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Abstract 

In recent years, as household energy use has risen, there has been a greater emphasis on intelligent 

energy management within smart homes. The energy crisis is now one of the world's most pressing 

issues. With fossil fuel limitations and escalating electricity costs due to increased demand, there is a 

pressing need for research and effective solutions in this field. Building smart homes is one approach 

to reducing energy usage. In these homes, consumers can not only control their energy consumption 

but also sell excess energy back to the grid using renewable sources like solar and wind. This 

dissertation aims to create a smart home energy management system (HEMS) to efficiently operate 

residential electrical appliances. The model prioritizes optimizing energy use to enhance user comfort, 

thermal comfort levels, and profitability of smart home energy management, aligning with consumer 

preferences. The results demonstrate the model's effectiveness. It uses consumption data and current 

U.S. electricity market prices, running simulations on an Intel Core i5-6200U processor system with 

64-bit Windows 10, Matlab R2017b, and Genetic Algorithm (GA) optimization. 
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1- Introduction 

A smart he integration of smart meters and intelligent energy management systems in smart homes is 

pivotal in enhancing energy efficiency and consumer convenience. According to Page (2018), the 

adoption of smart meters has significantly increased, setting a foundation for more sophisticated home 

energy management systems [1]. Zhou et al. (2016) elaborate on the concepts and configurations of 

smart home energy management systems (SHEMS), highlighting the importance of scheduling 

strategies that adapt to the dynamic nature of energy prices and user preferences [2]. These systems 

are designed to optimize energy consumption while ensuring user comfort, leveraging technologies 

such as machine learning and genetic algorithms to forecast and adjust to energy usage patterns 

effectively. Corno and Razzak (2012) discuss the implementation of intelligent energy optimization in 

smart homes, which utilizes user-intelligible goals to configure energy consumption [3]. This 
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approach not only enhances energy efficiency but also improves the user's ability to interact with and 

understand the system's decisions. Vojdani (2008) adds that the integration of renewable energy 

sources into smart grids is essential for the development of self-healing systems that promote 

sustainability and reduce reliance on traditional energy sources [4]. The role of genetic algorithms in 

optimizing energy management in smart homes is particularly notable. Bharathi et al. (2017) describe 

the use of genetic algorithms for demand-side management in smart grids, which can efficiently 

schedule appliances and manage loads to minimize costs and maximize energy savings [43]. This 

method reflects a significant shift towards adaptive, responsive energy management systems that not 

only respond to grid demands but also anticipate and act in the consumer's best interest based on 

learned consumption patterns. Moreover, the integration of renewable energy sources is crucial in 

advancing smart home energy management. Al-Ali et al. (2011) demonstrate a renewable energy 

management system in smart homes that effectively balances energy consumption with production 

from renewable sources, optimizing the overall energy usage while ensuring that energy is available 

when most needed [17]. The genetic algorithm approach in this context allows for a more dynamic 

and efficient handling of unpredictable renewable energy outputs and varying consumer demands. 

Continuing from the established importance of genetic algorithms in the management of smart home 

energy systems, Arif et al. (2014) explore the integration of renewable energy dispatch with demand-

side management in micro-grids, utilizing genetic algorithms to achieve an optimal balance between 

energy supply and demand [44]. This approach exemplifies the potential of genetic-based 

optimization techniques to not only enhance energy efficiency but also to accommodate the variable 

nature of renewable energy sources like solar and wind power. 

 

Additionally, the research by Nguyen et al. (2015) on energy management for households 

incorporating solar-assisted thermal load demonstrates the capabilities of genetic algorithms to handle 

complex, multi-variable optimization problems within smart grids. They show that such systems can 

effectively manage both the consumption and production of energy, accounting for uncertainties in 

renewable energy outputs and price fluctuations [45]. This is critical in ensuring that smart homes can 

operate independently as much as possible, reducing their reliance on external power sources and 

enhancing their sustainability. The practical application of these genetic-based optimization strategies 

in real-world scenarios is further evidenced by Anvari-Moghaddam et al. (2015), who present an 

optimized smart home energy management system that considers both energy savings and a 

comfortable lifestyle [51]. Their study highlights how genetic algorithms can be fine-tuned to reflect 

the priorities of the consumers, balancing cost, comfort, and energy efficiency. This user-centered 

approach is vital for the acceptance and effectiveness of smart home technologies. In terms of 

technological implementation, Shao et al. (2013) discuss the development of physical- based demand 

response-enabled residential load models that incorporate genetic algorithms to optimize the scheduling 
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and operation of home appliances [46]. This detailed modeling is crucial for predicting and managing 

the energy usage in smart homes, providing a reliable basis for making energy-saving decisions that 

do not compromise the homeowner's comfort. The combination of genetic algorithms with other 

technological advancements in smart homes, such as the use of ZigBee for wireless communication 

and infrared remote controls, further enhances the capability of these systems to provide efficient and 

user-friendly solutions. Han et al. (2011) demonstrate how these technologies can be integrated into 

an energy management system, allowing for more granular control and monitoring of energy usage 

[13]. Building upon the effective use of genetic algorithms in smart home energy management, there 

is also an increasing focus on enhancing user engagement and system intelligibility. For instance, 

Mesarić and Krajcar (2015) emphasize the integration of electric vehicles and renewable energy 

sources with home demand-side management systems, showcasing how genetic algorithms help in 

creating a more interconnected and efficient household energy ecosystem [16]. This integration 

allows for the intelligent scheduling of appliance use and vehicle charging, which minimizes energy 

costs and maximizes the use of on-site generated renewable energy. Furthermore, the potential of 

genetic algorithms extends beyond mere optimization to facilitate real-time operational decisions. Hu 

and Li (2013) detail the hardware design of a smart home energy management system that utilizes 

dynamic price response—a concept where genetic algorithms play a pivotal role in adjusting home 

energy consumption in response to fluctuating electricity prices [23]. This capability is crucial for 

leveraging periods of lower energy prices or reduced grid demand, enhancing the economic benefits of 

smart home systems. The evolution of smart home energy management also incorporates significant 

improvements in the algorithms' ability to predict and adapt to user behavior and environmental 

variables. For instance, Zhang et al. (2014) review various home energy management systems in the 

context of the smart grid, noting that genetic algorithms are instrumental in refining the systems' 

responsiveness and adaptability to changes in energy demand and supply conditions [20]. This 

continuous improvement in algorithmic performance is essential for developing systems that not only 

manage energy efficiently but also anticipate future energy patterns and adapt accordingly. Moreover, 

the work of Asare-Bediako et al. (2012) highlights the evolutionary trends in home energy 

management systems, where genetic algorithms contribute to the progression from basic automated 

systems to highly sophisticated frameworks that actively learn and predict household energy 

behaviors [19]. These systems are increasingly capable of integrating with broader smart grid 

functionalities, offering a holistic approach to energy management that extends beyond individual homes 

to entire communities or regions. In the broader scope of demand response and grid interaction, 

Mohsenian-Rad et al. (2010) demonstrate how autonomous demand- side management, based on 

game-theoretic energy consumption scheduling, can benefit from the strategic capabilities of genetic 

algorithms [36]. These algorithms optimize individual and collective energy decisions within the smart 

grid, promoting a balance between energy consumption, cost, and environmental impact. The strategic 
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application of these algorithms ensures that smart homes can effectively respond to grid demands 

while maintaining user comfort and convenience. Continuing further into the impacts and 

developments in smart home energy management, the role of genetic algorithms is crucial in adapting 

to user-specific needs and environmental conditions. For instance, Han et al. (2011) discuss how 

green home energy management systems can benefit from the comparison of energy usage between 

similar home appliances, employing genetic algorithms to optimize energy efficiency without 

compromising user convenience [12]. This type of tailored optimization is essential in promoting 

widespread adoption and satisfaction with smart home technologies. The efficiency of genetic 

algorithms in managing the variability of renewable energy sources is well-documented by Batista et 

al. (2013). Their work on monitoring photovoltaic and wind energy systems within smart grids, utilizing 

ZigBee devices, highlights how these algorithms help in dynamically managing energy flows, thus 

enhancing the reliability of renewable sources in smart homes [48]. Research by Huang et al. (2018) 

on chance-constrained optimization in home energy management systems also illustrates the 

sophistication of current models [42]. Here, genetic algorithms are used to deal with the uncertainty 

of renewable outputs and electricity pricing, optimizing energy consumption strategies to minimize 

costs while maintaining a high level of reliability and user satisfaction. Moreover, the flexibility and 

adaptability of genetic algorithms are evident in the work of Du and Lu (2012), where appliance 

commitment strategies for household load scheduling are developed [47]. These strategies, enabled 

by genetic algorithms, allow for real-time adjustments based on immediate energy consumption 

needs and availability, further illustrating the practical benefits of these technologies in everyday life. 

Lastly, the educational aspect of smart home energy management systems is covered by Milam and 

Venayagamoorthy (2014), who detail U.S. initiatives in smart meter deployment and the associated 

consumer education on energy savings and efficiency [25]. This highlights another critical role of 

genetic algorithms: not only do they optimize energy use, but they also contribute to consumer 

awareness and engagement, which are vital for the long-term sustainability of energy management 

practices. 

 

2- Problem statement 

In this section, the basic concepts of a smart home are introduced. 

2-1- HEMS concept 

This device provides an opportunity for energy management in smart homes by residents, which will 

have a significant effect on reducing the price of electricity consumption [11]. Smart HEMS, as an 

optimal system, provides energy management services in order to monitor and efficiently manage 

production, storage and provides energy consumption in smart homes [12]. With the communication 

techniques in the HAN home network, the collection of energy consumption information from all 

household appliances is provided. Real-time remote monitoring and control of various operating 
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modes of smart home appliances can be achieved by a personal computer or smart phones from any 

place and time [13]. In addition, HEMS can provide the optimal use status of home appliances and 

also provide energy storage and management services for distributed energy resources (DER) and 

HEMS [14]. 

2-2- HEMS architecture 

The general structure of a smart HEMS is shown in Fig. 1-2. The HEMS center includes a centralized 

intelligent controller to provide monitoring modules and control functions to the home owner based on 

the home communication network [15]. The real-time data of programmable and non-programmable 

home appliance electricity consumption can be collected by the smart HEMS main panel and 

implement the optimal demand message. The electric vehicle (EV) is a special type of programmable 

load. This device provides energy from electric networks for the transportation of residents and 

emergency power for other household loads in a smart collective environment [16]. 

 

 

Fig. 2-1: Architecture of the smart hose energy management system [2]. 
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𝑝 

3- Proposed method 

In this section, the studied system is described, and modeling of its various components including 

electric water heater, heating system, solar panels, and battery is presented. Furthermore, the 

proposed method is introduced and explained. 

3-2 Problem Modeling 

The objective of this paper is to design a controllable Home Energy Management System (HEMS) 

and to utilize it in a residential house equipped with a 5 kW solar system and battery storage for 

storing electrical energy and using it allowed required hours. 

The controllable appliances in this study are categorized into two groups. The first category includes 

appliances such as washing machines, dishwashers, clothes dryers, irons, vacuum cleaners, 

microwaves, electric stoves, electric kettles, and toasters, which require specifying a start time for 

their operation. Each appliance begins functioning at this specified time and completes its task within 

a predetermined duration. The second category comprises electric water heaters and heating/cooling 

systems, for which minimum and maximum temperatures are determined to decide their on/off status 

during each hour or time interval (quarter-hour in this paper). The subsequent sections of this section 

present the modeling of various components of the system. 

3-2-1 Water Heater Modeling 

The consumer specifies their desired minimum and maximum temperatures for the water heater. To 

model this, it is assumed that, according to reference [54], the heating section of the electric water 

heater can be represented as a first-order system. 

𝐶𝑤 =
𝑑𝑇ℎ𝑤

𝑑𝑡
= 𝑄𝑒𝑙𝑒𝑐 − 𝑚𝐶𝑝(𝑇𝑤 − 𝑇𝑖𝑛𝑙𝑒𝑡) + (𝑇𝑎𝑚𝑏 − 𝑇𝑤)                                                                                   

(3-1) 

In this formula: 

𝑇ℎ𝑤: Hot water temperature as a function of (°F) 

𝑇𝑖𝑛𝑙𝑒𝑡: The ambient temperature of the water heater as a function of (°F) 

 : The specific heat of water in terms of 𝐵𝑡𝑢 

1𝑏∙°𝐹 

is equal to 1. 
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The thermal resistance of the tank is denoted by R and depends on ℎ𝑟∙(𝑓𝑡)
2∙°𝐹

. Also, SA is the surface 

area of the 

𝐵𝑡𝑢 

water heater tank. 

𝑄𝑒𝑙𝑒𝑐 is the heat energy absorbed by the tank in one hour, calculated in 𝐵𝑡𝑢, is determined as follows: 

 

𝑄𝑒𝑙𝑒𝑐 = 3412𝑃 (3-2) 

Where (P) is the power in kilowatts (Kw) of the water heater 

In the Eq. (3-1), m is the volume of hot water output from the tank can be obtained in terms of output 

water in one hour (f) as follows: 

𝑚 = 8.34 (
1𝑏

𝑔𝑎𝑙
) × 𝑓 (

𝑔𝑎𝑙

ℎ𝑟
)                                                                                                                                   

(3-3) 

The term 𝐶𝑤 in the equation (3-1) is based on the volume of the water tank and can be determined 

from the relationship provided by the following formula: 

𝐶𝑤 = 𝑉(𝑔𝑎𝑙) ×
1𝑓𝑡3

7.48𝑔𝑎𝑙∗62.4
×

1𝑏

𝑓𝑡3 × 1 ×
𝐵𝑡𝑢

1𝑏°𝐹                                                                                                      

(3-4) 

     Here, V represents the volume of the tank in gallons. 

Based on the model proposed for the water heater tank, the ambient temperature around the water 

heater changes depending on the amount of hot water exiting the water heater. Typically, the control 

system for this device is considered such that the user sets a minimum and maximum temperature for 

the hot water. When the hot water temperature falls below the minimum value, the water heater turns 

on and remains on until it reaches the maximum temperature. If the hot water temperature is within 

the range of the minimum and maximum temperatures, the water heater remains in its current state 

(either on or off). In other words, when the hot water temperature is between the minimum and 

maximum values, the state of the water heater (on or off) depends on its previous state. 

In this paper, to improve the total energy consumption cost and to ensure that the water heater operates 

more during times of low electricity prices, an intelligent control system determines two 

temperatures: a minimum (𝑇𝑚𝑖𝑛) and a maximum (𝑇𝑚𝑎𝑥). Based on the user-defined setpoint 

temperature (setpoint), the water heater's operation is expressed as follows: 

{

𝑖𝑓  𝑇 < 𝑇𝑚𝑖𝑛  ⇉ 𝑆𝑡𝑎𝑡𝑒 = 𝑂𝑁
𝑖𝑓  𝑇 > 𝑇𝑚𝑎𝑥  ⇉ 𝑆𝑡𝑎𝑡𝑒 = 𝑂𝐹𝐹

𝑖𝑓  𝑇𝑚𝑖𝑛 ≤ 𝑇 ≤ 𝑇𝑚𝑎𝑥   ⇒ {
𝑖𝑓   𝑇𝑚𝑎𝑥 + 𝑇𝑚𝑖𝑛 − 2𝑇 > 𝑢 ⇒ 𝑆𝑡𝑎𝑡𝑒 = 𝑂𝑛
𝑖𝑓  𝑇𝑚𝑎𝑥 + 𝑇𝑚𝑖𝑛 − 2𝑇 > 𝑢 ⇒ 𝑆𝑡𝑎𝑡𝑒 = 𝑂𝐹𝐹
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(3-5)                                                                                   

Based on the above algorithm, if the water temperature is less than 𝑇𝑚𝑖𝑛, the water heater turns on. If 

the water temperature exceeds 𝑇𝑚𝑎𝑥, the water heater turns off. However, when 𝑇𝑚𝑖𝑛≤ T ≤ 𝑇𝑚𝑎𝑥, the 

decision to turn the water heater on or off depends on which temperature limit (𝑇𝑚𝑖𝑛or 𝑇𝑚𝑎𝑥) is closer 

to the current temperature T. In explaining Eq. (3-5), the value of u is considered to be 20% of the 

difference 𝑇𝑚𝑖𝑛 and 𝑇𝑚𝑎𝑥, meaning: 𝑢 = 0.2(𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛). For a better understanding, assume the 

system predicts the previous performance of the water heater. Consider a scenario where the water 

heater is on in the fifth interval, and its temperature is approaching 𝑇𝑚 . Despite not yet reaching that 

temperature, the system predicts that the water heater will remain on in the next interval as well. 

However, shortly after, the control system will turn off the water heater. This indicates that the 

system did not accurately predict the water heater's behavior and allocated the sixth interval to the 

water heater, whereas another appliance could have been turned on during that time. 

With this explanation, if the proposed system is used, this issue and similar ones are solved by 

approaching the temperature to 𝑇𝑚𝑖𝑛. Where the water heater is off and T is bringing close to 𝑇𝑚𝑖𝑛, the 

traditional control method cannot be possibly predicted to turn on the water heater in the next interval 

and the water heater will still turn on. If the system correctly predicted this situation, it could have 

turned off another appliance that has been issued a command to prevent its activation, thereby avoiding 

penalties resulting from the system. 

3-2-2 Air Conditioning System Modeling 

Based on [55], and considering that the air and water data are for January 2, 2018 (winter season), we 

assume that the air conditioning system is responsible for heating. The thermal model for room 

temperature is formulated as shown in Fig. 3. 

 

Fig. 3-1: Air Conditioning System Modeling 
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𝑑𝑡 

Based on the current room temperature, outside temperature, and the status of the heating system 

(on/off), the room temperature is updated. The model used in this paper is presented as a model 

implemented in MATLAB software, based the following equations: 

(
𝑑𝑄

𝑑𝑡
) = (𝑇ℎ𝑒𝑎𝑡𝑒𝑟 − 𝑇𝑟𝑜𝑜𝑚) ∙  𝑀𝑑𝑜𝑡 ∙ 𝐶                                                                                                                 

(3-6) 

(
𝑑𝑄

𝑑𝑡
)

𝑙𝑜𝑠𝑠𝑒𝑠
=

(𝑇ℎ𝑒𝑎𝑡𝑒𝑟−𝑇𝑜𝑢𝑡𝑑𝑜𝑜𝑟)

𝑅𝑒𝑞
                                                                                                                            

(3-7)  

(
𝑑𝑇𝑟𝑜𝑜𝑚

𝑑𝑡
) =

1

𝑀𝑑𝑜𝑡 ∙  𝐶
(

𝑑𝑄ℎ𝑒𝑎𝑡𝑒𝑟

𝑑𝑡
−  

𝑑𝑄𝑙𝑜𝑠𝑠𝑒𝑠

𝑑𝑡
)                                                                                                            

(3-8)                                                                                                                                                                                                                             

In these equations: 

(𝑑𝑄): represents the heat flow into the room by the HVAC system, 

𝑑𝑡 

C: is heat capacity of air in(1012 𝑗 𝐽⁄𝑘𝑔 ∙ °𝐶). 

𝑀𝑑𝑜𝑡: denotes the air volume flow rate moved into the room by the HVAC system, measured in kg/hr. 

𝑇ℎ𝑒𝑎𝑡𝑒𝑟 is the temperature of the air exiting the HVAC system. 

𝑇𝑟𝑜𝑜𝑚is the current temperature of the room air. 

(𝑑𝑄)𝑙𝑜𝑠𝑠𝑒𝑠 represents the heat flow losses from the building, derived from Eq. (7). In this equation, 

the thermal resistance 𝑅𝑒𝑞 equivalent for the building can be determined using the following equation: 

𝑅𝑒𝑞 = 0.0180
°𝐶
𝐽

𝑠

×
1ℎ𝑟

3600𝑠
                                                                                                                                       

(3-9) 

and the value of C is equal to (1012 𝑗 𝐽⁄𝑘𝑔 ∙ °𝐶) 

The emphasis here is that the value of (𝑇ℎ𝑒𝑎𝑡𝑒𝑟) is defined by the equations from 3-6 to 3-8. 

3-2-2-1- Determining the Electrical Heating System Power 

The value of (𝑇ℎ𝑒𝑎𝑡𝑒𝑟) mentioned in equations 3-6 to 3-8 represents the temperature of the heated air 

by the electrical heating system. In this paper, it is assumed that the HVAC system increases the inlet 

air temperature to 10 degrees Celsius (50 degrees Fahrenheit). 

𝑇ℎ𝑒𝑎𝑡𝑒𝑟 = 𝑇𝑟𝑜𝑜𝑛 + 50°𝐹                                                                                                                                      

(3-10) 

Now, the question arises: How much electrical power is required by the HVAC system to achieve a 



 
Received: 06-04-2024         Revised: 15-05-2024 Accepted: 28-06-2024 

 

 
125 

Volume 48 Issue 2 (July 2024) 
https://powertechjournal.com 
 

temperature increase of 10 degrees Celsius)? According to the reference (source), this can be 

determined using Eq. 3- 11, where the power P required by the HVAC system will be in kilowatts 

(kW). 

𝑃 = 
𝑇𝑒𝑚𝑝 𝑅𝑖𝑠𝑒 × 𝐶𝐹𝑀 

𝑘𝑤 3193 

(3-11) 

In this equation: 

The TempRise is the amount of increased temperature (in °F) 

CFM is transfer volume in a certain interval of time in terms of 
(𝑓𝑡)3

 

𝑚𝑖𝑛 

For example, if the building area is 100 square meters with a height of 3 meters, the building volume 

will be 300 cubic meters or 10594(𝑓𝑡)3. 

(300 × (1𝑚 ×
100𝑐𝑚

1𝑚
×

1𝑖𝑛𝑐ℎ

2.54𝑐𝑚
×

1𝑓𝑡

12𝑖𝑛𝑐ℎ
)

3
)                                                                                                        

(3-12) 

Now, if we want the building temperature to increase by 10 degrees Celsius (50 degrees Fahrenheit) 

in one hour, we will have: 

𝐶𝐹𝑀 =
10594

60𝑚𝑖𝑛
≈ 177

(𝑓𝑡)3

𝑚𝑖𝑛
                                                                                                                                

(3-13) 

Based on Eq. (3-11), the required amount of kw is determined as: 

𝑃𝑘𝑤 =
50(°𝐹)×177

(𝑓𝑡)3

𝑚𝑖𝑛

3193
≈ 2.75𝑘𝑤                                                                                                                       

(3-14) 

Based on the CFM value, the air volume flow rate 𝑀𝑑𝑜𝑡considering the air density is selected of 

approximately 388 kg/h,. 

3-2-2-2 Air Temperature Control System 

The air temperature control system predicts the room temperature similar to the water heater 

temperature control system, with the difference that the room temperature takes on a different value. 

Thus, the same advantage mentioned applies to 𝑇𝑚𝑖𝑛 and 𝑇𝑚𝑎𝑥 based on u. With appropriate prediction 

of the indoor air temperature control system performance, the operating time of the devices can be 

accurately determined and adjusted. 
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2-3-2-3 Energy Storage System Model 

The energy storage system essentially refers to a battery bank capable of storing energy and 

delivering it to other devices or even the main grid when needed. In a smart home environment where 

operational periods are scheduled, the charge and discharge cycles of the storage system are also 

determined by the energy management system. To maintain battery efficiency, the power discharge 

and charge (SOC) states must be limited to specific ranges as described below: 

𝑃𝑏𝑎𝑡𝑡.𝑐ℎ(𝑞) ≤  𝑃𝑐ℎ.𝑚𝑎𝑥 ∙ η𝑐ℎ ∙ 𝑢𝑏𝑎𝑡𝑡(𝑞)                                                                                                             

(3-15) 

𝑃𝑏𝑎𝑡𝑡.𝑐ℎ(𝑞) ≤  (
𝑃𝑑𝑐ℎ.𝑚𝑎𝑥

η𝑑𝑐ℎ
) ∙ (1 − 𝜇𝐵𝑎𝑡𝑡(𝑞))                                                                                                       

(3-16) 

(𝑆𝑜𝐶𝑚𝑖𝑛 ≤ 𝑆𝑜𝐶 ≤ 𝑆𝑜𝐶𝑚𝑎𝑥)                                                                                                                                              

(3-17) 

𝑃𝑐ℎ∙𝑚𝑎𝑥 and 𝑃𝑑𝑐ℎ∙𝑚𝑎𝑥 are the maximum power limits of battery charge and discharge. 

𝑆𝑜𝐶𝑚𝑖𝑛 and 𝑆𝑜𝐶𝑚𝑎𝑥 are the top and bottom limits SOC of the battery. 

𝜂𝑐ℎ and 𝜂𝑑𝑐ℎare binary variables indicating the charging and discharging status of the battery. Since 

the battery cannot simultaneously charge and discharge, the following constraint must be considered: 

𝜇𝑐ℎ(q) + 𝜇𝑑𝑐ℎ(q) ≤ 1 

The advantage of using two variables 𝜇𝑐ℎ(q) and 𝜇𝑑𝑐ℎ(q) compared to the state of the battery with a 

certain variable is that with two variables, we can represent a state where the battery is neither 

charging nor discharging. Consequently, the battery's lifespan increases compared to a scenario where it 

is always either charging or discharging. Updating the SoC based on the battery's previous state and its 

charging or discharging within the q interval is according to Eq. (18) [51]. 

     (SoC (q +  1) = SoC (q) +
(𝑃𝑏𝑎𝑡𝑡.𝑐ℎ(𝑞)−𝑃𝑏𝑎𝑡𝑡.𝑑𝑐ℎ(𝑞))∙∆ℎ𝑠𝑡𝑒𝑝

𝐸𝑏𝑎𝑡𝑡
                                                               (3-

18) 

𝐸𝑏𝑎𝑡𝑡 is the battery energy capacity is expressed in kWh and ∆ℎ𝑠𝑡𝑒𝑝 is time interval [51] which it’s 

value is considered one-quarter (1/4) of an hour. 

 

3-2-4-Photovoltaic (PV) Generator Modeling 

A photovoltaic (PV) generator is a system that directly converts sunlight into electrical energy. The 

electrical power output of the generator is a function of solar radiation intensity and ambient 

temperature. For this purpose, the power of the PV modules is measured under standard test 

conditions and calculated under various environmental conditions. The data on solar radiation 
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intensity is known based on [56] and is plotted at specified time intervals. Additionally, the ambient 

temperature 𝑇𝑐 varies throughout the day according to the Fig. 2-4 . The values are assumed according 

to [57]: 

𝑃𝑝𝑣𝑡 = 𝑃𝑆𝑇𝐶
𝐺

𝐺𝑆𝑇𝐶
[1 − 𝐾𝑇.𝑃𝑉(𝑇𝐶𝑡 − 𝑇𝑟)]                                                                                                           

(3-19) 

𝐺𝑆𝑇𝐶= is the solar radiation level measured in standard test conditions in W/m². G= Solar radiation is 

expressed in W/m² 

𝐾𝑇.𝑃𝑉= Photovoltaic generator power temperature coefficient 

𝑃𝑆𝑇𝐶=Maximum power under standard test conditions in photovoltaics (w) 

𝑇𝐶𝑡=Environment temperature in degrees Celsius 

𝑇𝑟=Reference temperature of the photovoltaic module (degrees Celsius) 

𝑃𝑝𝑣𝑡=The power generated by the photovoltaic module at time t (w) 

3-4-Combination of real-time pricing (RTP) and inclining block rate (IBR) 

In an intelligent cost-minimizing electricity control system, it is possible for most devices to enter 

circuits during low-cost moments, causing the grid to experience peak loads at these times. This 

situation, when considering a large number of smart homes connected to the power grid, can pose 

challenges, and solutions must be considered to reduce the peak to average ratio (PAR) of the load. In 

other words, the intelligent optimization problem aimed at minimizing costs from the consumer's 

perspective should be such that both parties (consumer and utility company) are satisfied. One 

suitable solution to address this issue is to consider inclining block rate (IBR), where if the electrical 

power received by the consumer exceeds a predetermined threshold, the electricity price increases 

significantly for that period. Consequently, the smart system decides to distribute loads at different 

times to mitigate peak-to-average ratio (PAR) night and day. The relation contributed to the IBR is as 

follows: 

𝑃𝑟𝑐𝑖(𝑠𝑖) = {
𝑎𝑖        0 ≤  𝑠𝑖 ≤  𝑐𝑖

𝑏𝑖                 𝑠𝑖 > 𝑐𝑖
                                                                                                                                      

(3-20) 

𝑎𝑖represents the Instant price of electricity in i time interval. 

𝑏𝑖 is the second-tier level of the electricity price , which must also be larger than 𝑎𝑖. 

𝑠𝑖 represents the total consumed power the time interval during i time interval. 

Based on this equation, after identifying 𝑠𝑖 as the consumed power, if 𝑠𝑖 exceeds a threshold 𝑐𝑖, 

the price of electricity is calculated with 𝑏𝑖 instead of 𝑎𝑖. It is usual that 𝑏𝑖 is considered as a 

coefficient of  :𝑏𝑖 = 𝜆𝑎𝑖 
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3-5 - Objective Function 

In the optimization problem of interest, the objective function to be optimized consists of three main 

components. The first part relates to the electricity cost resulting from the consumption of electrical 

power by equipment, whereby there is a natural inclination for devices to be used more during periods 

of lower electricity prices. However, users of these devices still prefer to activate them at their desired 

times to perform their tasks, which constitutes the second part of the objective function. The third 

part of the objective function pertains to user satisfaction with the ambient temperature, defined as 

the level of comfort or thermal well-being. 

In the following, sections of this objective function will be expressed mathematically. 

3-5-1 Electricity Cost 

Each electrical device consumes a certain level of electrical power, and for every unit of time that the 

device operates, it will consume energy. By multiplying this amount by the energy consumption (in 

kilowatt-hours) and the electricity price, the cost of electrical energy consumption will be 

determined. The following equation describes this relationship. 

𝐽1 =  𝑀𝑖𝑛𝐶𝑜𝑠𝑡 =  𝑀𝑖𝑛 ∑ 𝑃𝑟𝑐𝑞(𝑃𝑞)  ×  𝑃𝑞 × ∆𝑡(𝑞)

𝑇

𝑞=1

  

s.t: 

𝑃𝑞 =  𝑀𝑖𝑛 ∑ 𝑃𝑖  ×  𝑢𝑖(𝑞) 

𝑣

𝑖=1

  

 

 

 

 

(3-21) 

In this expression, 𝑃𝑖 represents the power consumption of device i, and (𝑞)indicates the on/off state 

of device i during the time interval q (if (u = 1), the device is on, and if (u = 0), the device is off). 

Here, q denotes a period of time, typically 15 minutes, proposed in this paper. After calculating the 

energy consumed in a period for all specified devices 𝑃𝑞, the electrical energy cost for that period 

𝑃𝑟𝑐𝑞(𝑃𝑞) is determined based on the electricity price using the pricing pattern combination (IBR and 

RTP). This cost is computed by summing the values obtained for different time periods to calculate 

the total electricity cost for a day. 𝑃𝑞 in each time interval represents the net power consumption of 

devices, meaning that the power received from the grid and the power generated by solar panels or 

the power that batteries may provide due to charging or discharging must be considered in this 

relation. Therefore, 𝑃𝑞 is modified: 
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𝑃𝑞 =  ∑ 𝑃𝑖  × 𝑢𝑖(𝑞)  +  𝑃𝑏𝑎𝑡𝑡(𝑞)  −  𝑃𝑝𝑣(𝑞)

𝑁

𝑖=1

  

 

 

(3-22) 

Where 𝑃(𝑞) is the amount of power obtained from solar energy. 

𝑃𝑏𝑎(𝑞) represents the battery power, which can be positive (charging) or negative (discharging). 

𝑃𝑏𝑎𝑡𝑡(𝑞)  =  𝑃𝑏𝑎𝑡𝑡.𝑐ℎ(𝑞)  −  𝑃𝑏𝑎𝑡𝑡.𝑑𝑐ℎ (𝑞) (3-23) 

𝑃𝑏𝑎𝑡𝑡.𝑐ℎ(𝑞) represents the battery charging power, and 𝑃𝑏𝑎𝑡𝑡.𝑑𝑐ℎ(𝑞) represents the battery discharging 

power. 

3-5-2- Resident Comfort Level 

In addition to cost reduction, the user desires to have their preferred device turned on at any hour they 

choose and to perform the assigned task. For this purpose, before starting the planning process, the 

user must specify time categories for each device. The first category is the permissible operating time 

for devices, meaning that equipment should operate within that interval. The second category is the 

user's preferred time interval for device operation, indicating that the user strongly prefers devices to 

operate during their desired time period. Additionally, each device has different prioritization criteria 

that must also be specified. The details of user-entered information will be discussed in Section Four. 

Suppose for device i, if the permissible time interval is defined as [ℎ𝑠.𝑖, ℎ𝑒.𝑖]and the preferred interval 

[ℎ′ , ℎ′ ], 

then the preference function (𝐽2) can be considered as 

follows: 

𝑠. 𝑡 {

𝑖𝑓             𝑡𝑠.𝑖 >= ℎ𝑠.𝑖
′    $ 𝑡𝑒.𝑖 ≤ ℎ𝑒.𝑖

′ ⇒ 𝑥𝑞 = 0  

𝑜𝑡ℎ𝑒𝑤𝑖𝑠𝑒 ⇒ {
𝑡𝑠.𝑖 < ℎ𝑠.𝑖

′ ⇒  𝑥𝑞 = 𝛼1(ℎ𝑠.𝑖
′ − 𝑡𝑠.𝑖) 

𝑡𝑒.𝑖 < ℎ𝑒.𝑖
′ ⇒  𝑥𝑞 = 𝛼2(𝑡𝑒.𝑖 − ℎ𝑒.𝑖

′ )

                                    

𝑠.𝑖 𝑒.𝑖 

 

This relationship indicates that if a device operates within the user's preferred time interval, the 

satisfaction level will be 100%. Since the goal is to minimize the objective function, 𝑥𝑞will be equal to 

0. Otherwise, 𝑥𝑞will be increased by the distance from the preferred time period. 

3-5-3 Thermal Comfort 

The third part of the objective function is dedicated to the thermal comfort of the residents, such that 

if the temperature falls within the desired range, 𝑦3 = 0 .Also, If it is out of range, 𝐽3 can be; 

(3-24) 
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𝑀𝑖𝑛 𝐽3 =  ∑  𝑦𝑞

𝑇

𝑞=1

 

 

(3-24) 

𝑦𝑞 = {

0          𝑖𝑓      𝑇𝑚𝑖𝑛 ≤ 𝑇 ≤ 𝑇𝑚𝑎𝑥  

𝛽𝐻 ×   (𝑇 −) + 𝑦𝐻

𝛽𝐶  ×   (𝑇𝑚𝑖𝑛 − 𝑇) − 𝑦𝑐

 

T demonstrates the environmental temperature. 𝑇𝑚𝑖𝑛 and 𝑇𝑚𝑎𝑥 are the lower and upper temperature 

limits, respectively. The objective is to optimize 𝐽3.. Therefore, if T is in the range of 𝑇𝑚𝑖𝑛 and 𝑇𝑚𝑎𝑥, 

𝑦𝑞 = 0. Otherwise, the value of 𝑦𝑞 will be increased. Total 𝑦𝑞𝑠 in all eras of time, will be resulted in 

𝐽3. 

 

4- Results and Analysis 

In order to reduce consumer costs, enhance user comfort, and increase HEMS efficiency, a model for 

planning thermal comfort levels was presented in the previous section. In this section, the 

performance of the proposed system will be evaluated under various scenarios. It is noteworthy that 

all simulation stages were conducted in the Matlab R2017b software and using the genetic 

optimization algorithm. 

4-2 Input Data 

The input data includes information about responsive loads (plannable devices) and their power 

consumption, as well as the power consumption of non-responsive loads (non-plannable) and the 

predicted daily hot water usage based on the references [42,51]. Additionally, information regarding 

electricity real time pricing on an hourly basis from reference [58] is considered for specific regions 

in New York on January 2, 2018, as shown in Fig. 4-1. 

 

Fig. 4-1: Electricity real time pricing 
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The air temperature data for New York City on January 2, 2018, is provided based on reference [55]. 

See Fig. 4-2 for details. 

 

 

Fig. 4-2: The solar irradiance levels on January 2, 2018. 

Figs. 4-3 and 4-4 based on reference [56], show solar irradiance levels and ambient temperature, the 

extractable power capacity from solar panels with 5kw capacity for residential homes, as presented in 

models provided in Section 3. 

Fig. 4-3: Solar Radiation Levels, January 2, 2018. 
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Fig. 4-4: Amount of Extractable Power from Solar Panels 

In Table 4-1, the information on smart devices used in the model is provided. This table includes the 

nominal power of each device, along with the allowable operating time intervals, user-preferred 

operating intervals, and the predicted duration of device operation. For example, according to [51], 

the nominal power of a washing machine is 1 

 

kW, and it should operate for a maximum of 2 hours. The allowable operating interval for this device 

is considered from 7 AM to 9 PM, while the user prefers this device to operate preferentially between 

8 AM and 2 PM. 

An important point to note about this table is that the performance information of devices is presented 

on an hourly basis, and the planning for them is also done on an hourly basis. However, it is possible 

that some of these devices may complete their tasks in less than an hour. Nevertheless, the scheduling 

system, based on hourly time intervals, is forced to allocate a full hour for the operation of each 

device. For example, in this table, two one-hour intervals are allocated for the washing machine's 

operation, even though the machine may complete its task in one hour and 15 minutes, the system's 

prediction necessitates reserving two one-hour intervals for operation. This issue becomes prominent 

when the electricity price is lower during the second interval, where the device operates for only 15 

minutes. Because, the scheduling prediction allocates the two-hour interval for the device's operation, 

missing the opportunity for another device to operate at a favorable price during this time interval. In 

other words, in a one-hour interval where the electricity price was low, only 15 minutes of electricity 

consumption occurred, and the devices remained off for the remaining 45 minutes. 

To address this issue, instead of planning on a 24-hour basis, scheduling is carried out in intervals of 

15 minutes, meaning decisions about device activation are made four times per hour. Therefore, it is 

necessary to update the information from Table 4-1 to Table 4-2, accordingly. 
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Table 4-1: The performance of household appliances on an hourly basis [51]. 

 

Household 

Appliances 

nominal 

power (kW) 

Permissible 

Operating 

Interval 

Preferred 

Operating 

Interval 

Duration of 

Operation per 

Hour 

Priority 

weighting of 

Performance 

Washing Machine 1 07:00-21:00 08:00-14:00 2 1 

Dishwasher 1.6 06:00-18:00 14:00-18:00 2 2 

Clothes Dryer 1.8 09:00-21:00 11:00-17:00 1 1 

Iron 1.2 01:00-13:00 05:00-07:00 1 2 

Vacuum Cleaner 0.8 08:00-20:00 09:00-12:00 1 2 

Microwave 1 08:00-19:00 11:00-14:00 1 3 

Electric Stove 0.6 10:00-18:00 14:00-17:00 2 3 

Electric Kettle 1 04:00-12:00 06:00-07:00 1 3 

Roast 0.8 01:00-10:00 06:00-08:00 1 3 

 

Second table: In Table 4-2, it is assumed that appliances 

operate in inter Table 4-2: Operation of household appliances 

in 15 

 

vals of 15 minutes. 

-minute intervals. 

Household 

Appliances 

nominal 

power 

(kW) 

Permissible 

Operating 

Interval 

 Preferred 

Operating 

Interval 

Duration of 

performance 

(15 minutes) 

Priority 

weighting of 

Performance 

Washing Machine 1 29-84 33-56 7 1 

Dishwasher 1.6 25-72 57-72 6 2 

Clothes Dryer 1.8 37-84 45-68 3 1 

Iron 1.2 5-42 21-28 2 2 

Vacuum Cleaner 0.8 33-80 37-48 2 2 

Microwave 1 33-76 45-56 3 3 

Electric Stove 0.6 41-72 57-68 7 3 

Electric Kettle 1 17-48 25-28 3 3 

Roast 0.8 5-40 25-32 2 3 

 

Another point regarding Tables 4-1 and 4-2 is the priority weighting of appliance functions. The 

scheduling system must consider that appliances with higher weights have greater priority in the 

preferred operational time interval. For example, between a toaster and an iron, the toaster is more 

important for timely operation. Other system details are listed in Table 4-3. 
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Table 4-3: Parameters and Assumed Values in the Simulation 

 

Mode l 

Nam e 

 

Parame 

ter 

 

Quantity 

 

Model 

Name 

 

Paramet 

er 

 

Quanti 

ty 

Mod el 

Nam e 

 

Paramete 

r 

 

Quantit y 

 

Paramet 

er 

 

Quantit 

y 

S
o
la

r 
p

a
n

el
 m

o
d

el
 PSTC 5 kw 

A
ir

 c
o
n

d
it

io
n

in
g

 

sy
st

em
 

Req 1.6e-5 

E
n

er
g
y
 s

to
ra

g
e 

sy
st

em
 

EBatt 4 kwh hstepΔ 0.25h 

GSTC 1000 w/m2 C 1012.4 ηch 0.87 ηch 0.9 

Tr 25 °C Mdot 388 
 

 

Pch,max 

 

 

2 kwh  

KT,PV 

 

0.0045 

  

 

4-3- Information on Simulation Algorithm 

To optimize the problem under study, the Genetic Algorithm (GA) algorithm in MATLAB software was 

employed. 

4-3-1- Introduction to Genetic Algorithm 

The Genetic Algorithm is an adaptive exploratory search method based on genetic population. The 

algorithm begins with a set of solutions called a population. In each generation, the fitness of each 

chromosome is evaluated, and then chromosomes are selected for the next generation possibly based 

on their fitness values. 

A genetic algorithm is a search method used in computation to find approximate or exact solutions for 

optimization and search problems. In genetic algorithms, initially, several solutions for the problem 

are generated randomly or algorithmically. This set of solutions is called the initial population, where 

each solution is termed as a chromosome. Then, using genetic algorithm operators, better 

chromosomes are selected, combined, and subject to mutation. Finally, the current population is 

combined with a new population resulting from the combination and mutation of chromosomes. 

Before a genetic algorithm is executed for a problem, a method for encoding genomes into computer 

language is employed. One common method of encoding is using binary strings, consisting of strings 

of zeros and ones, which is the method used in this paper for solving optimization problems [59]. 

Information about the parameters of the genetic algorithm (GA) used in this paper is provided in 

Table 4-4. 
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Table 4-4: Parameters of the Genetic Algorithm 

 

Parameter Quantity Parameter Quantity 

Chromosome string type Bit strings Coefficient(Crossore

r) 

0.8 

String size 543 Mutation percentage 0.3 

population size 3000   

maximum number of 

iterations 
100 

  

 

4-3-1- Explanation of Chromosome or Bit String Size 

As indicated in Table 4-1, the studied system is equipped with 9 adjustable and programmable 

appliances. To determine the start time for each appliance based on the number of time intervals (24 

* 4 = 96), 7 bits are required, resulting in a total of 63 bits for all 9 appliances. Additionally, to 

determine the minimum and maximum temperatures for two appliances (such as water heaters and air 

conditioning systems) in each interval, 3 bits per interval are considered, resulting in a total of 1152 

bits (96 * 4 * 3), which is a large number of bits. To reduce the number of bits, given the dynamic 

nature of the ventilation system and water heating, it is possible to define the minimum and 

maximum temperatures for each hour. In this case, (24 * 4 = 96), 228 bits are required for defining 

two minimum and maximum temperatures per hour, using 3 bits each. Furthermore, to determine the 

charging and discharging status of the battery, two 96-bit vectors are required, where the first vector 

will specify the charging status and the second vector will specify the discharging status of the 

battery. It is important to note that two bits indicating battery charge and discharge status within a 

time interval cannot be simultaneously 1. Therefore, a total of 543 bits are required overall, as 

illustrated in Fig. 4-5. 
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Fig.4-5: Chromosome Size (Bit String) 

4-4 First Section of Simulation 

After introducing the specifications of the studied system and all parameters, including the algorithm 

parameters for a 24-hour period with 15-minute time intervals, the GA planning process is conducted 

as follows. 

Fig. 4-6 illustrates the change in the defined objective function value, which has converged to a 

constant value after approximately 30 iterations. 

 

Fig. 4-6: The process of changing the value of the defined objective function after 100 iterations 
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Table 4-5 illustrates the performance intervals determined by HEMS for the next day, which, upon 

comparison with Table 4-3, indicates that all 9 devices are appropriately weighted within the user 

comfort section of the objective function during the preferred user time interval. 

Table 4-5: HEMS performance intervals for the next day 

 

Household 

Appliances 

Start time of 

operation 

End time of 

operation 

Washing Machine 11:30 13:00 

Dishwasher 14:15 15:30 

Clothes Dryer 13:30 14:00 

Iron 6:00 6:15 

Vacuum Cleaner 11:30 11:45 

Microwave 12:45 13:15 

Electric Stove 15:00 16:30 

Electric Kettle 6:15 6:45 

Roast 7:00 7:15 

In Fig. 4-7, the operational time is presented in a stair-step manner. 

 

 

Fig. 4-7: The performance of devices in a stair-step manner. 
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The performance of the air conditioning system is illustrated in Fig. 4-8. The red bar graph represents 

room temperature throughout the day with the ventilation system's operation decisions which is made 

between the minimum and maximum temperature determined by the HEMS system. Considering the 

user-set temperature (25 degrees Celsius), occupants will experience nearly optimal satisfaction with 

the ambient temperature, as the room temperature fluctuates between 24 to 26 degrees Celsius 

throughout each quarter hour. 

Fig. 4-8: The performance of the ventilation system. 

The gray bar diagram in Fig. 4-9 also shows the predicted hot water temperature throughout the day. 

As observed, using the proposed method, the hot water temperature fluctuates almost across all time 

intervals between the user- defined temperature range (40 to 60 degrees Celsius). 

 

Fig. 4-9: The predicted hot water temperature throughout the day. 
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The operation times of the home heating system and water heater are also observed in 15-minute 

intervals in Fig. 

4-10. 

Due to the severe cold outside, it is anticipated that the heating system will be activated frequently 

over extended time intervals. If one-hour intervals are chosen, accurate predictions will not be feasible 

because hourly operation may significantly increase or decrease temperatures, affecting the heating 

system's performance and consequently reducing thermal comfort levels. 

 

 

Fig. 4-10: Time intervals of home heating and water heating system operation 

 

The power consumption of appliances along with the generated power from the photovoltaic generator 

is indicated in Fig. 4-11. The green bars indicate the net power received from the electrical grid. The 

red bars represent battery exchange power. Negative values indicate battery discharge; Positive values 

indicate battery charge. The photovoltaic power generation curve is also depicted similarly to Fig. 4-

11. 

Additionally, the average received power from the grid is plotted as a dashed line, resulting in a value 

of 3.0524 as obtained from Fig. 4-11. The 24-hour electricity cost, based on the PAR performance 

forecast and devices based on the real-time electricity price with the implementation of IBR 

(Incentive-Based Regulation), is $4.5390. 

The power consumption of appliances and the power generated by the photovoltaic generator panel 

are illustrated in Fig. 4-11. 
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Fig. 4-11: The amount of power consumed by the devices and the production power of the 

photovoltaic generator 

4-5- Simulation Part 2 

In this section, the performance of the proposed method is also simulated in one-hour time intervals. 

An important point to note is that appliances such as washing machines, as indicated in Table 4-2, 

require a duration of 45 minutes, necessitating the consideration of two intervals for them (Table 4-1). 

Due to the hourly scheduling, room temperature is predicted hourly (Fig. 4-12), causing temperature to 

often drop below the minimum or exceed the maximum, leading the system to turn the HVAC system 

on or off in reality. This divergence from the predicted scenario will result in increased costs. 

 

 

Fig. 4-12: Room Temperature Based on Hourly Scheduling (24-hour) 
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Additionally, the predicted power consumption of appliances along with the generated power from 

photovoltaic and battery power are also observable in Fig.4-13. 

The green bars diagram represents the power consumption of appliances, while the red bars indicate 

the status of battery charge and discharge power. The average net power consumption is shown as a 

dashed line. Furthermore, the power generated from the photovoltaic panel is also specified. 

 

 

Fig. 4-13: The power consumption of appliances along with the power obtained from photovoltaics 

and battery power. 

To make a proper comparison between the 96 (quarter-hour) and 24 (hourly) methods, it is necessary 

to input the actual kilowatt-hour durations of appliances in calculating the cost of the second method. 

For this purpose, the operational lifespan of the equipment is considered in Table 4-2., and we 

calculate the cost accordingly. 

✓ Total cost in the 24-hour method: $6.15 

✓ Total cost in the 96-quarter-hour method: $4.54 

Therefore, it can be concluded that with the first method, in addition to increasing comfort and 

thermal welfare, the electricity cost is also lower due to accurate prediction of the system's condition. 

4-6- Simulation Part 3 

In this section, we deactivate the Real-Time Pricing (RTP) simulation and solely consider the 

Instantaneous Block Rate (IBR) to optimizing. We perform optimization with RTP and IBR, 

combining again. 

Fig. 4-14 demonstrates 𝑃𝐷 related to the power of the consumer's demand from the network during 

the day and night along with the average load without considering the load. In this state, PAR value 

is3.24, while PAR is 3.05 in the simulation part 1. In other words, considering the PAR simulation, 
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we observed that the peak power value decreased from 8.75 kilowatts to 8.25 kilowatts, but the 

electricity cost in the RTP and IBR combination is higher than in the RTP-only state, such that the 

electricity cost in the first state is approximately $4.5, and in the IBR-excluded state, it is $3.5. 

 

Fi. 4 -14: Consumer demand power profile over the day without considering IBR 

 

To validate the effectiveness of the proposed model, simulations were conducted using various 

scenarios based on real data, and the results obtained were compared. 

 

5- Conclusion 

In order to evaluate the effectiveness of the proposed method, a case study was examined, and the 

numerical results obtained were analyzed. The numerical results demonstrate the positive impact and 

cost-effectiveness of employing an energy management system. The aim of this paper was to present 

a mathematical model for operational planning of a smart home, including appliance scheduling 

considering allowable intervals and user priorities, enhancing thermal comfort levels, preventing peak 

consumption during off-peak hours, and utilizing solar cells and electrical energy storage. By 

conducting this paper, the following results are obtained: The obtained results indicate the significant 

impact of the energy management system on the costs of supplying energy needed for the home using 

the proposed method (15-minute intervals instead of hourly and IBR technology). Simulation results 

demonstrate that approximately 30% energy cost savings are achieved compared to hourly planning, 

and in addition, user comfort level and thermal comfort are also ensured. It is recommended that the 

following aspects be considered in future studies: 

❖ Incorporating uncertainty in electricity prices, 
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solar unit production, and considering the role of electric vehicles in energy management problems. 

❖ Considering equipment failure rates such as batteries, solar units, converters, and electrical 

loads. 
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