- Power System Technology.

Y~ 1SSN:1000-3673

Received: 16-01-2024 Revised: 12-02-2024 Accepted: 07-03-2024

Exploring the Potential of Secure Signature Verification by
employing a Trio Integrated Approach using GAN, Kernelized
Biohashing and BiLSTM

GD Makkar?!, Suman Pant?*
gdmakkar@gmail.com?, suman_joshi_1@yahoo.co.in?
12School of CA & IT, Shri Guru Ram Rai University, Dehradun, Uttarakhand — 248001,
India
*Corresponding Author

Abstract: In the realm of digital authentication, the security and accuracy of signature
verification systems are paramount. This paper proposes a new approach for signature
verification that is able to greatly improve the security and reliability through the synergy
given by Generative Adversarial Networks (GANs), Kernelized Biohashing, and
Bidirectional Long Short-Term Memory (BiLSTM) networks. The system proposed in this
paper is based on cancellable biometrics which is a novel method that converts biometric data
into new, secure, revocable domains, while allowing the user's privacy to be protected from
any kind of misuse of data. First, we used GANs to generate a large and diverse synthetic
signature dataset. This dataset is not only rich in quantity and diversity but also closely
modeled on the genuine signatures' complex patterns and variations. The synthetic signatures
go through Kernelized Biohashing, successfully converting them into a secure and encrypted
form, preserving privacy while being able to capture essential integrity in signature biometric
verification processes. The biohaseddata isanalyzed through the verification process using the
BiLSTM networks. BILSTM networks allow analysis of temporal dynamics with other
attributes of each signature, in processing sequences and obtaining long-term dependencies.
Our system applies these networks in bio-hashed data and consequently attains good accuracy
in the verification of signature, thus distinguishing well between a genuine and a forged
signature. In this integrated framework, the identified mechanisms assure the security and
reliability of the digital authentications not only for the acute security and reliability
challenges being faced by the traditional signature verification systems—such as forgery, data
breach, and others—but they also set a new benchmark altogether. Our approach takes a
significant leap forward in protecting user signatures while ensuring, through the application
of cancelable biometrics and advanced machine learning techniques, the integrity of
verification processes.

Keywords: Generative Adversarial Networks, Synthetic Data, Kernelized Biohashing, Bi-
directional Long Short-Term Memory, Signature Verification.

l. Introduction

Signatures become very important, not only to ensure the authenticity of identity but also to
authorize transactions. Thus, the signature data should have to be secured due to the misus
that could arise from cases involving fraudulent activities. Signature verification is one of
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critical processes in order to ensure that all the signatures used in different applications are
genuine, so that the integrity of the transactions and the safety of the person from identity
theft can be maintained.

The proposed approach integrates Generative Adversarial Networks (GANs)[1] with
Kernelized Biohashing[6][47] and Bi-directional Long Short-Term Memory (BILSTM)
networks [46]. Broadly, this paper covers a broad methodology that tries to include the
potential of such advanced technologies, which can become handy tools in this age, to
address the challenges presented in traditional methods of signature verification and the need
to cover those challenges of reaching high accuracy in biometric verification.

Generative Adversarial Networks (GANSs) have grown to be a viable method of producing
synthetic data that can closely match real-world datasets with high accuracy [3],
consequently, to some extent, offering a strategic solution to challenges in using sensitive
personal information. As a result, GANs provide an important means for the creation of
synthetic signatures that still retain the inherent features of real signatures while protecting
privacy, hence enhancing security in biometric data. In this case, the use of GANs has made
it possible to reduce risks that may be exposed to the exposure of private personal details.

Kernelized Biohashing is applied after the generation of synthetic signatures to derive its
form in a secured, compact, binary manner. This transformation process greatly increases the
security level of the data because it creates a biohash [21][23], which can resist many attack
categories and assures biometric data integrity. Kernelized biohashing[34] is an advanced
version of traditional techniques for biohashing. It brings in extra flavors of security, which
can capture complex patterns present in data to make it adversarially difficult in the
reconstitution of original data from its biohashed form.

In the final stage, BiLSTM networks [46] are applied to the biohashed data in order to be
used for signature verification. BILSTM networks are best to learn from sequential and
temporal data to capture the dynamic features of a signature, which are very useful for its
accurate verification. It applies the bidirectional processing of BiLSTM networks to enable
quite accurate discernment between authentic and forged signatures, hence making up for the
drawbacks often suffered by the traditional verification method from high variations in
signature styles and conditions.

We present in this paper that GANSs, in combination with kernelized Biohashing and BIiLSTM
networks, would present a promising approach that would yield a robust, secure, and efficient
system for signature verification. This paper presents the contribution of each of these
technologies to explores their potential in bringing revolution through advanced techniques in
the field of biometric verification.
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Il.  Literature survey

E. Brophy et al. [1] give an overview of Generative Adversarial Networks (GANS) in the
application to time series data, describing the development, use, and associated challenges,
including the differentiation of GANs types for discrete and continuous data, and discuss
roles in data privacy. M. Arjovsky et al. [2] propose WGAN (Wasserstein GAN) to further
stabilize training by avoiding mode collapse, improved loss metrics, and training
methodologies. Further, D. Garcia Torres [3] highlighted in his thesis the potential of GANs
in creating synthetic data that exactly replicate the statistical properties, therefore solving the
problems with both benefits and computation challenges, giving a new solution to the
conventional problems of data generation. All these works illustrate progress, practical
applications, and persisting challenges within the field of GANs, from basic training
improvements to novel techniques in synthetic data generation.

A novel Speech Retrieval Algorithm based on Bio-Hashing is proposed by Y.-B. Huang et al.
[4], which refines retrieval accuracy and speed by segmenting the audio signals and removing
silence and consequently processing the signal effectively in large databases. H.
OtroshiShahreza et al. [5] explore the new territories of biometric security with an in-depth
assessment of cancelable biometrics for all traits, which use measures such as BioHashing
and MLP-Hashing to meet their stringent security standards. M. Kumar et al. [6] have
undertaken a study for cancelable biometrics, focusing on several techniques of template
generation that could help improve security and privacy for the biometric system. Their joint
efforts now represent substantial advancements both in biometric security and speech
retrieval technologies, enunciating significant contributions toward system efficiency,
reliability, and, most importantly, user protection of privacy.

H. Li et al. [7] propose the Adversarial Variation Network (AVN) to enhance the performance
of data generation and variation. The verification task of handwritten signatures, which
requires better feature extraction and accuracy, H. Li et al. tried to resolve difficulties such as
sparsity and style variation. N. Sharma et al. [8] describe a Siamese Convolutional Neural
Network model for the task of writer-independent offline signature verification and
demonstrate it over the GPDS dataset. M. Okawa [9] applied the Modified Dynamic Time
Warping (MDTW) algorithm to the online signature verification task, accepting both local
and global weighting in dealing with intra- and inter-variabilities. It has been evidenced that
significant improvements in signature verification are realized on the SVC2004 Task?2
dataset. Further, Okawa et al. [10] proposed a mean template set and boosting-based method
of dynamic time warping distances gradient to improve verification accuracy by using mean
information for intra-user variability. Their approach was able to improve on the current
state-of-the-art on standard datasets. A. Singh et al. [11] applied a CNN-RNN to the task of
verifying the online signature and obtained a testing accuracy of 97.05% on SVC 2004 and
SigComp2009.
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I11.  Methodology

We used the SVC2004 dataset [12], which contains signature time series from 44 users. Each
of the users had submitted 20 genuine and 20 forged signatures, cumulatively amounting to
1760. The feature set consists of 7 features in total: X-coordinate, Y-coordinate, Time stamp,
Button status, Azimuth, Altitude, and Pressure. Out of these original features, 25 features
were further derived from the original, and after this, 62 aggregate features were computed
from the signatures.

Our methodology is divided into three phases:

1. Synthetic Data Generation with GANs
2. Kernelized Biohashing
3. Signature Verification with BiLSTM

3.1 Synthetic Data Generation with GANs

Generative Adversarial Networks (GANSs) generate new datasets that will look
like the real data;thus, it ensures the safety of real data for security purposes [13]. It has
two main components: the Generator and Discriminator. The objective of Generator to
generate a new instance of data that is statistically as close as possible to real, authentic
data, such that telling the two apart would be hard [14]. The authenticity of the new
generated data by the Generator is evaluated by the Discriminator.

It endeavours to distinguish between genuine data derived from the training set and
counterfeit data synthesized by the Generator [15].The generator takes random noise as
input and producing synthetic data. The objective is to ensure that the generated data closely
resembles the real data present in the dataset. While there exists a wide range of GAN types,
we choose to use Wasserstein GAN (WGAN) for the stable training task. WGAN was
introduced by M. Arjovsky et al.[2]proposed a new approach in Generative Adversarial
Networks using the Wasserstein distance for more stable training, which can tackle issues like
mode collapse and instability, usually found in a normal GAN. The method provides
meaningful loss metrics, increases the stability of training, and reduces mode dropping—-all
of which lead to further diverse data generations, while not necessarily perfectly balanced
required between discriminator and generator. This improvement vastly enhances the quality
and diversity in the generated data, thus making WGAN quite a leap over conventional
GANs. During training, the following are the key components of the GAN that are used:

(1) Wasserstein Loss Function: The basic Wasserstein Generational Network (WGAN)
comprises the Wasserstein Loss Function. The Wasserstein’s lost functions is obtained
from the Wasserstein distance that is also known as s Earth Mover’s distance. It
measures the distance between the distribution between the synthetic data generated
by GAN and real data [16].

(i) Gaussian Noise Function
The objective of adding Gaussian noise is to increase variability and randomness in
data, which can help further in avoiding the problem of overfitting and makes the
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model more robust [17]. We used 'add_gaussian_noise' function to add the Gaussian
noise in data.
(iii) Generator and Discriminator

The Generator's primary function is to generate new data instances that resemble the
genuine data as closely as possible. We used build_generator function in Python for
the generator. It takes a random noise vector (from latent space) as input and produces
output with the same number of features as the real data. We used the dense layer and
LeakyReL U Activation to build the generator.

It is the responsibility of the Discriminator to differentiate between authentic and fake data.
The system assesses the integrity of the input data and categorises it as either genuine (as per
the dataset) or faked (generated by the Generator) It is created using the build_discriminator
function. It takes either real data or fake data generated by the Generator. Multiple dense
layers, LeakyReL U Activation, and Dropout are required to build the discriminator.

3.1.1 Data Preprocessing:
Data preprocessing is a crucial step in machine learning. It involves transforming raw
data into a format that is more suitable for modelling [18]. We used MinMaxScaler
function from Scikit-learn is used to normalize of data. This scaler transforms each
feature to a given range, which is typically between -1 and 1 [18][19].

3.1.2 Hyperparameter Tuning
Hyperparameters are the settings or configurations that govern the training process
and structure of the model[20].Table (1) exhibits the hyperparameters tuned in our
model to generate the synthetic data by GAN.

Table 1: Hyperparameters used to generate synthetic data by GAN

Dense layers with different numbers of neurons | 256, 512, 1024 in the generator
Learning rate 0.00005

Beta Parameters for Adam Optimizer beta 1=0.5 and beta 2=0.9
Dropout Rate 0.5

Batch size 32

Number of epochs 3000

Latent space dimensionality 100

Standard Deviation for Gaussian Noise 0.1

The table (2) displays the top 5 rows of the real data and synthetic data created using a
Generative Adversarial Network (GAN) for the user 1.
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Table 2: Data before and after applying GAN

-~ Power System Technology

Real Data

Users Pressure_mean |Azimuth_mean |Altitude_mean |Velocityin | Velocity in duration |total _distance

i mean v_mean
Userl_Sigl_Genuine | 581.1235294| 1179470588 565.7647059| 4.09987692| -137372549| 1793 2789976959
Userl_Sig2 Genuine | 684 2208589| 1180368098 592 6380368 4 808205521 -1.297784594| 1742| 28 45133667
Userl_Sig3_Genuine | 675.1309524) 1218154762 58375 5.05487273| -1473809524| 1833| 3232231295
Userl_Sigd_Genuine 71596875 11819375 554 4375| 5.374523046| -1.403958333| 1732| 29.59932544
Userl_Sig5_Gemuine | 701.7175141| 1205367232| 575.1977401| 4398216462 -1.648404786| 1852| 28 80141052

Synthetic Data generated by WGAN

Users Pressure_mean | Azimuth mean |Altitude_mean| Velocity in | Velocityin | duration |total distance

X_mean y_mean
Userl_Sigl Genuine 989.80273 1690.1327 403.8358| -1.3837441 -9.883473 780| 123.375854
Userl Sigl Genuine 989.80273 1690.1327 403.8356| -1.3837441 -9.883764 780| 123.375854
Userl Sig3 Genuine 480.68216 1237.1445 509.62323| 28863056 -0.4031584| 6429.0654|  7.7303863
Userl_Sigd_Genuine 326.68933 11287113 538.9315) 1.8549639| -0.24179718) 6818.9473|  8.7800045
Userl Sig5 Genuine 440.68222 1099.4778 5483561 1.2861543| -0.9684231) 3370.738|  20.192404

The figure (1) illustrates a visual comparison between real and synthetic data through
histograms. It indicates that both real and synthetic data share similar distribution shapes
across parameters like Pressure_mean, Azimuth_mean, Altitude_mean, Velocity in x_mean,
Velocity in y_mean, duration, and total_distance, with central peaks and roughly normal
distributions. However, synthetic data often shows narrower distributions, fails to fully
capture the tails of real data distributions, and sometimes misaligns peaks, especially in
metrics like Velocity and total_distance. While both data types generally align in central
tendencies, discrepancies in spread, skewness, and tail length highlight differences in their
distributional characteristics. Although the synthetic data generated by the GAN captures the
general shape of the distributions in most cases, but there are differences in the spread,
skewness, and tails of the distributions. This difference is important as we generated the
synthetic data with some noise.
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Figure 1: Visual comparison between real and synthetic data
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3.2 Kernelized Biohashing

Biohashing is a cancelable biometrics technique that involves generating a biometric
template by combining the biometric data with a user-specific token (like a password or a
key). This process results in a secure and unique biohash that can be used for authentication
purposes. When biohashing is applied to the biometric data such a signature’s time series
data, it produces new data i.e. template that can be revoked and replaced if compromised.
This makes sure that actual biometric data is never stored or transmitted in its original form,
which will provide better user privacy and security. We made biohashing more effective with
the combination of biohashing and the Radial Basis Function (RBF) kernel. These, in turn,
strengthen data security as biohashed data is pushed into a higher-dimensional, non-linear
space. This way, one more layer of protection is added, and it increases the robustness of data
against any potential security risks. The strategy that we applied for biohashing our data has
been elaborated below.

3.2.1 Preprocessing and Normalization

In this stage, standardization of the data scale and format is applied to solve
variability and heterogeneity problems common in raw biometric data, such as the value of
the features of the signature [21]. Normalization gives each feature an equal chance to
contribute to the resulting analysis, not allowing one single feature to dominate because of its
scale. Such uniformity becomes important for the process of effectiveness and fairness in
biohashing. We normalized the dataset using RobustScaler. RobustScaler methos is usually
used for datasets with outliers, and it scales the feature values statistically that are robust to
outliers [22]. RobustScaler uses the median and the interquartile range (IQR) in place of
standard scaling methods that use mean and variance; hence, it is not affected by outliers
when scaled.

3.2.2 Token Generation

Token generation is an important step in biohashing in order to enhance the level of
security and privacy provided by the biometric authentication process. A token is generated
randomly, which is unique to the user and will be combined with the biometrically
normalized data of each user [23].Our dataset comprises 44 distinct user signature features.
Each token must be unique to each user to ensure individualized security. we required to
generate 44 tokens representing each individual user [24].We used pseudo-random number
generator to generate random token for each user. Table (3) below shows the random token
generated for five users.

Table 3: Random token generated for biohashing

User ID | Token

Userl [0.01968858 0.09225385 0.53856012 0.11814145 0.89845163 0.68730998

0.45801974]

User2 [0.73212488 0.230313 0.88934299 0.29859344 0.44206529 0.09416282
0.85227507]

User3 [0.49341778 0.13459212 0.12154688 0.76645574 0.19611553 0.02909798
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0.34044791]
User4 [0.61438432 0.93693458 0.69508934 0.47672457 0.57418766 0.57231484
0.35697695]
Users [0.91081989 0.39374395 0.71675897 0.32660566 0.27497934 0.39063227
0.56608073]

3.2.3 Feature Transformation

Feature transformation integrates the user’s biometric data with their generated unique
token in a way that ensures the resulting data is both secure and uniquely tied to the user.
This step enhances the security of the biohashing process. We achieved feature
transformation by applying matric multiplication [25].

A token matrix T is generated randomly. T will have dimensions 7 x n, where n is the total
number of users i.e., 44 in our case. Matrix multiplication is applied between thenormalized
data D and token matrix T that result into new matrix M of dimensions 1760x44, where each
element M; is calculated as follows [25]:

7
M= kZI Dy - Ty

Where
D, represents the element in the i-th row and k-th column of matrix D
Ty jrepresents the element in the k-th row and j-th column of matrix T.

Matrix multiplication transforms the data to new feature space. Since the token matrix is
unique for each user, the matrix multiplication process customizes the data representation
accordingly. The figure(2) illustrates a comparison between the normalized data and the
results after feature transformation is applied:

Velocity inx mesn  Velocity in y mesan

uuuuuuuuuu

Figure 2: Visual comparison between the normalized data and data obtained after feature
transformation
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Both datasets, normalized and feature transformed, exhibit changes in their distributions due
to the feature transformation process, with the feature transformed data showing different
spread and density characteristics compared to the normalized data.Figure (3) below exhibit
the PCA visualizations between the normalized data and the feature-transformed data to show
the dimensionality reduction.

PCA of Normalized Data PCA of Feature Transformed Data

Principal Component 2
K
Principal Component 2

5 10 15 20 0 5 10 15
Principal Component 1 Principal Component 1

Figure 3: PCA visualizations between the normalized data and the feature-transformed data to
show the dimensionality reduction.

The PCA of the normalized data displays a certain spread and clustering of data points. This
distribution reflects the variability and structure in the data post-normalization, indicating
how features interact and contribute to the variance. While the PCA plot for the feature-
transformed data shows a distinct pattern of distribution compared to the normalized data.
The spread and clustering of points may differ, suggesting that the feature transformation
process has altered the data's underlying structure and the relationships among features.

3.2.4 Radial Basis Function (RBF) Kernel

The RBF kernel transforms the input feature space into a higher-dimensional space,
potentially making it easier to linearly separate data points that are not linearly separable in
the original space [26]. This gives one more security layer to our data.

To apply the RBF kernel to a dataset, we computed the kernel matrix K, where each element
K;; represents the RBF kernel between the i"™ and j™" samples in the dataset. This matrix
encapsulates the similarity between all pairs of samples based on the RBF kernel [27]. RBF
kernel matrix is calculated as:

(i) Calculating the pairwise Euclidean distances between all samples in the dataset.
(i) Applying the RBF kernel formula using the chosen bandwidth parameter (o) to
transform these distances into similarity measures.
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(iit) Assembling these similarity measures into the kernel matrix K, which then serves as
a transformed feature set for further analysis or machine learning tasks.

The choice of o significantly influences the transformation's effectiveness. We used heuristic
approach [28] to determine value of o, Heuristic approach uses the median of the pairwise
distances among all samples. We computed the pairwise Euclidean distances among all
samples using the pdist function from SciPy, which efficiently generates a condensed matrix
of distances. The median of these pairwise distances was chosen as the value for o.Table (4)
displays thevalues obtained after applying the pdlist function on the dataset:

Table 4: Value of bandwidth parameter (o)

Minimum Pairwise Distance 0.0

Maximum Pairwise Distance 21.44025640013489
Mean Pairwise Distance 3.038118059398096
Median Pairwise Distance () | 0.9407331288673279

As we have 1760 signature data of all users. RBF kernel will have matrix of (1760 x 1760)
dimension.

The Radial Basis Function (RBF) kernel plays an important role during the data preparation
phase in BioHashing, because it is applied to the feature space of the biohashing method and
map the data characteristics to a form which can further help to secure and efficient hashing.
The RBF kernel applies the nonlinear transformation to the biohashed data in the mapping
process from the original feature space to a space with more dimensions [29]. It improved
separability, that's an important requirement for the BioHashing process [30]. The RBF kernel
can effectively reduce the noise and outliers in the dataset by smoothing it [31]. The
transformed data is robust toward small changes or perturbations, which helps to transform
the data into a more stable and consistent state. The RBF kernel can effectively map the data
into the high-dimensional space, thus, increasing the dimension of the dataset [32]. This
extension is particularly useful for BioHashing, it allows for more difference between the
data points. RBF kernel [33] amplifies the intrinsic data characteristics and hence BioHashing
algorithm produces more distinguishable hashes. Structured data makes the hashes more
secure and accurate.Figure (4) shows a plot Heatmap to visualize the RBF Kernel matrix:
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Heatmap of RBF Kernel Transformed Data o

Data Points

0.4

0.0

Features (Transformed by RBF Kernel)

Figure 4: RBF Kernel matrix (1760 x 1760)

The diagonal is bright because the similarity of each point with itself is the highest (value of
1), as expected in a similarity matrix. There's noticeable variability in the similarity scores
between different points, with some off-diagonal areas showing higher similarity (warmer
colors) and others much lower (cooler colors).

3.25 PCAKernel

Kernel PCA is a powerful tool for dimensionality reduction, particularly suitable for
complex datasets where linear methods fall short. This is usually applied to the situations
when RBF kernel is not computationally feasible. In applications like signature verification,
where capturing the nuances of the data is crucial, Kernel PCA can offer significant benefits
in terms of feature extraction, model performance, and computational efficiency [34].

Kernel PCA is good for capturing the nonlinear relationships of features in datasets because it
maps data into some higher-dimensional space in a nonlinear way, so that linear PCA can be
applied. This thereby enables it to reduce the dimension of the data while still retaining the
structure that would have been missed by linear PCA [35]. After applying RBF kernel, Kernel
PCA extracts features that are more representative of the structure in the data, and thus, it is
helpful for the tasks of classification, clustering, or visualization in which linear separability
is not found in the original space [36].

Verification of such signatures is often carried out over complex or high-dimensional data,
and for its noise reduction and improvement in accuracy, the role of Kernel PCA is quite
instrumental and it enhances efficiency [37] [38]. After computation of the RBF kernel matrix
(K), centering the kernel matrix (K') has to be done [39][40]. The centered kernel matrix
K'undergoes eigendecomposition:
K"Ui = Aivi

wherev;are the eigenvectors, and A; are the corresponding eigenvalues. The eigenvectors
correspond to the principal components in the feature space, and the eigenvalues indicate the
variance captured by these components [41]. Original data points are projected onto the
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reduced-dimensional space using the selected eigenvectors. This projection is effectively the
dot product between the original kernel matrix (before centering) and the eigenvectors
associated with the largest eigenvalues [41].Data points are projected onto the k principal
components by computing a new representation:
Z; = [v1(D), v (D), ..., v (D]

where v;(i) is the i-th component of the j-th eigenvector, and k is the number of components
(dimensions). These projections are the coordinates of the original data in the reduced-
dimensional space formed by the principal components.

Figure (5) shows the dimensionality of RBF Kernel and Kernel PCA. Since the dataset of
RBF kernel is highly dimensioned and it was not possible to vies it visually. We applied PCA
to the RBF kernel-transformed dataset to reduce to two principal components so that clearer
view of its structure.

PCA on RBF Kernel Transformed Data Kernel PCA (100 Components)
0.3

ﬁ'/v«g

0.1

0.0

Principal Component 2
Principal Component 2

-0.2

-10 =5 0 5 10 15 -0.2 0.0 0.2 0.4
Principal Component 1 Principal Component 1

Figure 5: dimensionality of RBF Kernel and Kernel PCA

We also explored several metrics to quantify aspects such as cluster cohesion, separation, and
overall structure on the RBF Kernel and Kernel PCA datasets. We computed Silhouette Score
[42], Davies-Bouldin Index [43] and Calinski-Harabasz Index [44] and yielded the following
results as shown in the table (5).

Table 5: Metrics to quantify overall structure of the RBF Kernel and Kernel PCA datasets

RBF Kernel- Kernel PCA
Transformed Dataset Dataset
Silhouette Score 0.381 0.378
Davies-Bouldin Index 0.944 0.962
Calinski-Harabasz Index 1972.82 1759.78
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The silhouette scores, Davies-Bouldin Indexes, and Calinski-Harabasz Indexes for both
datasets show that the RBF kernel dataset marginally outperforms the Kernel PCA dataset in
terms of cluster cohesion, separation, and definition. While both datasets exhibit good cluster
quality, the RBF kernel's slightly better scores suggest it facilitates a more distinct grouping
of data points, indicating its effectiveness in clustering transformations.

3.3 Signature Verification with BiLSTM

Bidirectional Long Short-Term Memory (BiLSTM) is an improvement on traditional
LSTM, a type of RNN (Recurrent Neural Network) designed to capture long-term
dependencies in sequence data. By processing data in both forward and backward directions,
BiLSTM effectively enhances the information available to the model, leading to enhanced
performance on various sequence-related tasks like natural language processing and time
series analysis[45].Figure (6) shows the architectural view of biLSTM.
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Figure 6: Architectural view of biLSTM

Using BILSTM (Bidirectional Long Short-Term Memory) networks for signature
verification, especially with features involves several critical steps [46]. Each feature plays a
unique role in capturing the dynamic characteristics of a signature, which are crucial for
distinguishing between genuine and forged signatures. Below are the steps for employing
biLSTM for signature verification:

3.3.1 Data splitting

We utilized the biohashed dataset for the signature verification. Data is split in two
different ways: by users and by signatures. In each of these cases, 80% of the data is used for
training and the remaining 10% for both validation and testing. This makes sure the model is
trained and tested over a disjoint set of individuals, thus reducing the chance of data leakage
and overfitting. It is an important step to look how well our proposed model will generalize to
new, unseen signatures.Table (6) and table (7) shows the splitting out dataset based on the
users and signatures respectively.
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Table6: Dataset splitting based on the user

Splitters No. of Users Percentage | Users
(Total Users: 45)
Training set 36 80% Userl2, Userl5, User35, User39,

User28, User2b, User2l, User7,
User23, Userl8, User24, User38,
User34, Userl, User37, User8,
Userl4, User2, User4, Userl0, User5,
User3, Userll, User40, User3l,
Userd42, Userl9, User30, User27,
User9, User29, Userl6, User22,
User36, User45

Testing set 05 10% User20, User32, User6, User44,
Userl?
Validation set 04 10% User33, User4dl, User43, Userl3

Table 7: Dataset splitting based on the Signatures

Splitters No. of Signatures Percentage
(Total Users: 1760)

Training set 1408 80%

Testing set 176 10%

Validation set 176 10%

3.3.2 Data Preprocessing for Model Input
Normalization: Features are normalized to ensure that all input variables contribute
equally to the model training process. We use min-max normalization that scalesw the
features to have a mean of 0 and a standard deviation of 1 [48]. This step is important
for models like neural networks, which are sensitive to the scale of input data.

3.3.3 Model Design and Compilation
Architecture Design: Our BIiLSTM model used total 8 layers as given below.
Dropout layers is used for regularization to prevent overfitting while the LSTM layers
can capture the temporal dependencies in the signature data, making it suitable for the
task [49].

e Input Layer: It is defined by the shape of the input data to the first Bidirectional
LSTM layer.

e First Bidirectional LSTM Layer: It internally consists of two LSTM layers
processing the data in both forward and backward directions. It has 64 units.

e Dropout Layer: It follows the first Bidirectional LSTM layer to prevent
overfitting. We used dropout layer with a rate of 0.5 to prevent overfitting.
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e Second LSTM Layer: It is the standard (unidirectional) LSTM layer that
processes the sequence data further. It has 32 units.

e Dropout Layer: Another dropout layer follows the second LSTM layer for
additional regularization.

e Dense Layer: A fully connected layer with ReL U activation function for further
processing the learned features. The Rectified Linear Unit (ReLU) is an activation
function used for various tasks, including classification, regression, and feature
extraction.

e Dropout Layer: An additional dropout layer after the dense layer to reduce the
risk of overfitting.

e Output Layer: The final dense layer with a single unit and a sigmoid activation
function for binary classification (genuine vs. forged) [50].

3.3.4 Model Training

e Callbacks: ModelCheckpoint and EarlyStopping callbacks are used to save the
best model based on validation loss and to stop training if the model doesn't
improve, preventing overfitting. Model is trained on the preprocessed training
data using the batch size 64 and 30 epochs.

e Training: The model is trained using the training set, with the validation set used
to monitor performance and adjust hyperparameters like learning rate if
necessary.

e Hyperparameter
The hyperparameters are crucial for defining the model's architecture and training
behavior. Adjusting the values of hyperparameters can significantly impact the
model's ability to learn from the training data and generalize to unseen data [51].
The table (8) exhibit the hyperparameters that are utilized in our model, along
with their corresponding values.

Table 8: Hyperparameters used in biLSTM

Units in the First BiLSTM Layer 64 units

Units in the Second LSTM Layer 32 units

Dropout Rate 0.5

Units in the First Dense Layer 32 units, with ReLU (Rectified Linear
Unit) activation

Units in the Output Layer 1 unit, with a sigmoid activation
function

Optimizer Adam with a learning rate of 0.001

Loss Function Binary crossentropy

Batch Size 64

Epochs 30

Callbacks ModelCheckpoint,
EarlyStopping(patience=5)
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3.3.5 Evaluation and Analysis
Table (9) shows the performance of our model with other models proposed by various
researchers.
Table9: Performance Metrics of the models

Method Datase | Accura | Precisi | Recal | F1 FAR |FRR |AU |ER
t cy on I score C R
AnAVN Model | CEDA | 96.16% 3.26 | 4.42 3.77
for R % % %
Handwritten (Englis
Signature h)
Verification [7]
Single-template | SVC20 1.78
matching + 04 %
LG-DTW with | Task2
DMPs [9]
Single-template | SVC20 2.98
strategy 04 %
using a mean Task2
template
and a weighting
scheme [10]
Online SvC 90.65% 1543 | 3.26 | 0.96 | 5.22
Signature 2004 % % 89 %
Verification
using Deep
Descriptors [11]
GNU SVC20 | 95.50% | 96.42 | 98% | 97.20 | 7% 2% | 0.96 | 7%
kernelized 04 % %
biohashing Task?2
biLSTM
signature
verification
[Proposed]
Splitting by
Users
GNU SVC20 | 71.02% | 67.50 | 78.49 | 72.58 | 36.11
kernelized 04 % % % %
biohashing Task2
biLSTM
signature
verification
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Figures (7) and (8) display the ROC curve and ERR rate, respectively, for the
scenarios where the dataset is divided based on users and their signatures.
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Figure 8: Equal Error Rate (EER), split by users and split by Signatures
Conclusion

The BILSTM model demonstrated high accuracy (95.5%), precision (96.4%), recall (98%),
and an F1 score (95.76%) when split by users, indicating its effectiveness in distinguishing
between genuine and forged signatures. The balance between model complexity and the
ability to generalize to unseen signatures was effectively managed through the use of dropout
layers and careful hyperparameter tuning. The study highlighted the significance of dynamic
features in signature verification, underscoring the need for comprehensive feature extraction

and selection techniques. With a False Acceptance Rate (FAR) of 7% and a False Rejection
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Rate (FRR) of 2%, the model showed promise for practical security applications, though
there's room for improvement in reducing FAR.
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