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Abstract: In the realm of digital authentication, the security and accuracy of signature 

verification systems are paramount. This paper proposes a new approach for signature 

verification that is able to greatly improve the security and reliability through the synergy 

given by Generative Adversarial Networks (GANs), Kernelized Biohashing, and 

Bidirectional Long Short-Term Memory (BiLSTM) networks. The system proposed in this 

paper is based on cancellable biometrics which is a novel method that converts biometric data 

into new, secure, revocable domains, while allowing the user's privacy to be protected from 

any kind of misuse of data. First, we used GANs to generate a large and diverse synthetic 

signature dataset. This dataset is not only rich in quantity and diversity but also closely 

modeled on the genuine signatures' complex patterns and variations. The synthetic signatures 

go through Kernelized Biohashing, successfully converting them into a secure and encrypted 

form, preserving privacy while being able to capture essential integrity in signature biometric 

verification processes. The biohaseddata isanalyzed through the verification process using the 

BiLSTM networks. BiLSTM networks allow analysis of temporal dynamics with other 

attributes of each signature, in processing sequences and obtaining long-term dependencies. 

Our system applies these networks in bio-hashed data and consequently attains good accuracy 

in the verification of signature, thus distinguishing well between a genuine and a forged 

signature. In this integrated framework, the identified mechanisms assure the security and 

reliability of the digital authentications not only for the acute security and reliability 

challenges being faced by the traditional signature verification systems—such as forgery, data 

breach, and others—but they also set a new benchmark altogether. Our approach takes a 

significant leap forward in protecting user signatures while ensuring, through the application 

of cancelable biometrics and advanced machine learning techniques, the integrity of 

verification processes. 

 

Keywords: Generative Adversarial Networks, Synthetic Data, Kernelized Biohashing, Bi-

directional Long Short-Term Memory, Signature Verification. 

 

I. Introduction 

Signatures become very important, not only to ensure the authenticity of identity but also to 

authorize transactions. Thus, the signature data should have to be secured due to the misuse 

that could arise from cases involving fraudulent activities. Signature verification is one of the 
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critical processes in order to ensure that all the signatures used in different applications are 

genuine, so that the integrity of the transactions and the safety of the person from identity 

theft can be maintained.  

The proposed approach integrates Generative Adversarial Networks (GANs)[1] with 

Kernelized Biohashing[6][47] and Bi-directional Long Short-Term Memory (BiLSTM) 

networks [46]. Broadly, this paper covers a broad methodology that tries to include the 

potential of such advanced technologies, which can become handy tools in this age, to 

address the challenges presented in traditional methods of signature verification and the need 

to cover those challenges of reaching high accuracy in biometric verification.  

Generative Adversarial Networks (GANs) have grown to be a viable method of producing 

synthetic data that can closely match real-world datasets with high accuracy [3], 

consequently, to some extent, offering a strategic solution to challenges in using sensitive 

personal information. As a result, GANs provide an important means for the creation of 

synthetic signatures that still retain the inherent features of real signatures while protecting 

privacy, hence enhancing security in biometric data. In this case, the use of GANs has made 

it possible to reduce risks that may be exposed to the exposure of private personal details.  

Kernelized Biohashing is applied after the generation of synthetic signatures to derive its 

form in a secured, compact, binary manner. This transformation process greatly increases the 

security level of the data because it creates a biohash [21][23], which can resist many attack 

categories and assures biometric data integrity. Kernelized biohashing[34] is an advanced 

version of traditional techniques for biohashing. It brings in extra flavors of security, which 

can capture complex patterns present in data to make it adversarially difficult in the 

reconstitution of original data from its biohashed form.  

In the final stage, BiLSTM networks [46] are applied to the biohashed data in order to be 

used for signature verification. BiLSTM networks are best to learn from sequential and 

temporal data to capture the dynamic features of a signature, which are very useful for its 

accurate verification. It applies the bidirectional processing of BiLSTM networks to enable 

quite accurate discernment between authentic and forged signatures, hence making up for the 

drawbacks often suffered by the traditional verification method from high variations in 

signature styles and conditions.  

We present in this paper that GANs, in combination with kernelized Biohashing and BiLSTM 

networks, would present a promising approach that would yield a robust, secure, and efficient 

system for signature verification. This paper presents the contribution of each of these 

technologies to explores their potential in bringing revolution through advanced techniques in 

the field of biometric verification.  
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II. Literature survey 

E. Brophy et al. [1] give an overview of Generative Adversarial Networks (GANs) in the 

application to time series data, describing the development, use, and associated challenges, 

including the differentiation of GANs types for discrete and continuous data, and discuss 

roles in data privacy. M. Arjovsky et al. [2] propose WGAN (Wasserstein GAN) to further 

stabilize training by avoiding mode collapse, improved loss metrics, and training 

methodologies. Further, D. Garcia Torres [3] highlighted in his thesis the potential of GANs 

in creating synthetic data that exactly replicate the statistical properties, therefore solving the 

problems with both benefits and computation challenges, giving a new solution to the 

conventional problems of data generation. All these works illustrate progress, practical 

applications, and persisting challenges within the field of GANs, from basic training 

improvements to novel techniques in synthetic data generation.  

A novel Speech Retrieval Algorithm based on Bio-Hashing is proposed by Y.-B. Huang et al. 

[4], which refines retrieval accuracy and speed by segmenting the audio signals and removing 

silence and consequently processing the signal effectively in large databases. H. 

OtroshiShahreza et al. [5] explore the new territories of biometric security with an in-depth 

assessment of cancelable biometrics for all traits, which use measures such as BioHashing 

and MLP-Hashing to meet their stringent security standards. M. Kumar et al. [6] have 

undertaken a study for cancelable biometrics, focusing on several techniques of template 

generation that could help improve security and privacy for the biometric system. Their joint 

efforts now represent substantial advancements both in biometric security and speech 

retrieval technologies, enunciating significant contributions toward system efficiency, 

reliability, and, most importantly, user protection of privacy.  

H. Li et al. [7] propose the Adversarial Variation Network (AVN) to enhance the performance 

of data generation and variation. The verification task of handwritten signatures, which 

requires better feature extraction and accuracy, H. Li et al. tried to resolve difficulties such as 

sparsity and style variation. N. Sharma et al. [8] describe a Siamese Convolutional Neural 

Network model for the task of writer-independent offline signature verification and 

demonstrate it over the GPDS dataset. M. Okawa [9] applied the Modified Dynamic Time 

Warping (MDTW) algorithm to the online signature verification task, accepting both local 

and global weighting in dealing with intra- and inter-variabilities. It has been evidenced that 

significant improvements in signature verification are realized on the SVC2004 Task2 

dataset. Further, Okawa et al. [10] proposed a mean template set and boosting-based method 

of dynamic time warping distances gradient to improve verification accuracy by using mean 

information for intra-user variability. Their approach was able to improve on the current 

state-of-the-art on standard datasets. A. Singh et al. [11] applied a CNN-RNN to the task of 

verifying the online signature and obtained a testing accuracy of 97.05% on SVC 2004 and 

SigComp2009. 
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III. Methodology  

We used the SVC2004 dataset [12], which contains signature time series from 44 users. Each 

of the users had submitted 20 genuine and 20 forged signatures, cumulatively amounting to 

1760. The feature set consists of 7 features in total: X-coordinate, Y-coordinate, Time stamp, 

Button status, Azimuth, Altitude, and Pressure. Out of these original features, 25 features 

were further derived from the original, and after this, 62 aggregate features were computed 

from the signatures.  

 

Our methodology is divided into three phases:  

 

1. Synthetic Data Generation with GANs  

2. Kernelized Biohashing 

3. Signature Verification with BiLSTM 

 

3.1  Synthetic Data Generation with GANs 

Generative Adversarial Networks (GANs) generate new datasets that will look 

like the real data;thus, it ensures the safety of real data for security purposes [13]. It has 

two main components: the Generator and Discriminator. The objective of Generator to 

generate a new instance of data that is statistically as close as possible to real, authentic 

data, such that telling the two apart would be hard [14]. The authenticity of the new 

generated data by the Generator is evaluated by the Discriminator. 

 

It endeavours to distinguish between genuine data derived from the training set and 

counterfeit data synthesized by the Generator [15].The generator takes random noise as 

input and producing synthetic data. The objective is to ensure that the generated data closely 

resembles the real data present in the dataset. While there exists a wide range of GAN types, 

we choose to use Wasserstein GAN (WGAN) for the stable training task.WGAN was 

introduced by M. Arjovsky et al.[2]proposed a new approach in Generative Adversarial 

Networks using the Wasserstein distance for more stable training, which can tackle issues like 

mode collapse and instability, usually found in a normal GAN. The method provides 

meaningful loss metrics, increases the stability of training, and reduces mode dropping—all 

of which lead to further diverse data generations, while not necessarily perfectly balanced 

required between discriminator and generator. This improvement vastly enhances the quality 

and diversity in the generated data, thus making WGAN quite a leap over conventional 

GANs. During training, the following are the key components of the GAN that are used: 

 

(i) Wasserstein Loss Function: The basic Wasserstein Generational Network (WGAN) 

comprises the Wasserstein Loss Function. The Wasserstein’s lost functions is obtained 

from the Wasserstein distance that is also known as s Earth Mover’s distance. It 

measures the distance between the distribution between the synthetic data generated 

by GAN and real data [16]. 

(ii) Gaussian Noise Function 

The objective of adding Gaussian noise is to increase variability and randomness in 

data, which can help further in avoiding the problem of overfitting and makes the 
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model more robust [17]. We used 'add_gaussian_noise' function to add the Gaussian 

noise in data. 

(iii) Generator and Discriminator 

The Generator's primary function is to generate new data instances that resemble the 

genuine data as closely as possible. We used build_generator function in Python for 

the generator. It takes a random noise vector (from latent space) as input and produces 

output with the same number of features as the real data. We used the dense layer and 

LeakyReLU Activation to build the generator. 

 

It is the responsibility of the Discriminator to differentiate between authentic and fake data. 

The system assesses the integrity of the input data and categorises it as either genuine (as per 

the dataset) or faked (generated by the Generator) It is created using the build_discriminator 

function. It takes either real data or fake data generated by the Generator. Multiple dense 

layers, LeakyReLU Activation, and Dropout are required to build the discriminator. 

 

3.1.1 Data Preprocessing: 

Data preprocessing is a crucial step in machine learning. It involves transforming raw 

data into a format that is more suitable for modelling [18]. We used MinMaxScaler 

function from Scikit-learn is used to normalize of data. This scaler transforms each 

feature to a given range, which is typically between -1 and 1 [18][19]. 

 

3.1.2 Hyperparameter Tuning 

Hyperparameters are the settings or configurations that govern the training process 

and structure of the model[20].Table (1) exhibits the hyperparameters tuned in our 

model to generate the synthetic data by GAN. 

 

Table 1: Hyperparameters used to generate synthetic data by GAN 

 

Dense layers with different numbers of neurons 256, 512, 1024 in the generator 

Learning rate 0.00005 

Beta Parameters for Adam Optimizer beta_1=0.5 and beta_2=0.9 

Dropout Rate 0.5 

Batch size 32 

Number of epochs 3000 

Latent space dimensionality 100 

Standard Deviation for Gaussian Noise 0.1 

 

The table (2) displays the top 5 rows of the real data and synthetic data created using a 

Generative Adversarial Network (GAN) for the user 1. 
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Table 2: Data before and after applying GAN 

 

 
 

 
 

The figure (1) illustrates a visual comparison between real and synthetic data through 

histograms. It indicates that both real and synthetic data share similar distribution shapes 

across parameters like Pressure_mean, Azimuth_mean, Altitude_mean, Velocity in x_mean, 

Velocity in y_mean, duration, and total_distance, with central peaks and roughly normal 

distributions. However, synthetic data often shows narrower distributions, fails to fully 

capture the tails of real data distributions, and sometimes misaligns peaks, especially in 

metrics like Velocity and total_distance. While both data types generally align in central 

tendencies, discrepancies in spread, skewness, and tail length highlight differences in their 

distributional characteristics. Although the synthetic data generated by the GAN captures the 

general shape of the distributions in most cases, but there are differences in the spread, 

skewness, and tails of the distributions. This difference is important as we generated the 

synthetic data with some noise. 
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Figure 1: Visual comparison between real and synthetic data 
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3.2  Kernelized Biohashing 

Biohashing is a cancelable biometrics technique that involves generating a biometric 

template by combining the biometric data with a user-specific token (like a password or a 

key). This process results in a secure and unique biohash that can be used for authentication 

purposes. When biohashing is applied to the biometric data such a signature’s time series 

data, it produces new data i.e. template that can be revoked and replaced if compromised. 

This makes sure that actual biometric data is never stored or transmitted in its original form, 

which will provide better user privacy and security. We made biohashing more effective with 

the combination of biohashing and the Radial Basis Function (RBF) kernel. These, in turn, 

strengthen data security as biohashed data is pushed into a higher-dimensional, non-linear 

space. This way, one more layer of protection is added, and it increases the robustness of data 

against any potential security risks. The strategy that we applied for biohashing our data has 

been elaborated below. 

 

3.2.1  Preprocessing and Normalization 

In this stage, standardization of the data scale and format is applied to solve 

variability and heterogeneity problems common in raw biometric data, such as the value of 

the features of the signature [21]. Normalization gives each feature an equal chance to 

contribute to the resulting analysis, not allowing one single feature to dominate because of its 

scale. Such uniformity becomes important for the process of effectiveness and fairness in 

biohashing. We normalized the dataset using RobustScaler. RobustScaler methos is usually 

used for datasets with outliers, and it scales the feature values statistically that are robust to 

outliers [22]. RobustScaler uses the median and the interquartile range (IQR) in place of 

standard scaling methods that use mean and variance; hence, it is not affected by outliers 

when scaled. 

 

3.2.2 Token Generation 

Token generation is an important step in biohashing in order to enhance the level of 

security and privacy provided by the biometric authentication process. A token is generated 

randomly, which is unique to the user and will be combined with the biometrically 

normalized data of each user [23].Our dataset comprises 44 distinct user signature features. 

Each token must be unique to each user to ensure individualized security. we required to 

generate 44 tokens representing each individual user [24].We used pseudo-random number 

generator to generate random token for each user. Table (3) below shows the random token 

generated for five users. 

 

Table 3: Random token generated for biohashing 

User_ID Token 

User1 
[0.01968858 0.09225385 0.53856012 0.11814145 0.89845163 0.68730998 

0.45801974] 

User2 
[0.73212488 0.230313   0.88934299 0.29859344 0.44206529 0.09416282 

0.85227507] 

User3 [0.49341778 0.13459212 0.12154688 0.76645574 0.19611553 0.02909798 
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0.34044791] 

User4 
[0.61438432 0.93693458 0.69508934 0.47672457 0.57418766 0.57231484 

0.35697695] 

User5 
[0.91081989 0.39374395 0.71675897 0.32660566 0.27497934 0.39063227 

0.56608073] 

 

3.2.3 Feature Transformation 

Feature transformation integrates the user’s biometric data with their generated unique 

token in a way that ensures the resulting data is both secure and uniquely tied to the user. 

This step enhances the security of the biohashing process. We achieved feature 

transformation by applying matric multiplication [25]. 

 

A token matrix T is generated randomly. T will have dimensions 7 × n, where n is the total 

number of users i.e., 44 in our case. Matrix multiplication is applied between thenormalized 

data D and token matrix T that result into new matrix M of dimensions 1760×44, where each 

element 𝑴𝒊𝒋 is calculated as follows [25]: 

 
Where 

𝐷𝑖𝑘 represents the element in the i-th row and k-th column of matrix D 

𝑇𝑘𝑗represents the element in the k-th row and j-th column of matrix T. 

 

Matrix multiplication transforms the data to new feature space. Since the token matrix is 

unique for each user, the matrix multiplication process customizes the data representation 

accordingly. The figure(2) illustrates a comparison between the normalized data and the 

results after feature transformation is applied: 

 

 
Figure 2: Visual comparison between the normalized data and data obtained after feature 

transformation  
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Both datasets, normalized and feature transformed, exhibit changes in their distributions due 

to the feature transformation process, with the feature transformed data showing different 

spread and density characteristics compared to the normalized data.Figure (3) below exhibit 

the PCA visualizations between the normalized data and the feature-transformed data to show 

the dimensionality reduction. 

 

 
Figure 3: PCA visualizations between the normalized data and the feature-transformed data to 

show the dimensionality reduction. 

 

The PCA of the normalized data displays a certain spread and clustering of data points. This 

distribution reflects the variability and structure in the data post-normalization, indicating 

how features interact and contribute to the variance. While the PCA plot for the feature-

transformed data shows a distinct pattern of distribution compared to the normalized data. 

The spread and clustering of points may differ, suggesting that the feature transformation 

process has altered the data's underlying structure and the relationships among features. 

 

3.2.4 Radial Basis Function (RBF) Kernel 

The RBF kernel transforms the input feature space into a higher-dimensional space, 

potentially making it easier to linearly separate data points that are not linearly separable in 

the original space [26]. This gives one more security layer to our data.  

 

To apply the RBF kernel to a dataset, we computed the kernel matrix K, where each element 

𝐾𝑖𝑗 represents the RBF kernel between the ith and jth samples in the dataset. This matrix 

encapsulates the similarity between all pairs of samples based on the RBF kernel [27]. RBF 

kernel matrix is calculated as: 

 

(i) Calculating the pairwise Euclidean distances between all samples in the dataset. 

(ii) Applying the RBF kernel formula using the chosen bandwidth parameter (𝝈) to 

transform these distances into similarity measures. 
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(iii) Assembling these similarity measures into the kernel matrix K, which then serves as 

a transformed feature set for further analysis or machine learning tasks. 

 

The choice of 𝝈 significantly influences the transformation's effectiveness. We used heuristic 

approach [28] to determine value of 𝝈, Heuristic approach uses the median of the pairwise 

distances among all samples. We computed the pairwise Euclidean distances among all 

samples using the pdist function from SciPy, which efficiently generates a condensed matrix 

of distances. The median of these pairwise distances was chosen as the value for 𝝈.Table (4) 

displays thevalues obtained after applying the pdlist function on the dataset: 

 

Table 4: Value of bandwidth parameter (σ) 

 

Minimum Pairwise Distance 0.0 

Maximum Pairwise Distance 21.44025640013489 

Mean Pairwise Distance 3.038118059398096 

Median Pairwise Distance (σ) 0.9407331288673279 

 

As we have 1760 signature data of all users. RBF kernel will have matrix of (1760 × 1760) 

dimension. 

 

The Radial Basis Function (RBF) kernel plays an important role during the data preparation 

phase in BioHashing, because it is applied to the feature space of the biohashing method and 

map the data characteristics to a form which can further help to secure and efficient hashing. 

The RBF kernel applies the nonlinear transformation to the biohashed data in the mapping 

process from the original feature space to a space with more dimensions [29]. It improved 

separability, that's an important requirement for the BioHashing process [30]. The RBF kernel 

can effectively reduce the noise and outliers in the dataset by smoothing it [31]. The 

transformed data is robust toward small changes or perturbations, which helps to transform 

the data into a more stable and consistent state. The RBF kernel can effectively map the data 

into the high-dimensional space, thus, increasing the dimension of the dataset [32]. This 

extension is particularly useful for BioHashing, it allows for more difference between the 

data points. RBF kernel [33] amplifies the intrinsic data characteristics and hence BioHashing 

algorithm produces more distinguishable hashes. Structured data makes the hashes more 

secure and accurate.Figure (4) shows a plot Heatmap to visualize the RBF Kernel matrix: 
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Figure 4: RBF Kernel matrix (1760 × 1760) 

 

The diagonal is bright because the similarity of each point with itself is the highest (value of 

1), as expected in a similarity matrix. There's noticeable variability in the similarity scores 

between different points, with some off-diagonal areas showing higher similarity (warmer 

colors) and others much lower (cooler colors). 

 

3.2.5 PCA Kernel 

Kernel PCA is a powerful tool for dimensionality reduction, particularly suitable for 

complex datasets where linear methods fall short. This is usually applied to the situations 

when RBF kernel is not computationally feasible. In applications like signature verification, 

where capturing the nuances of the data is crucial, Kernel PCA can offer significant benefits 

in terms of feature extraction, model performance, and computational efficiency [34]. 

 

Kernel PCA is good for capturing the nonlinear relationships of features in datasets because it 

maps data into some higher-dimensional space in a nonlinear way, so that linear PCA can be 

applied. This thereby enables it to reduce the dimension of the data while still retaining the 

structure that would have been missed by linear PCA [35]. After applying RBF kernel, Kernel 

PCA extracts features that are more representative of the structure in the data, and thus, it is 

helpful for the tasks of classification, clustering, or visualization in which linear separability 

is not found in the original space [36]. 

Verification of such signatures is often carried out over complex or high-dimensional data, 

and for its noise reduction and improvement in accuracy, the role of Kernel PCA is quite 

instrumental and it enhances efficiency [37] [38]. After computation of the RBF kernel matrix 

(K), centering the kernel matrix (K') has to be done [39][40]. The centered kernel matrix  

𝐾′undergoes eigendecomposition: 

𝐾′𝑣𝑖 = 𝜆𝑖𝑣𝑖 

where𝑣𝑖are the eigenvectors, and 𝜆𝑖 are the corresponding eigenvalues. The eigenvectors 

correspond to the principal components in the feature space, and the eigenvalues indicate the 

variance captured by these components [41]. Original data points are projected onto the 
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reduced-dimensional space using the selected eigenvectors. This projection is effectively the 

dot product between the original kernel matrix (before centering) and the eigenvectors 

associated with the largest eigenvalues [41].Data points are projected onto the k principal 

components by computing a new representation: 

𝑍𝑖 = [𝑣1(𝑖), 𝑣2(𝑖), . . . . , 𝑣𝑘(𝑖)]𝑇 

where 𝑣𝑗(𝑖) is the i-th component of the j-th eigenvector, and k is the number of components 

(dimensions). These projections are the coordinates of the original data in the reduced-

dimensional space formed by the principal components. 

 

Figure (5) shows the dimensionality of RBF Kernel and Kernel PCA. Since the dataset of 

RBF kernel is highly dimensioned and it was not possible to vies it visually. We applied PCA 

to the RBF kernel-transformed dataset to reduce to two principal components so that clearer 

view of its structure. 

 

 
Figure 5: dimensionality of RBF Kernel and Kernel PCA 

 

We also explored several metrics to quantify aspects such as cluster cohesion, separation, and 

overall structure on the RBF Kernel and Kernel PCA datasets. We computed Silhouette Score 

[42], Davies-Bouldin Index [43] and Calinski-Harabasz Index [44] and yielded the following 

results as shown in the table (5). 

Table 5: Metrics to quantify overall structure of the RBF Kernel and Kernel PCA datasets 

 

 RBF Kernel-

Transformed Dataset 

Kernel PCA 

Dataset 

Silhouette Score 0.381 0.378 

Davies-Bouldin Index 0.944 0.962 

Calinski-Harabasz Index 1972.82 1759.78 
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The silhouette scores, Davies-Bouldin Indexes, and Calinski-Harabasz Indexes for both 

datasets show that the RBF kernel dataset marginally outperforms the Kernel PCA dataset in 

terms of cluster cohesion, separation, and definition. While both datasets exhibit good cluster 

quality, the RBF kernel's slightly better scores suggest it facilitates a more distinct grouping 

of data points, indicating its effectiveness in clustering transformations. 

 

3.3 Signature Verification with BiLSTM 

Bidirectional Long Short-Term Memory (BiLSTM) is an improvement on traditional 

LSTM, a type of RNN (Recurrent Neural Network) designed to capture long-term 

dependencies in sequence data. By processing data in both forward and backward directions, 

BiLSTM effectively enhances the information available to the model, leading to enhanced 

performance on various sequence-related tasks like natural language processing and time 

series analysis[45].Figure (6) shows the architectural view of biLSTM. 

 

 

 
Figure 6: Architectural view of biLSTM 

 

Using BiLSTM (Bidirectional Long Short-Term Memory) networks for signature 

verification, especially with features involves several critical steps [46]. Each feature plays a 

unique role in capturing the dynamic characteristics of a signature, which are crucial for 

distinguishing between genuine and forged signatures. Below are the steps for employing 

biLSTM for signature verification: 

 

3.3.1 Data splitting 

We utilized the biohashed dataset for the signature verification. Data is split in two 

different ways: by users and by signatures. In each of these cases, 80% of the data is used for 

training and the remaining 10% for both validation and testing. This makes sure the model is 

trained and tested over a disjoint set of individuals, thus reducing the chance of data leakage 

and overfitting. It is an important step to look how well our proposed model will generalize to 

new, unseen signatures.Table (6) and table (7) shows the splitting out dataset based on the 

users and signatures respectively.  
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Table6: Dataset splitting based on the user 

 

Splitters No. of Users 

(Total Users: 45) 

Percentage Users 

Training set 36 80% User12, User15, User35, User39, 

User28, User25, User21, User7, 

User23, User18, User24, User38, 

User34, User1, User37, User8, 

User14, User2, User4, User10, User5, 

User3, User11, User40, User31, 

User42, User19, User30, User27, 

User9, User29, User16, User22, 

User36, User45 

Testing set 05 10% User20, User32, User6, User44, 

User17 

Validation set 04 10% User33, User41, User43, User13 

 

Table 7: Dataset splitting based on the Signatures 

 

Splitters No. of Signatures 

(Total Users: 1760) 

Percentage 

Training set 1408 80% 

Testing set 176 10% 

Validation set 176 10% 

 

3.3.2 Data Preprocessing for Model Input 

Normalization: Features are normalized to ensure that all input variables contribute 

equally to the model training process. We use min-max normalization that scalesw the 

features to have a mean of 0 and a standard deviation of 1 [48]. This step is important 

for models like neural networks, which are sensitive to the scale of input data. 

 

3.3.3 Model Design and Compilation 

Architecture Design: Our BiLSTM model used total 8 layers as given below. 

Dropout layers is used for regularization to prevent overfitting while the LSTM layers 

can capture the temporal dependencies in the signature data, making it suitable for the 

task [49]. 

 

• Input Layer: It is defined by the shape of the input data to the first Bidirectional 

LSTM layer.  

• First Bidirectional LSTM Layer: It internally consists of two LSTM layers 

processing the data in both forward and backward directions. It has 64 units. 

• Dropout Layer: It follows the first Bidirectional LSTM layer to prevent 

overfitting. We used dropout layer with a rate of 0.5 to prevent overfitting. 
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• Second LSTM Layer: It is the standard (unidirectional) LSTM layer that 

processes the sequence data further. It has 32 units.  

• Dropout Layer: Another dropout layer follows the second LSTM layer for 

additional regularization. 

• Dense Layer: A fully connected layer with ReLU activation function for further 

processing the learned features. The Rectified Linear Unit (ReLU) is an activation 

function used for various tasks, including classification, regression, and feature 

extraction. 

• Dropout Layer: An additional dropout layer after the dense layer to reduce the 

risk of overfitting. 

• Output Layer: The final dense layer with a single unit and a sigmoid activation 

function for binary classification (genuine vs. forged) [50]. 

 

3.3.4 Model Training 

• Callbacks: ModelCheckpoint and EarlyStopping callbacks are used to save the 

best model based on validation loss and to stop training if the model doesn't 

improve, preventing overfitting. Model is trained on the preprocessed training 

data using the batch size 64 and 30 epochs. 

• Training: The model is trained using the training set, with the validation set used 

to monitor performance and adjust hyperparameters like learning rate if 

necessary. 

• Hyperparameter 

The hyperparameters are crucial for defining the model's architecture and training 

behavior. Adjusting the values of hyperparameters can significantly impact the 

model's ability to learn from the training data and generalize to unseen data [51]. 

The table (8) exhibit the hyperparameters that are utilized in our model, along 

with their corresponding values. 

 

Table 8: Hyperparameters used in biLSTM 

 

Units in the First BiLSTM Layer 64 units 

Units in the Second LSTM Layer 32 units 

Dropout Rate 0.5 

Units in the First Dense Layer 32 units, with ReLU (Rectified Linear 

Unit) activation 

Units in the Output Layer 1 unit, with a sigmoid activation 

function 

Optimizer Adam with a learning rate of 0.001 

Loss Function Binary crossentropy 

Batch Size 64 

Epochs 30 

Callbacks ModelCheckpoint, 

EarlyStopping(patience=5) 
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3.3.5  Evaluation and Analysis 

Table (9) shows the performance of our model with other models proposed by various 

researchers. 

Table9: Performance Metrics of the models 

  

Method Datase

t 

Accura

cy 

Precisi

on 

Recal

l 

F1 

score 

FAR FRR AU

C 

ER

R 

AnAVN Model 

for  

Handwritten  

Signature 

Verification [7] 

CEDA

R  

(Englis

h) 

96.16%       3.26

% 

4.42

% 

  3.77

% 

Single-template 

matching +  

LG-DTW with 

DMPs  [9] 

SVC20

04  

Task2 

              1.78

% 

Single-template 

strategy  

using a mean 

template  

and a weighting 

scheme [10] 

SVC20

04  

Task2 

              2.98

% 

Online 

Signature 

Verification  

using Deep 

Descriptors [11] 

SVC 

2004  

90.65%       15.43

% 

3.26

% 

0.96

89 

5.22

% 

GNU 

kernelized 

biohashing 

biLSTM 

signature 

verification 

[Proposed] 

Splitting by 

Users 

SVC20

04  

Task2 

95.50% 96.42

% 

98% 97.20

% 

7% 2% 0.96 7% 

GNU 

kernelized 

biohashing 

biLSTM 

signature 

verification 

SVC20

04  

Task2 

71.02% 67.50

% 

78.49

% 

72.58

% 

36.11

% 

21.51

% 

0.81 29% 
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[Proposed] 

Splitting by 

Signatures 

 

Figures (7) and (8) display the ROC curve and ERR rate, respectively, for the 

scenarios where the dataset is divided based on users and their signatures.  

 
Figure 7:  Receiver Operating Characteristic (ROC) curve, split by users and split by 

Signatures 

 
Figure 8:  Equal Error Rate (EER), split by users and split by Signatures 

 

Conclusion 

The BiLSTM model demonstrated high accuracy (95.5%), precision (96.4%), recall (98%), 

and an F1 score (95.76%) when split by users, indicating its effectiveness in distinguishing 

between genuine and forged signatures. The balance between model complexity and the 

ability to generalize to unseen signatures was effectively managed through the use of dropout 

layers and careful hyperparameter tuning. The study highlighted the significance of dynamic 

features in signature verification, underscoring the need for comprehensive feature extraction 

and selection techniques. With a False Acceptance Rate (FAR) of 7% and a False Rejection 
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Rate (FRR) of 2%, the model showed promise for practical security applications, though 

there's room for improvement in reducing FAR. 

 

References: 

1. E. Brophy et al., "Generative Adversarial Networks in Time Series: A Systematic 

Literature Review," in ACM Computing Surveys, vol. 55, no. 10, Article 199, February 

2023. 

2. M. Arjovsky, S. Chintala, and L. Bottou, "Wasserstein GAN," arXiv:1701.07875v3 

[stat.ML], Dec. 2017. 

3. D. Garcia Torres, "Generation of Synthetic Data with Generative Adversarial Networks," 

Degree Project in Computer Science, KTH Royal Institute of Technology, Stockholm, 

Sweden, 2018. 

4. Huang, Y.-B., Chen, D.-H., Hua, B.-R., & Zhang, Q.-Y. (2023). A high-performance 

speech BioHashing retrieval algorithm based on audio segmentation. Journal of 

Biometric Security and Data Protection, 11(2), 157-173. 

https://doi.org/10.1016/j.csl.2023.101551 

5. Otroshi-Shahreza, H., Melzi, P., Osorio Roig, D., Rathgeb, C., Busch, C., Marcel, S., 

Tolosana, R., & Vera-Rodríguez, R. (2023). Benchmarking of Cancelable Biometrics for 

Deep Templates. ArXiv.  

6. M. Kumar and N. Manisha, "Cancelable Biometrics: A Comprehensive Survey," 

ArtifIntell Rev, vol. 53, pp. 3403–3446, 2020. https://doi.org/10.1007/s10462-019-

09767-8 

7. H. Li, P. Wei and P. Hu, "AVN: An Adversarial Variation Network Model for 

Handwritten Signature Verification," in IEEE Transactions on Multimedia, vol. 24, pp. 

594-608, 2022, doi: 10.1109/TMM.2021.3056217 

8. N. Sharma, S. Gupta, H. G. Mohamed, D. Anand, J. L. V. Mazón, D. Gupta, and N. 

Goyal, "Siamese Convolutional Neural Network-Based Twin Structure Model for 

Independent Offline Signature Verification," Sustainability, vol. 14, no. 11484, 2022. 

https://doi.org/10.3390/su141811484 

9. M. Okawa, "Modified Dynamic Time Warping with Local and Global Weighting for 

Online Signature Verification," 2021 IEEE 3rd Global Conference on Life Sciences and 

Technologies (LifeTech), Nara, Japan, 2021, pp. 124-125, doi: 

10.1109/LifeTech52111.2021.9391879. 

10. M. Okawa, "Online signature verification using single-template matching with time-

series averaging and gradient boosting," in Pattern Recognition, vol. 2020, no. 107227, 

Jan. 2020. doi: 10.1016/j.patcog.2020.107227. 

https://doi.org/10.1007/s10462-019-09767-8
https://doi.org/10.1007/s10462-019-09767-8
https://doi.org/10.3390/su141811484


 
Received: 16-01-2024         Revised: 12-02-2024 Accepted: 07-03-2024 

 

 
422 Volume 48 Issue 1 (March 2024) 

https://powertechjournal.com 

 

11. Singh and S. Viriri, "Online Signature Verification using Deep Descriptors," 2020 

Conference on Information Communications Technology and Society (ICTAS), Durban, 

South Africa, 2020, pp. 1-6, doi: 10.1109/ICTAS47918.2020.233999. 

12. D. Y. Yeung et al., "SVC2004: First International Signature Verification Competition," in 

Biometric Authentication. ICBA 2004. Lecture Notes in Computer Science, vol. 3072, D. 

Zhang and A. K. Jain, Eds. Berlin, Heidelberg: Springer, 2004. doi: 10.1007/978-3-540-

25948-0_3 

13. Goodfellow et al., "Generative adversarial networks," Communications of the ACM, vol. 

63, pp. 139 - 144, 2014, https://doi.org/10.1145/3422622.  

14. Radford, L. Metz, and S. Chintala, "Unsupervised Representation Learning with Deep 

Convolutional Generative Adversarial Networks," CoRR, abs/1511.06434, 2015.  

15. X. Mao et al., "Least Squares Generative Adversarial Networks," in 2017 IEEE 

International Conference on Computer Vision (ICCV), 2017, pp. 2813-2821.  

16. Y. Li and Z. Dou, "When can Wasserstein GANs minimize Wasserstein Distance?" 

ArXiv, abs/2003.04033, 2020.  

17. J. Chang et al., "Distributed Radar Target Detection Based on RF-SSA in Non-Gaussian 

Noise," Electronics, 2022, https://doi.org/10.3390/electronics11152319 

18. H. Rangwani et al., "Class Balancing GAN with a Classifier in the Loop," Conference on 

Uncertainty in Artificial Intelligence, pp. 1618-1627, 2021. Access here 

19. A. Rios and L. Itti, "Closed-Loop Memory GAN for Continual Learning," International 

Joint Conference on Artificial Intelligence, pp. 3332-3338, 2018, 

https://doi.org/10.24963/ijcai.2019/462 

20. E. Nazari et al., "AutoGAN: An Automated Human-Out-of-the-Loop Approach for 

Training Generative Adversarial Networks," Mathematics, 2023, 

https://doi.org/10.3390/math11040977 

21. Y. Huang, B. Wang, X. Pu, Y. Li, and Q. Zhang, "Research on ciphertext speech 

biohashing authentication based on chaotic system and improved public chain," Journal 

of Supercomputing, 2023. https://doi.org/10.1007/s11227-023-05693-3 

22. H. Qian, Q. Wen, L. Sun, J. Gu, Q. Niu and Z. Tang, "RobustScaler: QoS-Aware 

Autoscaling for Complex Workloads," 2022 IEEE 38th International Conference on Data 

Engineering (ICDE), Kuala Lumpur, Malaysia, 2022, pp. 2762-2775, doi: 

10.1109/ICDE53745.2022.00252.  

23. C. Karabat and B. Topcu, "How to assess privacy preservation capability of 

biohashingmethods?: Privacy metrics," 2014 22nd Signal Processing and 

Communications Applications Conference (SIU), Trabzon, Turkey, 2014, pp. 2217-2220, 

doi: 10.1109/SIU.2014.6830705. 

24. H. O. Shahreza, C. Rathgeb, D. Osorio-Roig, V. K. Hahn, S. Marcel and C. Busch, 

"Hybrid Protection of Biometric Templates by Combining Homomorphic Encryption and 



 
Received: 16-01-2024         Revised: 12-02-2024 Accepted: 07-03-2024 

 

 
423 Volume 48 Issue 1 (March 2024) 

https://powertechjournal.com 

 

Cancelable Biometrics," 2022 IEEE International Joint Conference on Biometrics 

(IJCB), Abu Dhabi, United Arab Emirates, 2022, pp. 1-10, doi: 

10.1109/IJCB54206.2022.10007960. 

25. K. Rinki, P. Verma, and R. Singh, "A novel matrix multiplication based LSB substitution 

mechanism for data security and authentication," Journal of King Saud University: 

Computer and Information Sciences, vol. 34, 2021, 

https://doi.org/10.1016/j.jksuci.2021.01.013 

26. A. Morán, L. Parrilla, M. Roca, J. Font-Rossello, E. Isern and V. Canals, "Digital 

Implementation of Radial Basis Function Neural Networks Based on Stochastic 

Computing," in IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 

vol. 13, no. 1, pp. 257-269, March 2023, doi: 10.1109/JETCAS.2022.3231708 

27. Y. Liu and K. K. Parhi, "Computing RBF Kernel for SVM Classification Using 

Stochastic Logic," 2016 IEEE International Workshop on Signal Processing Systems 

(SiPS), Dallas, TX, USA, 2016, pp. 327-332, doi: 10.1109/SiPS.2016.64. 

28. W. Zhou, H. Tao, F. Wang, and W. Pan, "The Optimal Bandwidth Parameter Selection in 

GPH Estimation," Journal of Mathematics, vol. 2021, Article ID 2876000, 2021, 

https://doi.org/10.1155/2021/2876000  

29. Y. Li, Z. Wang, and H. Dai, "Improved Parkinsonian tremor quantification based on 

automatic label modification and SVM with RBF kernel," Physiological Measurement, 

vol. 44, 2023. DOI 10.1088/1361-6579/acb8fe  

30. A. Gopi, R. N. Sravana Jyothi, V. L. Narayana, and K. S. Sandeep, "Classification of 

tweets data based on polarity using improved RBF kernel of SVM," International Journal 

of Information Technology, vol. 15, pp. 965-980, 2020, https://doi.org/10.1007/s41870-

019-00409-4  

31. F. He, M. He, L. Shi, X. Huang, and J. Suykens, "Enhancing Kernel Flexibility via 

Learning Asymmetric Locally-Adaptive Kernels," ArXiv, abs/2310.05236, 2023.  

32. S. Atif, S. Khan, I. Naseem, R. Togneri, and Bennamoun, "Multi-Kernel Fusion for RBF 

Neural Networks," Neural Processing Letters, vol. 55, pp. 1045-1069, 2020, 

https://doi.org/10.1007/s11063-022-10925-3  

33. F. He, M.-q. He, L. Shi, X. Huang, and J. Suykens, "Enhancing Kernel Flexibility via 

Learning Asymmetric Locally-Adaptive Kernels," arXiv.org, vol. abs/2310.05236, 2023.  

34. Srinivas Mekala and B. Padmaja Rani, Kernel PCA Based Dimensionality Reduction 

Techniques for Preprocessing of Telugu Text Documents for Cluster Analysis, 

International Journal of Advanced Research in Engineering and Technology, 11 (11), 

2020, pp. 1337-1352 doi: 10.34218/IJARET.11.11.2020.121 applications.  

35. A. Rehman, A. Khan, M. A. Ali, M. U. Khan, S. U. Khan and L. Ali, "Performance 

Analysis of PCA, Sparse PCA, Kernel PCA and Incremental PCA Algorithms for Heart 

Failure Prediction," 2020 International Conference on Electrical, Communication, and 



 
Received: 16-01-2024         Revised: 12-02-2024 Accepted: 07-03-2024 

 

 
424 Volume 48 Issue 1 (March 2024) 

https://powertechjournal.com 

 

Computer Engineering (ICECCE), Istanbul, Turkey, 2020, pp. 1-5, doi: 

10.1109/ICECCE49384.2020.9179199. 

36. S. Suhas and Dr. C. R. Venugopal, "Feature Extraction and Classification of MRI Using 

Hybrid RBF Kernel and SVM," International Journal of Scientific Research in Computer 

Science, Engineering and Information Technology, 2021.  

37. S. Auddya, R. K. Singh and S. Sundaram, "Online Signature Verification using Time 

Warp Edit Distance based kernel," 2020 17th International Conference on Frontiers in 

Handwriting Recognition (ICFHR), Dortmund, Germany, 2020, pp. 319-324, doi: 

10.1109/ICFHR2020.2020.00065. 

38. G. Kumar, "Improving Digital Signature Verification Accuracy Through Support Vector 

Machine Learning: A Comparative Study," International Journal of Advance Scientific 

Research, Volume 03 Issue 05 pp.75-79, 2023, doi: https://doi.org/10.37547/ijasr-03-05- 

39. N. Tsapanos et al., "Fast Kernel Matrix Computation for Big Data Clustering," 

International Conference on Conceptual Structures, pp. 2445-2452, 2015, 

https://doi.org/10.1016/j.procs.2015.05.352  

40. X. Liu, X. Zhang, J. Xiong, F. Gu and J. Wei, "An Enhanced Iterative Clipping and 

Filtering Method Using Time-Domain Kernel Matrix for PAPR Reduction in OFDM 

Systems," in IEEE Access, vol. 7, pp. 59466-59476, 2019, doi: 

10.1109/ACCESS.2019.2915354. 

41. F. Hallgren and P. Northrop, "Incremental kernel PCA and the Nyström method," 

arXiv.org, abs/1802.00043, 2018.  

42. G. Ogbuabor and N. UgwokeF., "Clustering Algorithm for a Healthcare Dataset Using 

Silhouette Score Value," International Journal of Computer Science and Information 

Technology, vol. 10, pp. 27-37, 2018.  

43. B. J. D. Sitompul, O. S. Sitompul, and P. Sihombing, "Enhancement Clustering 

Evaluation Result of Davies-Bouldin Index with Determining Initial Centroid of K-

Means Algorithm," Journal of Physics: Conference Series, vol. 1235, 2019, DOI 

10.1088/1742-6596/1235/1/012015  

44. S. P. Lima and M. D. Cruz, "A genetic algorithm using Calinski-Harabasz index for 

automatic clustering problem," Revista Brasileira de ComputaçãoAplicada, 2020. 

45. P. Zhou et al., "Attention-Based Bidirectional Long Short-Term Memory Networks for 

Relation Classification," in Proceedings of the 54th Annual Meeting of the Association 

for Computational Linguistics (Volume 2: Short Papers), 2016.  

46. T. Longjam, D. R. Kisku, and P. Gupta, "Writer independent handwritten signature 

verification on multi-scripted signatures using hybrid CNN-BiLSTM: A novel approach," 

Expert Systems with Applications, vol. 214, 2022, Art. no. 119111.  

47. H. Saikia, K. Sarma, "Offline Signature Verification Using Radial Basis Function with 

Selected Feature Sets," Advances in Communication, Devices and Networking. Lecture 



 
Received: 16-01-2024         Revised: 12-02-2024 Accepted: 07-03-2024 

 

 
425 Volume 48 Issue 1 (March 2024) 

https://powertechjournal.com 

 

Notes in Electrical Engineering, vol 462. Springer, Singapore. 

https://doi.org/10.1007/978-981-10-7901-6_62, 2018. 

48. Henderi, T. Wahyuningsih, and E. Rahwanto, "Comparison of Min-Max normalization 

and Z-Score Normalization in the K-nearest neighbor (kNN) Algorithm to Test the 

Accuracy of Types of Breast Cancer," International Journal of Informatics and 

Information Systems, 4(1), 13-20, 2021, doi:https://doi.org/10.47738/ijiis.v4i1.73 

49. K. Nandhini and G. T. Pavai, "An Optimal Stacked ResNet-BiLSTM-Based Accurate 

Detection and Classification of Genetic Disorders," Neural Process Lett 55, 9117–9138, 

2023, https://doi.org/10.1007/s11063-023-11195-3 

50. J. Park, J. -H. Kim and Y. Jung, "Binary Classification Fault Diagnosis for Octocopter 

Using Deep Neural Network," 2021 29th Mediterranean Conference on Control and 

Automation (MED), PUGLIA, Italy, 2021, pp. 121-125, doi: 

10.1109/MED51440.2021.9480214. 

51. B. Singh, J. Singh and G. Singh, "Enhancing Facial Emotion Detection with CNN: 

Exploring the Impact of Hyperparameters," 2023 4th IEEE Global Conference for 

Advancement in Technology (GCAT), Bangalore, India, 2023, pp. 1-5, doi: 

10.1109/GCAT59970.2023.10353363. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


