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Abstract

In recent years, as household energy use has risen, there has been a greater emphasis on intelligent
energy managementwithin smart homes. The energy crisis is now one of the world's most pressing
issues. With fossil fuel limitations andescalating electricity costs due to increased demand, there is a
pressing need for research and effective solutions in this field. Building smart homes is one approach
to reducing energy usage. In these homes, consumers can not only control their energy consumption
but also sell excess energy back to the grid using renewable sources like solar and wind. This
dissertation aims to create a smart home energy management system (HEMS) to efficiently operate
residential electrical appliances. The model prioritizes optimizing energy use to enhance user comfort,
thermal comfort levels, and profitability of smart home energy management, aligning with consumer
preferences. The resultsdemonstrate the model's effectiveness. It uses consumption data and current
U.S. electricity market prices, running simulations on an Intel Core i5-6200U processor system with
64-bit Windows 10, Matlab R2017b, and Genetic Algorithm (GA) optimization.
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1- Introduction

A smart he integration of smart meters and intelligent energy management systems in smart homes is
pivotal in enhancing energy efficiency and consumer convenience. According to Page (2018), the
adoption of smart meters has significantlyincreased, setting a foundation for more sophisticated home
energy management systems [1]. Zhou et al. (2016) elaborate on the concepts and configurations of
smart home energy management systems (SHEMS), highlighting the importance of scheduling
strategies that adapt to the dynamic nature of energy prices and user preferences [2]. These systems
are designed to optimize energy consumption while ensuring user comfort, leveraging technologies
such as machine learning and genetic algorithms to forecast and adjust to energy usage patte
effectively. Corno and Razzak(2012) discuss the implementation of intelligent energy optimizat
smart homes, which utilizes user-intelligible goals to configure energy consumption
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approach not only enhances energy efficiency but also improves theuser's ability to interact with and
understand the system's decisions. Vojdani (2008) adds that the integration of renewable energy
sources into smart grids is essential for the development of self-healing systems that promote
sustainability and reduce reliance on traditional energy sources [4]. The role of genetic algorithms in
optimizing energy management in smart homes is particularly notable. Bharathi et al. (2017) describe
the use of genetic algorithms for demand-side management in smart grids, which can efficiently
schedule appliances and manage loads to minimize costs and maximize energy savings [43]. This
method reflects a significant shift towards adaptive, responsive energy management systems that not
only respond to grid demands but also anticipate and act in the consumer's best interest based on
learned consumption patterns. Moreover, the integration of renewable energy sources is crucial in
advancing smart home energy management. Al-Ali et al. (2011) demonstrate a renewable energy
management system in smart homes that effectively balances energy consumption with production
from renewable sources, optimizing the overall energy usage while ensuring that energy is available
when most needed [17]. The genetic algorithm approach in this context allows for a more dynamic
and efficient handling of unpredictable renewable energy outputs and varying consumer demands.
Continuing from the established importance of genetic algorithms in the management of smart home
energy systems, Arif et al. (2014) explore the integration of renewable energy dispatch with demand-
side management in micro-grids, utilizing genetic algorithms to achieve an optimal balance between
energy supply and demand [44]. This approach exemplifies the potential of genetic-based
optimization techniques to not only enhance energy efficiency but also to accommodate the variable
nature of renewable energy sources like solar and wind power.

Additionally, the research by Nguyen et al. (2015) on energy management for households
incorporating solar-assistedthermal load demonstrates the capabilities of genetic algorithms to handle
complex, multi-variable optimization problems within smart grids. They show that such systems can
effectively manage both the consumption and production of energy, accounting for uncertainties in
renewable energy outputs and price fluctuations [45]. This is critical in ensuring that smart homes can
operate independently as much as possible, reducing their reliance on external power sources and
enhancing their sustainability. The practical application of these genetic-based optimization strategies
in real-world scenarios is further evidenced by Anvari-Moghaddam et al. (2015), who present an
optimized smart home energy management system that considers both energy savings and a
comfortable lifestyle [51]. Their study highlights how genetic algorithms can be fine-tuned to reflect
the priorities of the consumers, balancing cost, comfort, and energy efficiency. This user-centered
approach is vital for the acceptance and effectiveness of smart home technologies. In terms
technological implementation, Shao et al. (2013) discuss the development of physical- based
response-enabled residential load models that incorporate genetic algorithms to optimize the
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and operation of home appliances [46]. This detailed modeling is crucial for predicting and managing
the energy usagein smart homes, providing a reliable basis for making energy-saving decisions that
do not compromise the homeowner's comfort. The combination of genetic algorithms with other
technological advancements in smart homes, such as the use of ZigBee for wireless communication
and infrared remote controls, further enhances the capability ofthese systems to provide efficient and
user-friendly solutions. Han et al. (2011) demonstrate how these technologies can be integrated into
an energy management system, allowing for more granular control and monitoring of energy usage
[13]. Building upon the effective use of genetic algorithms in smart home energy management, there
is also anincreasing focus on enhancing user engagement and system intelligibility. For instance,
Mesari¢ and Krajcar (2015) emphasize the integration of electric vehicles and renewable energy
sources with home demand-side management systems, showcasing how genetic algorithms help in
creating a more interconnected and efficient household energy ecosystem [16]. This integration
allows for the intelligent scheduling of appliance use and vehicle charging, which minimizes energy
costs and maximizes the use of on-site generated renewable energy. Furthermore, the potential of
genetic algorithms extends beyond mere optimization to facilitate real-time operational decisions. Hu
and Li (2013) detail the hardware design of a smart home energy management system that utilizes
dynamic price response—a concept where genetic algorithms play a pivotal role in adjusting home
energy consumption in response to fluctuating electricity prices [23]. This capability is crucial for
leveraging periods of lower energy prices or reduced grid demand,enhancing the economic benefits of
smart home systems. The evolution of smart home energy management also incorporates significant
improvements in the algorithms' ability to predict and adapt to user behavior and environmental
variables. For instance, Zhang et al. (2014) review various home energy management systems in the
context of the smart grid, noting that genetic algorithms are instrumental in refining the systems'
responsiveness and adaptability to changes in energy demand and supply conditions [20]. This
continuous improvement in algorithmic performance is essential for developing systems that not only
manage energy efficiently but also anticipate future energy patterns and adapt accordingly. Moreover,
the work of Asare-Bediako et al. (2012) highlights the evolutionary trends in home energy
management systems, where genetic algorithms contribute to the progression from basic automated
systems to highly sophisticated frameworks that actively learn and predict household energy
behaviors [19]. These systems are increasingly capable of integrating with broader smart grid
functionalities, offering a holisticapproach to energy management that extends beyond individual homes
to entire communities or regions. In the broader scope of demand response and grid interaction,
Mohsenian-Rad et al. (2010) demonstrate how autonomous demand- side management, based on
game-theoretic energy consumption scheduling, can benefit from the strategic capabilities of geneti
algorithms [36]. These algorithms optimize individual and collective energy decisions within the
grid,promoting a balance between energy consumption, cost, and environmental impact. The
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application of these algorithms ensures that smart homes can effectively respond to grid demands
while maintaining user comfort and convenience. Continuing further into the impacts and
developments in smart home energy management, the role of genetic algorithms is crucial in adapting
to user-specific needs and environmental conditions. For instance, Han et al. (2011) discuss how
green home energy management systems can benefit from the comparison of energy usage between
similar home appliances, employing genetic algorithms to optimize energy efficiency without
compromising user convenience [12]. This type of tailored optimization is essential in promoting
widespread adoption and satisfaction with smart home technologies. The efficiency of genetic
algorithms in managing the variability of renewable energy sources is well-documented by Batista et
al. (2013). Their work on monitoring photovoltaic and wind energy systems within smart grids, utilizing
ZigBee devices, highlights how these algorithms help in dynamically managing energy flows, thus
enhancing the reliability of renewable sources in smart homes [48]. Research by Huanget al. (2018)
on chance-constrained optimization in home energy management systems also illustrates the
sophistication of current models [42]. Here, genetic algorithms are used to deal with the uncertainty
of renewable outputs and electricity pricing, optimizing energy consumption strategies to minimize
costs while maintaining a high level of reliability and user satisfaction. Moreover, the flexibility and
adaptability of genetic algorithms are evident in the work of Du and Lu (2012), where appliance
commitment strategies for household load scheduling are developed [47]. These strategies, enabled
by genetic algorithms, allow for real-time adjustments based on immediate energy consumption
needs and availability, further illustrating the practical benefits of these technologies in everyday life.
Lastly, the educational aspect of smart home energy management systems is covered by Milam and
Venayagamoorthy (2014), who detail U.S. initiatives in smart meter deployment and the associated
consumer education on energy savings and efficiency [25]. This highlights another critical role of
genetic algorithms: not only do they optimize energy use, but they also contribute to consumer
awareness and engagement, which are vital for the long-term sustainability of energy management
practices.

2-  Problem statement
In this section, the basic concepts of a smart home are introduced.
2-1- HEMS concept

This device provides an opportunity for energy management in smart homes by residents, which will
have a significant effect on reducing the price of electricity consumption [11]. Smart HEMS, as an
optimal system, provides energy management services in order to monitor and efficiently manage
production, storage and provides energy consumption in smart homes [12]. With the communicatj
techniques in the HAN home network, the collection of energy consumption information fr.
household appliances is provided. Real-time remote monitoring and control of various
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modes of smart home appliances can be achieved by a personal computer or smart phones from any
place and time [13]. In addition, HEMS can provide the optimal use status of home appliances and
also provide energy storage and management services for distributed energy resources (DER) and
HEMS [14].

2-2- HEMS architecture

The general structure of a smart HEMS is shown in Fig. 1-2. The HEMS center includes a centralized
intelligent controller to provide monitoring modules and control functions to the home owner based on
the home communication network [15]. The real-time data of programmable and non-programmable
home appliance electricity consumption can be collected by the smart HEMS main panel and
implement the optimal demand message. The electric vehicle (EV) is a special type of programmable
load. This device provides energy from electric networks for the transportation of residents and
emergency power for other household loads in a smart collective environment [16].

Renewable energy

Power flow network

- ————— Communication network

_________

PRS-
o

N
-t - Smart _ ~ =
f Warning ¥ center FRteTing the
~ s ~ g‘stem ra

s il HEMS v
i

e

1

Electrical services 1-11 b Voo o NP Sl : ‘
b

Management ) l- Television !

: s ' '

' '

' '

' '

' '

' '

‘-'—"

N E
'
e § :
' L
B ? X 4;,
y Washing  fron Air Water heater ' = = Electric car
pmuchive  _ _ _cenditiantag _ _ _ _ _ : e ® 3

Fig. 2-1: Architecture of the smart hose energy management system [2].
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3- Proposed method

In this section, the studied system is described, and modeling of its various components including
electric water heater, heating system, solar panels, and battery is presented. Furthermore, the
proposed method is introduced and explained.

3-2  Problem Modeling

The objective of this paper is to design a controllable Home Energy Management System (HEMS)
and to utilize it in a residential house equipped with a 5 kW solar system and battery storage for
storing electrical energy and usingit allowed required hours.

The controllable appliances in this study are categorized into two groups. The first category includes
appliances such as washing machines, dishwashers, clothes dryers, irons, vacuum cleaners,
microwaves, electric stoves, electric kettles, and toasters, which require specifying a start time for
their operation. Each appliance begins functioning at this specified time and completes its task within
a predetermined duration. The second category comprises electric water heaters and heating/cooling
systems, for which minimum and maximum temperatures are determined to decidetheir on/off status
during each hour or time interval (quarter-hour in this paper). The subsequent sections of this section
present the modeling of various components of the system.

3-2-1  Water Heater Modeling

The consumer specifies their desired minimum and maximum temperatures for the water heater. To
model this, itis assumed that, according to reference [54], the heating section of the electric water
heater can be represented as a first-order system.

AT
Cw = d_’; = Qelec - me (Tw - Tinlet) + (Tamb - TW)

(3-1)

In this formula:

Tww: Hot water temperature as a function of (°F)

Tintet: The ambient temperature of the water heater as a function of (°F)

: Thepspecific heat of water in terms of ##+is equal to 1.
1b-°F
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The thermal resistance of the tank is denoted by R and depenW“ff)Z'oF . Also, SA is the surface
area of the

Btu
water heater tank.

Qelec is the heat energy absorbed by the tank in one hour, calculated in Btu, is determined as follows:

Qelec = 3412P (3_2)
Where (P) is the power in kilowatts (Kw) of the water heater

In the Eq. (3-1), m is the volume of hot water output from the tank can be obtained in terms of output
water in onehour (f) as follows:

_ 34 (L)  F (92
m = 8.34 (gal) X f(hr)
(3-3)
The term Cw in the equation (3-1) is based on the volume of the water tank and can be determined
from the relationship provided by the following formula:
Btu

_ U b g B
Cw =V(gal) X 7.48gal+62.4 X ft3 X1x 1b°F
(3-4)
Here, V represents the volume of the tank in gallons.

Based on the model proposed for the water heater tank, the ambient temperature around the water
heater changesdepending on the amount of hot water exiting the water heater. Typically, the control
system for this device is considered such that the user sets a minimum and maximum temperature for
the hot water. When the hot water temperature falls below the minimum value, the water heater turns
on and remains on until it reaches the maximum temperature. If the hot water temperature is within
the range of the minimum and maximum temperatures, the water heater remains in its current state
(either on or off). In other words, when the hot water temperature is between the minimum and
maximum values, the state of the water heater (on or off) depends on its previous state.

In this paper, to improve the total energy consumption cost and to ensure that the water heater operates
more during times of low electricity prices, an intelligent control system determines two
temperatures: a minimum (Tmin) and a maximum (Tmax). Based on the user-defined setpoint
temperature (setpoint), the water heater's operation is expressedas follows:
if T<Tpin 3 State =0N
if T>Tphae 3 State = OFF
if Tmax + Tmin — 2T > u = State = On
if Tmax + Tmin — 2T > u = State = OFF

if Tmin <T< Tmax ::’{
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(3-5)

Based on the above algorithm, if the water temperature is less than Tmin, the water heater turns on. If
the water temperature exceeds Tmax, the water heater turns off. However, when Tmin< T < Trmax, the
decision to turn the water heater on or off depends on which temperature limit (TminOr Tmax) is closer
to the current temperature T. In explaining Eq. (3-5), the value of u is considered to be 20% of the
difference Tmin and Tmax, meaning: u = 0.2(Tmax — Tmin). FOr a better understanding, assume the
system predicts the previous performance of the water heater. Consider a scenario where the water
heater is on in the fifth interval, and its temperature is approaching T'm . Despite not yet reaching that
temperature, the system predicts that the water heater will remain on in the next interval as well.
However, shortly after, the control system will turn off the water heater. This indicates that the
system did not accurately predict the water heater's behavior and allocated the sixth interval to the
water heater, whereas another appliance could have been turned on during that time.

With this explanation, if the proposed system is used, this issue and similar ones are solved by
approaching the temperature to T'min. Where the water heater is off and T is bringing close to T'min, the
traditional control method cannot be possibly predicted to turn on the water heater in the next interval
and the water heater will still turn on. If the system correctly predicted this situation, it could have
turned off another appliance that has been issued a commandto prevent its activation, thereby avoiding
penalties resulting from the system.

3-2-2  Air Conditioning System Modeling

Based on [55], and considering that the air and water data are for January 2, 2018 (winter season), we
assume that the air conditioning system is responsible for heating. The thermal model for room
temperature is formulated as shownin Fig. 3.

State ()

Taufa’oor (t)

vy

Air conditioning system Tindoor (1)

Ti‘na’oor (t']- } .

Fig. 3-1: Air Conditioning System Modeling
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Based on the current room temperature, outside temperature, and the status of the heating system
(on/off), the room temperature is updated. The model used in this paper is presented as a model
implemented in MATLAB software, based the following equations:

dQ
(E) = (Theater — Troom) * Maor * C
(3-6)

(d_Q) — (Theater_Toutdoor)
losses

dt Req
(3-7)

(dTroom) — 1 (theater _ dQlosses)
dt Mgoe® C dt dt

(3-8)
In these equations:

(49): represents the heat flow into the room by the HVAC system,

dt

C: is heat capacity of air in(1012j]/kg .°C)-

Maoe: denotes the air volume flow rate moved into the room by the HVAC system, measured in kg/hr.
Theater 1S the temperature of the air exiting the HVAC system.

Troomis the current temperature of the room air.

(4Q) 105565 represents the heat flow losses from the building, derived from Eq. (7). In this equation,
the thermalresistance Req equivalent for the building can be determined using the following equation:

°C 1pr
Req = 0.0180 1 X 2

(3-9)
and the value of C is equal to (1012j]/kg .°C)

The emphasis here is that the value of (T reater) is defined by the equations from 3-6 to 3-8.
3-2-2-1- Determining the Electrical Heating System Power

The value of (Treater) mentioned in equations 3-6 to 3-8 represents the temperature of the heated air
by the electrical heating system. In this paper, it is assumed that the HVAC system increases the inlet
air temperature to 10 degrees Celsius (50 degrees Fahrenheit).

Theater = Troon + 50°F
(3-10)
Now, the question arises: How much electrical power is required by the HVAC system to ac
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temperature increase of 10 degrees Celsius)? According to the reference (source), this can be
determined using Eq. 3- 11, where the power P required by the HVAC system will be in kilowatts
(kW).

p _ Temp Rise x CFM (3-11)

kw 3193
In this equation:

The TempRise is the amount of increased temperature (in °F)

__ 3
CFM is transfer volume in a certain interval of time in terms of (o)
min
For example, if the building area is 100 square meters with a height of 3 meters, the building volume
will be 300cubic meters or 10594(ft)°.
. 3
<300 % (1m X 100cm X Linch X 1gt ) )

Im 2.54¢cm 12inch
(3-12)

Now, if we want the building temperature to increase by 10 degrees Celsius (50 degrees Fahrenheit)
in one hour,we will have:

3
CFM = 1959 177U

t
60min min
(3-13)
Based on Eq. (3-11), the required amount of kw is determined as:

50(°"")><177M

= min ~ 2 75kw
kw 3193

(3-14)
Based on the CFM value, the air volume flow rate Maocconsidering the air density is selected of
approximately 388 kg/h,.

3-2-2-2 Air Temperature Control System

The air temperature control system predicts the room temperature similar to the water heater
temperature control system, with the difference that the room temperature takes on a different value.
Thus, the same advantage mentionedapplies to Tmin and Tmax based on u. With appropriate prediction
of the indoor air temperature control system performance, the operating time of the devices can be
accurately determined and adjusted.
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2-3-2-3 Energy Storage System Model

The energy storage system essentially refers to a battery bank capable of storing energy and
delivering it to otherdevices or even the main grid when needed. In a smart home environment where
operational periods are scheduled, the charge and discharge cycles of the storage system are also
determined by the energy management system. To maintain battery efficiency, the power discharge
and charge (SOC) states must be limited to specific ranges as described below:

Ppate.cn(@) < Penmax *Nen * Upaee(q)

(3-15)

Poatecn(@) < (P229) - (1 — g (q))

(3-16)

(S0Cpin < SoC < SoCgy)

(3-17)

Pchmax and Pacp-max are the maximum power limits of battery charge and discharge.
S0Cmin and SoCmax are the top and bottom limits SOC of the battery.

ner and nacpare binary variables indicating the charging and discharging status of the battery. Since
the batterycannot simultaneously charge and discharge, the following constraint must be considered:

pen(Q) + pacn(q) < 1

The advantage of using two variables pcx(q) and pacr(q) compared to the state of the battery with a
certain variable is that with two variables, we can represent a state where the battery is neither
charging nor discharging. Consequently, the battery's lifespan increases compared to a scenario where it
is always either charging or discharging. Updating the SoC based on the battery's previous state and its
charging or discharging within the q interval is according to Eq. (18) [51].

(SoC(q + 1) = SoC(q) + (Ppatt.ch(@)—Pbatt.dch () Ahstep G

Epatt
18)

Ebaee 1S the battery energy capacity is expressed in kWh and Alstep is time interval [51] which it’s
value is considered one-quarter (1/4) of an hour.

3-2-4-Photovoltaic (PV) Generator Modeling

A photovoltaic (PV) generator is a system that directly converts sunlight into electrical energy. The
electrical power output of the generator is a function of solar radiation intensity and ambien
temperature. For this purpose, the power of the PV modules is measured under standard
conditions and calculated under various environmental conditions. The data on solar r
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intensity is known based on [56] and is plotted at specified time intervals. Additionally, the ambient
temperature T. varies throughout the day according to the Fig. 2-4 . The values are assumedaccording
to [57]:

G
Gstc

vat = Psrc [1 = Krpy(Tee — T3]

(3-19)

Gsrc=1s the solar radiation level measured in standard test conditions in W/m2.G= Solar radiation is
expressed in W/m2

Kt pv= Photovoltaic generator power temperature coefficient

Psrc=Maximum power under standard test conditions in photovoltaics (w)

T ct=Environment temperature in degrees Celsius

Tr=Reference temperature of the photovoltaic module (degrees Celsius)
Ppve=The power generated by the photovoltaic module at time t (w)
3-4-Combination of real-time pricing (RTP) and inclining block rate (IBR)

In an intelligent cost-minimizing electricity control system, it is possible for most devices to enter
circuits during low-cost moments, causing the grid to experience peak loads at these times. This
situation, when considering a large number of smart homes connected to the power grid, can pose
challenges, and solutions must be considered to reducethe peak to average ratio (PAR) of the load. In
other words, the intelligent optimization problem aimed at minimizing costs from the consumer's
perspective should be such that both parties (consumer and utility company) are satisfied. One
suitable solution to address this issue is to consider inclining block rate (IBR), where if the electrical
power received by the consumer exceeds a predetermined threshold, the electricity price increases
significantly for that period. Consequently, the smart system decides to distribute loads at different
times to mitigate peak-to-average ratio(PAR) night and day. The relation contributed to the IBR is as
follows:

Prc;(s;) = {Zi 0= ifli 2

(3-20)

airepresents the Instant price of electricity in i time interval.

bi is the second-tier level of the electricity price , which must also be larger than a..
s; represents the total consumed power the time interval during i time interval.

Based on this equation, after identifying s: as the consumed power, if s; exceeds a threshold c;,
the price ofelectricity is calculated with b; instead of a:. It is usual that b: is considered as a
coefficient of :b: = Aa:
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3-5 - Objective Function

In the optimization problem of interest, the objective function to be optimized consists of three main
components. The first part relates to the electricity cost resulting from the consumption of electrical
power by equipment, wherebythere is a natural inclination for devices to be used more during periods
of lower electricity prices. However, users ofthese devices still prefer to activate them at their desired
times to perform their tasks, which constitutes the second part of the objective function. The third
part of the objective function pertains to user satisfaction with the ambient temperature, defined as
the level of comfort or thermal well-being.

In the following, sections of this objective function will be expressed mathematically.
3-5-1 Electricity Cost

Each electrical device consumes a certain level of electrical power, and for every unit of time that the
device operates, it will consume energy. By multiplying this amount by the energy consumption (in
kilowatt-hours) and the electricity price, the cost of electrical energy consumption will be
determined. The following equation describes this relationship.

T
J1 = MinCost = Min ZPrcq(Pq) X Pq X At(q)

q=1
s.t: (3-21)

v
Pq = MinzPi X u;(q)
i=1

In this expression, P; represents the power consumption of device i, and (q)indicates the on/off state
of device iduring the time interval q (if (u = 1), the device is on, and if (u = 0), the device is off).
Here, q denotes a period of time, typically 15 minutes, proposed in this paper. After calculating the
energy consumed in a period for all specified devices Pq, the electrical energy cost for that period
Prcq(Pq) is determined based on the electricity price using the pricing pattern combination (IBR and
RTP). This cost is computed by summing the values obtained for different time periods to calculate
the total electricity cost for a day. Pq in each time interval represents the net power consumption of
devices, meaning that the power received from the grid and the power generated by solar panels or
the power that batteries may provide due to charging or discharging must be considered in this
relation. Therefore, Pq is modified:

Volume 48 Issue 2 (July 2024)
https://powertechjournal.com



.\ Power System Technology

Y ISSN:1000-3673

Received: 06-04-2024 Revised: 15-05-2024 Accepted: 28-06-2024
N
Pq = ) P xw(@) + Poace(@) — Poo(@) (3-22)
i=1

Where P(q) is the amount of power obtained from solar energy.

Ppa(q) represents the battery power, which can be positive (charging) or negative (discharging).

Pyare (@) = Ppatt.cn(q@) — Poact.acn (9) (3-23)
Poact.cn(q) represents the battery charging power, and Prate.acn(q) represents the battery discharging
power.

3-5-2- Resident Comfort Level

In addition to cost reduction, the user desires to have their preferred device turned on at any hour they
choose andto perform the assigned task. For this purpose, before starting the planning process, the
user must specify time categories for each device. The first category is the permissible operating time
for devices, meaning that equipment should operate within that interval. The second category is the
user's preferred time interval for device operation, indicating that the user strongly prefers devices to
operate during their desired time period. Additionally, each device has different prioritization criteria
that must also be specified. The details of user-entered information will be discussed in Section Four.

Suppose for device i, if the permissible time interval is defined as [4s.i, #e.i]and the preferred interval
[, n ],

then the preference function (J2) can be considered as S.toel
follows:

if tsi >= h;,i $te.i < h;.i = Xq = 0 (3-24)
5.t tsi < hs; = xg = ar(hg; — tsy)

othewise =
{te.i < hg; = xq = ay(te; — hey)

This relationship indicates that if a device operates within the user's preferred time interval, the
satisfaction level will be 100%. Since the goal is to minimize the objective function, xqwill be equal to
0. Otherwise, xqwill be increasedby the distance from the preferred time period.

3-5-3 Thermal Comfort

The third part of the objective function is dedicated to the thermal comfort of the residents, such that
if the temperature falls within the desired range, ys = 0 .Also, If it is out of range, /3 can be;
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T
Min J; = Z Yq
q=1

0 if Tmin =T< Tmax
Yq = Bux (T—-)+yu
.BC X (Tmin - T) — Y
T demonstrates the environmental temperature. Tmin and Tmax are the lower and upper temperature
limits, respectively. The objective is to optimize Js.. Therefore, if T is in the range of Tmin and Tmax,
yq = 0. Otherwise, the value of yq will be increased. Total ygs in all eras of time, will be resulted in

J3.

(3-24)

4- Results and Analysis

In order to reduce consumer costs, enhance user comfort, and increase HEMS efficiency, a model for
planning thermal comfort levels was presented in the previous section. In this section, the
performance of the proposed systemwill be evaluated under various scenarios. It is noteworthy that
all simulation stages were conducted in the Matlab R2017b software and using the genetic
optimization algorithm.

4-2 Input Data

The input data includes information about responsive loads (plannable devices) and their power
consumption, as well as the power consumption of non-responsive loads (non-plannable) and the
predicted daily hot water usage based on the references [42,51]. Additionally, information regarding
electricity real time pricing on an hourly basis from reference [58] is considered for specific regions
in New York on January 2, 2018, as shown in Fig. 4-1.

0.08

0.07

8 12

Time (h)

16

Fig. 4-1: Electricity real time pricing
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The air temperature data for New York City on January 2, 2018, is provided based on reference [55].
See Fig. 4-2for details.

"
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Fig. 4-2: The solar irradiance levels on January 2, 2018.

Figs. 4-3 and 4-4 based on reference [56], show solar irradiance levels and ambient temperature, the

extractable power capacity from solar panels with 5kw capacity for residential homes, as presented in
models provided in Section3.
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Fig. 4-3: Solar Radiation Levels, January 2, 2018.
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Fig. 4-4: Amount of Extractable Power from Solar Panels

In Table 4-1, the information on smart devices used in the model is provided. This table includes the
nominal power of each device, along with the allowable operating time intervals, user-preferred
operating intervals, and the predicted duration of device operation. For example, according to [51],
the nominal power of a washing machine is 1

kW, and it should operate for a maximum of 2 hours. The allowable operating interval for this device
is considered from 7 AM to 9 PM, while the user prefers this device to operate preferentially between
8 AM and 2 PM.

An important point to note about this table is that the performance information of devices is presented
on an hourlybasis, and the planning for them is also done on an hourly basis. However, it is possible
that some of these devices may complete their tasks in less than an hour. Nevertheless, the scheduling
system, based on hourly time intervals, is forced to allocate a full hour for the operation of each
device. For example, in this table, two one-hour intervals are allocated for the washing machine's
operation, even though the machine may complete its task in one hour and 15 minutes, the system's
prediction necessitates reserving two one-hour intervals for operation. This issue becomes prominent
when the electricity price is lower during the second interval, where the device operates for only 15
minutes. Because, the scheduling prediction allocates the two-hour interval for the device's operation,
missing the opportunity for another device to operate at a favorable price during this time interval. In
other words, in a one-hour interval wherethe electricity price was low, only 15 minutes of electricity
consumption occurred, and the devices remained off for the remaining 45 minutes.

To address this issue, instead of planning on a 24-hour basis, scheduling is carried out in intervals of
15 minutes, meaning decisions about device activation are made four times per hour. Therefore, i
necessary to update the information from Table 4-1 to Table 4-2, accordingly.
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Table 4-1: The performance of household appliances on an hourly basis [51].

i Permissible

Preferred

~ Y~ ISSN:1000-3673

Received: 06-04-2024

Revised: 15-05-2024

Duration of

- . Power System Technology

Accepted: 28-06-2024

Priority

power (kW)Operating Operating Operation per  weighting of

Interval Interval Performance
07:00-21:00  08:00-14:00 2 1
16  06:00-18:00  14:00-18:00 2 2
1.8 09:00-21:00  11:00-17:00 1 1
12 01:00-13:00  05:00-07:00 1 2
08  08:00-20:00  09:00-12:00 1 2
1 08:00-19:00  11:00-14:00 1 3
06  10:00-18:00  14:00-17:00 2 3
1 04:00-12:00  06:00-07:00 1 3
08  01:00-10:00  06:00-08:00 1 3

Second table: In Table 4-2, it is assumed that appliances vals of 15 minutes.
operate in interTable 4-2: Operation of household appliances -minute intervals.
in 15

Duration  of
performance
(15 minutes)

Preferred
Operating
Interval

nominal Permissible
power Operating
(kW) Interval

Priority
weighting of
Performance

1 29-84 3356 7 1
1.6 25-72 57-72 6 2
1.8 37-84 4568 3 1
1.2 5-42 21-28 2 2
0.8 33-80 37-48 2 2
1 33-76 45-56 3 3
0.6 41-72 57-68 7 3
1 17-48 25-28 3 3
0.8 5-40 25-32 2 3

Another point regarding Tables 4-1 and 4-2 is the priority weighting of appliance functions. The
scheduling system must consider that appliances with higher weights have greater priority in the
preferred operational time interval. For example, between a toaster and an iron, the toaster is
important for timely operation. Other system details are listed in Table 4-3.
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Table 4-3: Parameters and Assumed Values in the Simulation

Model Model

Nam e Parame Quantity Model Paramet Quanti Name Paramete QuantityParamet Quantit
ter Name er ty r er y

PSTC 5kw Req 1.6e-5 EBatt 4kwh  hstepA 0.25h

GSTC 1000 w/m? C 10124 nch 0.87 nch 0.9

388

25°C Mdot

Tr

Pch,max 2 kwh
KT,PV 0.0045

Solar panel model
Air conditioning

ystem

4-3- Information on Simulation Algorithm

To optimize the problem under study, the Genetic Algorithm (GA) algorithm in MATLAB software was
employed.

4-3-1- Introduction to Genetic Algorithm

The Genetic Algorithm is an adaptive exploratory search method based on genetic population. The
algorithm begins with a set of solutions called a population. In each generation, the fitness of each
chromosome is evaluated, and then chromosomes are selected for the next generation possibly based
on their fitness values.

A genetic algorithm is a search method used in computation to find approximate or exact solutions for
optimizationand search problems. In genetic algorithms, initially, several solutions for the problem
are generated randomly or algorithmically. This set of solutions is called the initial population, where
each solution is termed as a chromosome. Then, using genetic algorithm operators, better
chromosomes are selected, combined, and subject to mutation. Finally, the current population is
combined with a new population resulting from the combination and mutation of chromosomes.

Before a genetic algorithm is executed for a problem, a method for encoding genomes into computer
language is employed. One common method of encoding is using binary strings, consisting of strings
of zeros and ones, which isthe method used in this paper for solving optimization problems [59].

Information about the parameters of the genetic algorithm (GA) used in this paper is provided in
Table 4-4.

Volume 48 Issue 2 (July 2024)
https://powertechjournal.com



< v~ Power System Technology

Y~ ISSN:1000-3673

Received: 06-04-2024 Revised: 15-05-2024 Accepted: 28-06-2024

Table 4-4: Parameters of the Genetic Algorithm

Parameter Quantity Parameter Quantity

@3 dolnnleilelnglesindlplefavoll Bit strings Coefficient(Crossore 0.8
r

543  Mutation percentage 0.3
3000

maximum number of 100
iterations

4-3-1- Explanation of Chromosome or Bit String Size

As indicated in Table 4-1, the studied system is equipped with 9 adjustable and programmable
appliances. To determine the start time for each appliance based on the number of time intervals (24
* 4 = 96), 7 bits are required, resulting in a total of 63 bits for all 9 appliances. Additionally, to
determine the minimum and maximum temperaturesfor two appliances (such as water heaters and air
conditioning systems) in each interval, 3 bits per interval are considered, resulting in a total of 1152
bits (96 * 4 * 3), which is a large number of bits. To reduce the number of bits, given the dynamic
nature of the ventilation system and water heating, it is possible to define the minimum and
maximum temperatures for each hour. In this case, (24 * 4 = 96), 228 bits are required for defining
two minimum and maximum temperatures per hour, using 3 bits each. Furthermore, to determine the
charging and discharging status of the battery, two 96-bit vectors are required, where the first vector
will specify the charging status and the second vector will specify the discharging status of the
battery. It is important to note that two bits indicating battery charge and discharge status within a
time interval cannot be simultaneously 1. Therefore, a total of 543 bits are required overall, as
illustrated in Fig. 4-5.
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Fig.4-5: Chromosome Size (Bit String)
4-4 First Section of Simulation
After introducing the specifications of the studied system and all parameters, including the algorithm
parameters for a 24-hour period with 15-minute time intervals, the GA planning process is conducted
as follows.
Fig. 4-6 illustrates the change in the defined objective function value, which has converged to a
constant value after approximately 30 iterations.

5
1610

= Best fimess

-~ Meun litness

124,

Fitness value
T

0.4 I I I I I I 1 1 1 1
0 10 20 30 40 50 60 70 80 50 100

Generation

Fig. 4-6: The process of changing the value of the defined objective function after 100 iterati
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Table 4-5 illustrates the performance intervals determined by HEMS for the next day, which, upon
comparison with Table 4-3, indicates that all 9 devices are appropriately weighted within the user
comfort section of the objectivefunction during the preferred user time interval.

Table 4-5: HEMS performance intervals for the next day

Household Start time of End time of

Appliances operation operation

Washing Machineg 11:30 13:00
14:15 15:30

Clothes Dryer &) 14:00

o (O 615

Vacuum Cleaner jil§e{o] 11:45

Microwave WMt 13:15
Electric Stove [EsH] 16:30
Electric Kettle [HE) 6:45

Roast 7:00 7:15

In Fig. 4-7, the operational time is presented in a stair-step manner.

Toaster — I -

Electric Kettle — . =
Rice Cooker — - =
Microwave — . -
Vacuum Cleaner — I -
Iron = I =
Clothes Drayer —
Dishwasher —

Washing MAchine —

Fig. 4-7: The performance of devices in a stair-step manner.
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The performance of the air conditioning system is illustrated in Fig. 4-8. The red bar graph represents
room temperature throughout the day with the ventilation system's operation decisions which is made
between the minimumand maximum temperature determined by the HEMS system. Considering the
user-set temperature (25 degrees Celsius), occupants will experience nearly optimal satisfaction with
the ambient temperature, as the room temperature fluctuates between 24 to 26 degrees Celsius
throughout each quarter hour.

29 T T

28

b
i

Temperature (°C)

16 32 48 64 B0 96
Time (15 min)

Fig. 4-8: The performance of the ventilation system.

The gray bar diagram in Fig. 4-9 also shows the predicted hot water temperature throughout the day.
As observed, using the proposed method, the hot water temperature fluctuates almost across all time
intervals between the user- defined temperature range (40 to 60 degrees Celsius).
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Fig. 4-9: The predicted hot water temperature throughout the day.
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The operation times of the home heating system and water heater are also observed in 15-minute
intervals in Fig.
4-10.
Due to the severe cold outside, it is anticipated that the heating system will be activated frequently
over extendedtime intervals. If one-hour intervals are chosen, accurate predictions will not be feasible
because hourly operation may significantly increase or decrease temperatures, affecting the heating
system's performance and consequently reducingthermal comfort levels.

EWH
HeaterhlllllfllhllIIlllflllllilll.llllllllllfllﬁllll
10 20 30 40 50 60 70 80 20
Time (15 min)

Fig. 4-10: Time intervals of home heating and water heating system operation

The power consumption of appliances along with the generated power from the photovoltaic generator
is indicatedin Fig. 4-11. The green bars indicate the net power received from the electrical grid. The
red bars represent battery exchange power. Negative values indicate battery discharge; Positive values
indicate battery charge. The photovoltaicpower generation curve is also depicted similarly to Fig. 4-
11.

Additionally, the average received power from the grid is plotted as a dashed line, resulting in a value
of 3.0524 as obtained from Fig. 4-11. The 24-hour electricity cost, based on the PAR performance
forecast and devices based on the real-time electricity price with the implementation of IBR
(Incentive-Based Regulation), is $4.5390.

The power consumption of appliances and the power generated by the photovoltaic generator panel
are illustratedin Fig. 4-11.
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Fig. 4-11: The amount of power consumed by the devices and the production power of the
photovoltaic generator
4-5- Simulation Part 2

In this section, the performance of the proposed method is also simulated in one-hour time intervals.
An important point to note is that appliances such as washing machines, as indicated in Table 4-2,
require a duration of 45 minutes, necessitating the consideration of two intervals for them (Table 4-1).
Due to the hourly scheduling, room temperatureis predicted hourly (Fig. 4-12), causing temperature to
often drop below the minimum or exceed the maximum, leadingthe system to turn the HVAC system
on or off in reality. This divergence from the predicted scenario will result in increased costs.

30

Temperature (°C)
g 8

[
Lh

10

Time (h)

Fig. 4-12: Room Temperature Based on Hourly Scheduling (24-hour)
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Additionally, the predicted power consumption of appliances along with the generated power from
photovoltaic and battery power are also observable in Fig.4-13.

The green bars diagram represents the power consumption of appliances, while the red bars indicate
the status of battery charge and discharge power. The average net power consumption is shown as a
dashed line. Furthermore, thepower generated from the photovoltaic panel is also specified.

Power (KW)

Time (h)

Fig. 4-13: The power consumption of appliances along with the power obtained from photovoltaics
and batterypower.

To make a proper comparison between the 96 (quarter-hour) and 24 (hourly) methods, it is necessary
to input theactual kilowatt-hour durations of appliances in calculating the cost of the second method.
For this purpose, the operational lifespan of the equipment is considered in Table 4-2., and we
calculate the cost accordingly.

v Total cost in the 24-hour method: $6.15

4 Total cost in the 96-quarter-hour method: $4.54

Therefore, it can be concluded that with the first method, in addition to increasing comfort and
thermal welfare, the electricity cost is also lower due to accurate prediction of the system's condition.

4-6- Simulation Part 3

In this section, we deactivate the Real-Time Pricing (RTP) simulation and solely consider the
Instantaneous Block Rate (IBR) to optimizing. We perform optimization with RTP and IBR,
combining again.

Fig. 4-14 demonstrates Pp related to the power of the consumer's demand from the network duri
the day and night along with the average load without considering the load. In this state, PAR
is3.24, while PAR is 3.05 in the simulation part 1. In other words, considering the PAR si
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we observed that the peak power value decreased from 8.75 kilowatts to 8.25 kilowatts, but the
electricity cost in the RTP and IBR combination is higher than in the RTP-only state, such that the
electricity cost in the first state is approximately $4.5, and in the IBR-excludedstate, it is $3.5.

Power (KW)
.
I
L

2 | 1 | 1 | 1 | | |
10 20 30 40 50 60 70 80 90
Time (15 min)

Fi. 4 -14: Consumer demand power profile over the day without considering IBR

To validate the effectiveness of the proposed model, simulations were conducted using various
scenarios based onreal data, and the results obtained were compared.

5- Conclusion

In order to evaluate the effectiveness of the proposed method, a case study was examined, and the
numerical results obtained were analyzed. The numerical results demonstrate the positive impact and
cost-effectiveness of employing an energy management system. The aim of this paper was to present
a mathematical model for operational planning of a smart home, including appliance scheduling
considering allowable intervals and user priorities, enhancing thermal comfort levels, preventing peak
consumption during off-peak hours, and utilizing solar cells and electrical energy storage. By
conducting this paper, the following results are obtained: The obtained results indicate the significant
impact of the energy management system on the costs of supplying energy needed for the home using
the proposed method (15-minute intervals instead of hourly and IBR technology). Simulation results
demonstrate that approximately 30% energy cost savings are achieved compared to hourly planning,
and in addition, user comfort leveland thermal comfort are also ensured. It is recommended that
following aspects be considered in future studies:

3 Incorporating uncertainty in electricj
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solar unit production, and considering the role of electric vehicles in energy management problems.

& Considering equipment failure rates such as batteries, solar units, converters, and electrical

loads.
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