y_test, y_pred) 

precision = precision_score(y_test, y_pred) 

recall = recall_score(y_test, y_pred) 

 

Step 12: Predict for new parameters 

Class_label= label_class(parameters) 

 

4. Implementation 



 
Received: 16-01-2024         Revised: 12-02-2024 Accepted: 07-03-2024 

 

 
 

377 
Volume 48 Issue 1 (March 2024) 

https://powertechjournal.com 

 

The primary intent is to evaluate quality of water by considering multiple parameters in the 

proximity of industrial areas and along the course of the Yamuna River in Delhi. samples 

from various points along the river were collected, with a specific emphasis on locations near 

industrial establishments. The gathered water samples undergo comprehensive analysis for 

key water quality parameters. Following the data collection and analysis phase, the WQI is 

computed [26-27]. Subsequently, various machine learning models are employed to further 

refine the WQI calculations. Additionally, a novel hybrid approach incorporating Latent 

Semantic Analysis (LSA) and the XGBoost machine learning model is proposed to enhance 

predictive accuracy.  

To ensure a robust dataset, information is sourced from the Central Pollution Control Board 

(CPCB), a governmental body, encompassing different locations within the Delhi region[26]. 

The data spans nine distinct regions or areas, denoted as L1 to L9, and covers four essential 

parameters for the years 2013 to 2021[27]. This meticulous approach allows for a 

comprehensive understanding of variations across the specified regions and parameters, 

facilitating a nuanced analysis of the environmental dynamics in this critical area. The 

Sample data given by the authority in image form which was converted into excel/csv format 

for further processing as presented in Table 3. 

Table 3. Various parameter of water pollution at 9 locations of Yamuna River Delhi in March 

2023 

Location  Location_ 

Represented 

As 

pH COD(mg/l) BOD 

(mg/l) 

DO(mg/l) 

Palla L1 8.3 8 2 9.0 

Surghat  L2 8 12 2.5 3.8 

Khajori Paltoon  L3 7.9 112 28 NIL 

Kudesia Ghat L4 7.8 80 24 NIL 

ITO Bridge L5 8.1 72 24 1.3 

Nizamaadin 

Bridge 

L6 8.0 72 23 1.2 

Agar Canal 

(Okhla)  

L7 7.9 96 32 NIL 

Shahdara 

Drains 

(Downstream 

Okhla Drain) 

L8 7.8 112 36 NIL 

Agra Canal L9 8 96 30 NIL 

 

WQI is computed by considering these parameters. The reference values for Wi and Qi for 

the Yamuna River are obtained from the Central Pollution Control system, as outlined in 

Table 4. The minimum and maximum values for the nine locations, according to the CPCB, 
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are presented in Table 5. Utilizing these parameters, the WQI is computed and presented 

below. 

 

Table 4. Standard values of various water quality parameters 

S.No Parameter  Standard Value  Weighted Value 

1. pH 6.5-8.5 0.2272 

2. COD 0-3 0.0077 

3. DO 5 0.3862 

4. BOD 3 0.3213 

    

Table 5. Lowest and Highest values of 9 locations of Yamuna River 

Location  pH COD BOD DO 

Min Max Min Max Min Max Min Max 

L1 6.7 8.6 1 6 1 14 3.9 9.6 

L2 7.3 8.5 1.2 6.7 2.5 11 4.6 14 

L3 6.6 7.4 1.6 7.2 8 10 1.9 8.3 

L4 7.2 7.5 1.4 6.8 34 38 0.3 1.6 

L5 7.4 7.6 2 6.5 26 62 0.3 1.8 

L6 7.3 8 2.1 6.3 22 48 0.3 3.2 

L7 7.4 7.9 2.3 6.9 22 56 0.3 2.9 

L8 7.4 8 1.9 7 38 83 0.3 2.2 

L9 7.3 8.1 2.0 7.1 37 76 0.28 2.1 
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Fig 5. Box plots for all the water quality parameters 

Figure 5 illustrates the Box plot representing various parameters. Upon thorough analysis of 

the Box plot, it is evident that L1 and L2 exhibit the most favorable water quality parameters. 

While Location 1 (Palla) displays slightly elevated COD levels, all other parameters conform 

to standard observations. Conversely, at Location 2, COD levels are higher compared to L1. 

In contrast, Location 3 exhibits the least favorable water quality parameters among all 

locations, featuring a pH value below the standard threshold of 7.5, no recorded Dissolved 

Oxygen, an average BOD of 55.3, an average COD of 134, and a maximum COD value of 

198.  

In comparison, Location 8 and Location 9 demonstrate relatively superior water quality 

parameters when contrasted with Location 4, Location 5, and Location 6. The authors 

calculated the Water Quality Index for each location from 2013 to 2021 based on these four 

parameters, using equations 1, 2, 3, and 4. The average values of WQI for each year are 

calculated, and Table 6 presents the average WQI based on the year for each location. To 

facilitate better comprehension and analysis, a bar graph and box plot are provided in Fig.6. 

Table 6. Average WQI for 8 years for all locations 

Year  LOCATIONS 

L1 L2 L3 L4 L5 L6 L7 L8 L9 

2013 38.53 32.91 776.42 103.17 62.49 38.68 32.40 44.67 36.94 

2014 37.88 30.83 1004.09 110.44 63.64 40.75 34.66 38.24 34.95 

2015 31.09 38.31 1062.12 93.18 45.56 44.72 31.17 35.48 27.91 

2016 33.00 35.31 741.36 95.42 52.35 36.48 40.96 35.85 32.03 

2017 27.67 31.47 824.33 151.54 67.85 26.20 33.14 29.87 29.39 

2018 26.56 22.68 517.39 106.71 41.86 27.42 24.96 35.75 29.09 

2019 37.62 26.91 350.23 174.14 80.43 29.59 37.45 33.43 40.41 

2020 29.81 23.13 425.34 135.34 44.74 31.78 36.99 51.48 35.32 
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2021 38.78 40.58 504.05 107.32 65.08 50.55 57.70 63.82 37.77 

 

  

Location 1 Location 3 

  
Fig. 6 Bar graphs and line charts representing WQI 

The examination underscores that the water quality in the National Capital Region (NCR) 

falls short of meeting acceptable standards. While there has been a marginal enhancement in 

water quality post the COVID-19 pandemic, it still does not align with the prescribed 

standard value of Water Quality Index (WQI). Based on classifications given by table 2, 

further classes are grouped into three classes to enhance the accuracy as depicted in Table 8. 

Table 8. Classification of WQI Range 

WQI Range WQI Classification 

0-50 1 

51-100 2 

Above 100 0 

 

For further processing the sample data is prepared having 4 parameters and class label as 

shown in Table 9.  

Table 9. Sample data for processing into machine learning models 
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month Location pH COD BOD DO Quality Class 

1/1/2013 L1 7.2 32 3 10.2 Good 1 

2/1/2013 L1 7.4 20 2 8.8 Good 1 

3/1/2013 L1 7.4 24 2.4 8.5 Good 1 

4/1/2013 L1 7.7 32 3 11.5 Poor 2 

5/1/2013 L1 7.4 16 2.2 7.7 Good 1 

10/1/2013 L1 8 20 2.1 7.7 Good 1 

11/1/2013 L1 7.5 16 2.6 9.5 Good 1 

 

Subsequently, the data is normalized, and a scatter plot is presented in Fig. 7 to illustrate the 

correlation between the normalized values and the class labels across various classes. 

 
 

  
Fig. 7. Scatter plot of normalized values for all parameters BOD, COD, DO, pH 

These normalized values presented in Fig. 8 are subsequently condensed to three components 

through the application of the SVD and LSA model. The values for these components are 

presented in Fig.9. Three components are defined as [0,1,2] and first five values are shown. 
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Fig.8. Normalized values for all four water quality parameters BOD, COD, DO, pH 

 

Fig. 9. Enhance features obtained after applying LSA 

Then these normalized and reduced values are passed to XG BOOST machine learning 

models for further predication. 

5. Results and Discussion  

To implement the machine learning model, as elaborated earlier, the samples are partitioned 

into three distinct classes. Class 1 signifies good water quality, Class 2 denotes poor quality, 

and Class 0 indicates water unfit for drinking. In total, we have 840 samples containing Date, 

location, pH, DO, BOD, COD, and Class label information. Colab, a Google Python 

environment, is employed for file reading and applying machine learning models. The 

authors utilized various libraries, including NumPy, Pandas, Scikit-learn, and Seaborn for 

plotting. The dataset consists of 465 records for Class 1, 199 records for Class 2, and 176 

records for Class 0, displaying a roughly balanced distribution. The authors trained the model 

based on this data. 

In the proposed hybrid approach, all data parameters are initially normalized, and Latent 

Semantic Analysis (LSA) is employed for dimension reduction. While the authors used four 

parameters in this instance, dimension reduction can be extended to include more parameters. 

Following normalization and LSA, the parameters undergo training for machine learning 

models. Various algorithms, such as Logistic 
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Regression[28-29], Decision Tree[30], Support Vector Machine, Naïve Bayes, and XGBoost, 

are applied, alongside the proposed hybrid method. The data is splitted and 10-fold cross-

validation is implemented across all algorithms. The applied models are validated through 

Precision, Recall, and Accuracy metrics. Precision, Recall and accuracy is computed using 

these equations [31-33]. 

Precision =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 
                                                                                       

(5) 

Recall =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒  
                                                                                          

(6) 

Accuracy =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑖𝑜𝑛

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑖𝑜𝑛  
                                                                                    

(7) 

Confusion Matrix for the proposed approach is attained in Fig. 10. 

 

Fig.10. Confusion matrix attained for the proposed approach 

The conclusive outcomes are presented in Table 10. Notably, the proposed approach achieves 

the highest accuracy at 0.95 [34]. The results are depicted in Fig.11. 

Table 10. comparison of various techniques based on evaluation metrics 

Algorithm  Precision Recall Accuracy/NOR 

Accuracy 

Logistic Regression 0.83 0.82 0.83 

Decision Tree 0.81 0.82 080 
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SVM 0.69 0.69 0.70 

Naïve Byes 0.68 0.49 0.49 

XGBoost 0.84 0.82 0.85 

Proposed Method 0.947 0.934 0.95 

 

 

Fig.11. The comparison of machine learning models and proposed approach 

 

 

Discussion 

Seeking novel and efficient approaches, our exploration led us into the domain of machine 

learning, where we observed a prevalent trend in several studies. These studies, notably 

Ahmad et al. [6], Sakizadeh [9], Gazzaz et al. [11], and Adnan et al. [36] employed machine 

learning to predict the Water Quality Index (WQI). However, the incorporation of such 

extensive parameter sets, while effective for prediction, may present challenges in practicality 

for cost-effective real-time systems[35]. 

In contrast, our distinctive methodology charts a more streamlined path. Through 

normalization and the application of Latent Semantic Analysis (LSA) for dimension 

reduction, we achieve accurate predictions utilizing a modest four water quality parameters. 

The efficacy of our approach is highlighted by the remarkable maximum accuracy of 95%, 

surpassing the performance of state-of-the-art techniques. Notably, historical benchmarks, 

such as the best accuracy achieved by a Multi-Layer Perceptron using 10 parameters at 91%, 

underscore the efficiency and effectiveness of our approach in optimizing water quality 

prediction models. This streamlined strategy not only enhances prediction accuracy but also 

introduces a practical dimension for real-time water quality monitoring systems, paving the 

Logistic
Regression

Decision Tree SVM Naïve Byes XGBoost
Proposed
Method

Precision 0.83 0.81 0.69 0.68 0.84 0.947

Recall 0.82 0.82 0.69 0.49 0.82 0.934

Accuracy 0.83 0.8 0.7 0.49 0.85 0.95

0
0.2
0.4
0.6
0.8

1

Accuracy Graph Comparsion 

Precision Recall Accuracy Linear (Accuracy)
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way for cost-effective and efficient implementations. 

Conclusion: 

This research delves into the intricate nexus between water quality, environmental health, and 

the vitality of the Yamuna River ecosystem. The  alarming pollution levels, predominantly 

driven by industrial discharges, highlight the urgent need for robust measures to safeguard 

this essential water resource. The traditional approach of Water Quality Index (WQI) 

computation, while pivotal, is beset by challenges such as time-consuming data collection 

processes and escalating financial costs. Recognizing these limitations, the study embarks on 

a pioneering journey into the realm of machine learning, leveraging its prowess to 

revolutionize WQI predictions. The proposed hybrid approach, integrating Latent Semantic 

Analysis (LSA) and Extreme Gradient Boosting, emerges as a beacon of innovation. By 

reducing dimensionality and enhancing feature representation, this hybrid methodology not 

only streamlines the prediction process but also attains an impressive accuracy of 95.2%. 

This stands as a testament to the potential of advanced predictive models in addressing the 

evolving complexities of water quality dynamics. The main contributions of this work 

include spanning eight years of comprehensive data collection, WQI calculations at critical 

sites, and an introduction of a novel hybrid approach. This approach not only advances our 

understanding of water quality but also sets a precedent for future research in the domain. As 

challenges of a rapidly changing environment are confronted, this research serves as a 

guiding light, illuminating the path toward sustainable water management and the 

preservation of vital water bodies like the Yamuna River. 
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