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Abstract: 

Cost-effective and efficient engineering of solar cells, in addition to creative design, necessitates 

a detailed examination of the physics involved in solar energy absorption. Solar energy does not 

operate at night without storage means such as batteries, and cloudy weather can render this 

technology unreliable during the day. Since solar cells are used to convert light into electricity, 

they must be composed of materials efficient in light absorption. Like any other power generation 

source, solar cells face challenges, including reduced output power with increasing cell surface 

temperature. With each degree rise in temperature, efficiency can decrease by up to 54.0%, 

highlighting the importance of addressing and implementing solutions to this issue.  

This study explores different specifications of solar cells after a general overview and modeling. 

It investigates methods for estimating solar cell temperature using ambient temperature and solar 

radiation, comparing them with a proposed neural network approach. If the neural network can 

achieve lower error rates than the desired thresholds, it would offer advantages over mathematical 

estimators mentioned in the literature. Additionally, this neural network demonstrates the 

capability to predict future solar cell temperatures, unlike instantaneous mathematical estimators 

for temperature and radiation. 

 

Keywords: Solar cells, temperature estimation methods, neural networks, maximum power point 

tracking 

 

Introduction: 

Solar energy, an infinite source of energy, is completely free from environmental pollution. It 

easily compensates for energy derived from non-renewable sources such as fossil fuels and 

underground oil reserves. In recent years, solar energy has experienced extraordinary growth due 
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to technological advancements leading to cost reductions and governmental policies supporting 

the development and use of renewable energies. Solar cells have been widely utilized in various 

applications due to their environmental cleanliness and direct conversion of solar energy into 

electricity. Silicon-based solar cells are prevalent but costly to produce, whereas polymer solar 

cells offer flexibility and lower manufacturing costs. Indium tin oxide (ITO) is the most important 

and practical material used as an electrode in polymer solar cells (Sadeghi et al., 2023). 

The increasing global demand for energy, alongside population growth, has escalated the global 

need for energy. This trend has sparked a global movement towards new energy sources, 

particularly green energies with minimal environmental impact, spearheaded by solar energy. On 

the other hand, a crucial prerequisite for the advancement of solar cells is the reduction in 

production costs and the scaling-up of production speed (Raei et al., 2023). Therefore, this paper 

explores the application of neural networks in predicting temperature and power output of solar 

cells. 

 

Theoretical Foundations and Research Methodology: 

Modeling of Photovoltaic Modules 

A photovoltaic module itself is composed of smaller units known as photovoltaic cells. Therefore, 

to examine the structure of a PV module, it is necessary to first understand the photovoltaic cell. 

Typically, a solar cell is represented as an equivalent circuit of a single diode, as shown in Figure 

4. 

 

 
Figure 4: Single Diode Equivalent Circuit in a Solar Cell [41] 

 

Iph represents the photocurrent generated in the PV cell, which is proportional to different levels 

of irradiance. I is the output current of the PV cell, Id is the diode current, and I5 is the reverse 

saturation current of the solar cell. V denotes the output voltage of the PV cell. Rsh and Rs are 

respectively the parallel and series resistances, with Rsh being very large and Rs being very small. 

When several solar cells are connected in series, they are denoted by ns, and if connected in 

parallel, they are denoted by np. 

The above parameters are derived from the following equations: 
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(1) 𝐼𝑚 = 𝑛𝑝𝑛𝑝ℎ − 𝑛𝑝𝐼𝑜 [exp
𝑞

𝑣

𝑛𝑠
+𝐼𝑅𝑠

𝑛𝑘𝑡
− 1] −

𝑣

𝑛𝑠
+𝐼𝑅𝑠

𝑅𝑠ℎ
 

Here are the parameters obtained from the equations above: 

 

(2) 𝐼𝑂 = 𝐼𝑑𝑜 [exp
𝑇

𝑇𝑟𝑒𝑓
]

3

𝑒𝑥𝑝 [
𝑞𝐸𝑔

𝑛𝑘
(

1

𝑇𝑟𝑒𝑓
−

1

𝑇
)] 

(3) 𝐼𝑝ℎ = 𝐼𝑠ℎ  (
𝑠

1000
) + 𝐶𝑇 (𝑇 − 𝑇𝑟𝑒𝑓) 

 

These formulas relate to electron charge \( q \), with a value of 𝑞 = 1.6022 ∗  10−19 𝐶 and 𝑘 the 

Boltzmann constant 𝐾 = 𝐽𝐾−1, which is 1.3807 ∗ 10−23Additionally, 𝑛𝑘 represents the diode 

ideality factor, 𝐶𝑡denotes the temperature coefficient of the reverse diode current, and 𝑆 refers to 

different levels of solar irradiance in units of𝑤/𝑚2. 𝑇𝑟𝑒𝑓is the reference temperature, and 𝑇is the 

ambient temperature in Kelvin. Bandgap energy 𝐸𝑔for silicon typically ranges between 

𝑒𝑣 (1 − 3). 

Photovoltaic cells produce low levels of voltage and current, which are not suitable for most 

applications. Therefore, cells are connected in series and parallel configurations to increase voltage 

and current levels, forming what is known as a photovoltaic module. 

Manufacturers assemble modules using parallel branches of 𝑁𝑃𝑀where each branch consists of 

𝑁𝑆𝑀 cells connected in series. 

There are two main approaches to model photovoltaic modules: 

1. Electrical method: Involves replacing each photovoltaic cell with an electrical model. This 

method is less commonly used due to its difficulty in providing accurate results and simulation 

challenges. 

2. Mathematical modeling method: Invented by Lorenz in 411, this method uses manufacturer's 

catalog data to create the model. Its main advantage lies in the ability to create the model solely 

based on available information and data. 

The current 𝐼𝑀 of a photovoltaic module under operating conditions can be obtained from the 

following equation [12]: 

 

(4) 𝐼𝑀 = 𝐼𝑆𝐶
𝑀 [1 − exp (

𝑉𝑀−𝑉𝑂𝐶
𝑀 +𝐼𝑀𝑅𝑆

𝑀

𝑉𝑇
𝑀 )] 

 

Unfortunately, the sentence ends abruptly and the equation is not fully provided. If you need 

further assistance with completing the translation or understanding specific parts, feel free to ask! 
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Various variables in the above equation are derived as follows: 

The short-circuit current of the module 

𝐼𝑆𝐶
𝑀 = 𝑁𝑃𝑀 ∗ 𝐼𝑆𝐶

𝐶  

The open-circuit voltage of the module  

𝑉𝑂𝐶
𝑀 = 𝑁𝑆𝑀 ∗ 𝑉𝑂𝐶

𝐶  

 

The equivalent parallel resistance of the module 

𝑅𝑆
𝑀 =

𝑁𝑆𝑀

𝑁𝑃𝑀
∗ 𝑅𝑆

𝐶 

The equivalent thermal voltage in the module 

 

𝑉𝑇
𝑀 = 𝑉𝑆𝑀 ∗ 𝑉𝑡

𝐶  

 

𝑉𝑡
𝑀 =

𝑚𝑘𝑇𝐶

𝑒
 

The ideality factor \( m \) in the p-n junction significantly influences the characteristics of the 

photovoltaic module as depicted in the characteristic curve.  

Module specifications manufactured by producers are usually tailored for specific conditions, 

such as nominal or standard conditions, as listed in the table below: 

 

Table 1: Standard and Nominal Conditions for Photovoltaic Modules 

Standard Conditions Nominal Conditions 

Irradiance (𝐺𝑎,𝑜 = 1000) W/m² Irradiance (𝐺𝑎,𝑜 = 800) W/m² 

Cell Temperature (𝑇𝑃
𝐶 = 25 °C) Reference Ambient Temperature (𝑇𝑟𝑒𝑓

𝑎 = 25°C)  

 Reference Cell Temperature (𝑇𝑟𝑒𝑓
𝐶 = 25°C) 

 

In standard test conditions (STC), which refer to standard irradiance and temperature, the 

parameters of short-circuit current of the module, open-circuit voltage of the module, and 

maximum power of the module (𝑃𝑚𝑎𝑥,𝑜
𝑀 ) are measured. 

In nominal conditions, parameters such as reference irradiance (𝐺𝑎,𝑟𝑒𝑓), reference ambient 

temperature (𝑇𝑎.𝑟𝑒𝑓), and reference cell temperature are measured.  

The general algorithm for calculating the PV module current under specified operating conditions 

((𝑉𝑀, 𝑇𝑎, 𝐺𝑎) is as follows: 

- NSM: Number of cells in series 

- NPM: Number of cells in parallel 
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- IM: Module short-circuit current 

- VM: Module open-circuit voltage 

- FF: Fill Factor 

- a: Short-circuit current temperature coefficient 

- C4: Cell temperature coefficient of power 

- C1: Voltage temperature coefficient of power 

- β: Voltage temperature coefficient 

- VMPP and IMPP: Voltage and current at maximum power point (MPP) of the module under 

standard conditions. 

Next step is to determine the characteristics of cell parameters under operating conditions 

(𝑉𝑀, 𝑇𝑎, 𝐺𝑎). Therefore, the short-circuit current of a solar cell, ISC, is calculated based on its linear 

dependency on the environmental temperature: 

(9)  𝐼𝑆𝐶
𝐶 = 𝐶1 ∗ 𝐺𝑎 

where: 

- \( I_{SC} \): Short-circuit current of the solar cell 

- \( C_4 \): Coefficient related to the dependence on the environmental temperature 

- \( G_a \): Irradiance in the operating conditions 

Afterwards, the fill factor (FF), open-circuit voltage (VOC,O), and series resistance (RT,D) are 

determined using the following equations: 

(5) 𝐹𝐹 =
𝑉𝑂𝐶,𝑂−𝐼𝑁(𝑉𝑂𝐶,𝑂+0.72)

𝑉𝑂𝐶,𝑂
+ 1 

(6) 𝐹𝐹𝑂 =
𝑃𝑚𝑎𝑥

𝐶

(𝑣𝑜𝑐
𝑐 ,𝐼𝑂𝐶

𝐶 )
 

(7) 𝑟𝑆 = 1 −
𝐹𝐹

𝐹𝐹𝑂
 

(8) 𝑅𝑆
𝐶 = 𝑟𝑠 ∗ (

𝑣𝑜𝑐
𝑐

𝐼𝑠𝑐
𝑐 ) 

 

Parameters such as \( C_4 \) are directly related to the environmental irradiance and temperature. 

The operational temperature of cells, \( T_C \), is exclusively dependent on environmental 

irradiance and temperature: 

 

𝑇𝐶 = 𝑇𝑎 + 𝐶2𝐺𝑎 

where: 

- 𝑇𝐶:Operational temperature of cells 

- \( T_a \): Ambient temperature 
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- \( C_1 \): Approximately \( 5450 \, \text{cm}^{-1} \cdot \text{W}^{-1} \cdot \text{m} \) 

The short-circuit current of the module also depends on cell temperature, given by: 

(12) 𝐼𝑆𝐶
𝑀 = 𝐶1 ∗ 𝑁𝑃𝑀 + 𝑎(𝑇𝐶 − 25) 

 

The open-circuit voltage varies directly with cell temperature and logarithmically with 

environmental irradiance. Thus, the relationship is: 

 

𝑉𝑂𝐶
𝑀 =

1

𝑁𝑆𝑀
∗ (𝑉𝑂𝐶,𝑂

𝑀 + 𝛽(𝑇𝐶 − 𝑇𝑂
𝐶) + 𝐶𝑟(log ( 𝐺𝑎 + 1) − log ( 𝐺𝑎,𝑜))) 

 

Constants \( C_r \) and \( \beta \) are available in manufacturer catalogs, otherwise obtainable 

from V-I module characteristics typically found in all catalogs. 

The presence of the number 4 inside \( \log(G_a + 4) \) ensures that the logarithm value does not 

become infinite when \( G_a \) approaches zero. 

The thermal voltage of the cell is derived from: 

 

(14) 𝑉𝑡
𝑐 =

𝑚𝑘(273+𝑇𝑐)

𝑒
 

 

Once these steps are completed, the calculation steps for photovoltaic module under operating 

conditions are as follows: 

 

(15) 𝐼𝑀 = 𝑁𝑃𝑀 ∗ 𝐼𝑆𝐶
𝑆 ∗  [1 − 𝑒𝑥𝑝 ((𝑉𝑀 − 𝑁𝑆𝑀𝑉𝑂𝐶

𝐶 + 𝐼𝑀𝑅𝑆
𝑀)/(𝑉𝑇

𝑀)] 

 

Most PV modules have relatively low direct current voltage levels, but with advancements in PV 

cell technology and the inclination towards single-stage systems and MIC structures, there is a 

trend towards higher DC voltage modules, often referred to as high-voltage modules (Amiri, 

2010). 

 

 Methods for Predicting Temperature 

As discussed in previous sections, temperature plays a crucial role in solar cells, influencing both 

economic considerations and energy estimation from photovoltaic (PV) cells. The main objective 

of this section is to review methods that can calculate module temperature with high sensitivity 

and minimal error using simple calculations. 
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Several correlation coefficients have been examined by Cokun et al. (2015) using real data from a 

solar power plant to evaluate the relationship between PV cell temperature, ambient temperature, 

solar irradiance, and wind speed. 

In real-world conditions, the results for correlation coefficients vary significantly. These 

discrepancies in temperature correlations with actual data are determined by changes in irradiance. 

Adjusted virtual correlations and 41 new correlations have been proposed. These correlation 

equations can easily be used for practical calculations of solar cell system temperatures. 

Here, we will examine methods based on ambient temperature (Tambiant) and irradiance 

(Irradiance) for estimating cell temperature (Cokun et al., 2015). 

 

 Review of Major Methods for Estimating Solar Cell Temperature 

In this section, we will review the most important methods for estimating solar cell temperature, 

comparing their respective errors and performance against each other. 

Here is the translated and organized version of the additional text: 

 

 Temperature Prediction Methods 

 Parameters and Frequency Error 

The parameters of the model are \( a, b, c, d \). \( E_{\text{Frequency}} \) refers to the virtual or 

absolute frequency correlation error. 

 

 Calculation Methods for Temperature Prediction 

These models are clearly derived using mathematical equations to predict PV module 

temperatures directly. 

 

MAE: Mean Absolute Error 

𝑀𝐴𝐸 =
1

𝑁
∑ |𝑇𝐵𝑎𝑐𝑘,𝑟𝑒𝑐𝑜𝑟𝑑𝑒𝑑 − 𝑇𝐵𝑎𝑐𝑘,𝑝𝑟𝑒𝑑𝑖𝑐𝑡|

𝑁

𝑖=1
 

Coskun Method 

Coskun proposed the following correlation for calculating the temperature of a silicon module \( 

T_{\text{Back}} \) (Coskun et al., 2016): 

𝑇𝐵𝑎𝑐𝑘 = 1.14 ∗ (𝑇𝑎) +   0.01 ∗ (𝐺𝑇 − 500) − 𝑉𝑊
0.8 

  

This correlation was tested, and the results are shown in Figure 0. The mean absolute error for 

this method is 4.0 degrees Celsius. \( WV \) represents wind speed. 
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 Mondol Method 2 

Mondol proposed the following correlation for module temperature \( T_{\text{Cadk}} \) 

(Mondol et al., 2015): 

 

𝑇𝐵𝑎𝑐𝑘 = 𝑇𝑎 + 0.031 ∗ 𝐺𝑇 − 0.058 

 

This correlation is for wind speeds above 4 meters per second with a constant coefficient for heat 

loss. This correlation was tested, and the results are shown in Figure 1. The mean absolute error 

was calculated to be 0.00 degrees Celsius. 

 

 Mondol Method 1 

Mondol proposed another correlation for module temperature \( T_{\text{Cadk}} \) (Mondol et 

al., 2015): 

𝑇𝐵𝑎𝑐𝑘 = 𝑇𝑎 + 0.031 ∗  𝐺𝑇  

 

This correlation is also for wind speeds above 4 meters per second with a constant coefficient for 

heat loss. This correlation was tested, and the results are shown in Figure 1. The mean absolute 

error was calculated to be 4.0 degrees Celsius. 

 

 Rose and Smockler Method 

Rose and Smockler proposed the following correlation for module temperature \( 

T_{\text{Cadk}} \): 

 

𝑇𝐵𝑎𝑐𝑘 = 𝑇𝑎 + 0.035 ∗  𝐺𝑇  

 

When wind speed reaches 4 meters per second, it is accompanied by a heat loss coefficient. This 

correlation was tested, and the results are shown in Figure 0. The mean absolute error was 

calculated to be 4.411 degrees Celsius.  

Below are the graphs related to these correlations, showing the actual data and the values obtained 

from the provided functions, which can be observed and compared. 

In the charts below, the correlation between the measured and estimated temperatures, as well as 

the distribution for each of these methods, can be seen and compared with each other. 
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Figure 2: Correlation Graph Between Temperatures Using the Irodionov, Lansier, and Ang Methods 

 

 
Figure 3: Correlation Graph Between Temperatures Using the Mondol 2 and Rose Methods 

 

 
Figure 4: Correlation Graph Between Measured and Predicted Temperatures Using the Mondol 1 and Rose 

& Smookler Methods 
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Figure 5: Correlation Graph Between Measured and Predicted Temperatures Using the Tselepis and 

Tripanagnostopoulos Methods 

 

Temperature Correction 

In this section, we address the correction of the correlations discussed in the previous section and 

present new equations with lower errors. 

 

MRSSI Method 

The correlations by Mondol 1 and 2, Rose, Smookler, Scott, and Irodionov have been corrected 

and are referred to as the MRSSI method. This method proposes the following formula for 

calculating the module temperature: 

𝑇𝐵𝑎𝑐𝑘 = 𝑇𝑎 − 1.52567 + 0.01981336 ∗  𝐺𝑇 − 0.000003451 ∗ 𝐺𝑇
2 

This corrected correlation was tested and shown in Figure 1-0. The mean absolute error of this 

method is calculated to be 1.04 degrees Celsius (Coskun et al., 1541). 

 

 LT Method 

The correlations by Lansier and Ang, combined with Tselepis and Tripanagnostopoulos, have 

been revised and renamed as the LT method. This correlation is proposed with the following 

formula for the sample temperature \(T_{\text{Back}}\): 

𝑇𝐵𝑎𝑐𝑘 = 1.14 ∗ 𝑇𝑎 − 3.101 + 0.01806 ∗  𝐺𝑇 − 0.0000042758𝐺𝑇
2 

This correlation was tested, and the results are shown below. The mean absolute error is 1.14 

degrees Celsius. The graph for the corrected equations of this correlation is presented below 

(Coskun et al., 1541). 
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 Figures 

Figure 1-0: Mean Absolute Error for MRSSI Method 

This figure shows the comparison of the calculated and actual temperatures using the MRSSI 

method. The mean absolute error is represented as 1.04 degrees Celsius. 

 

Figure 2-0: Mean Absolute Error for LT Method 

This figure shows the comparison of the calculated and actual temperatures using the LT 

method. The mean absolute error is represented as 1.14 degrees Celsius. 

 

 
Figure 6: Corrected Correlations for PV Temperature Estimation in LT and MRSSI Methods 

 

The mean absolute error rate ranged from 1.42°C to 1.44°C for the correlation methods. Based on 

these results, the Lansier and Ang correlations exhibited the best performance among all 

correlations. The corrected MRSSI and LT methods can be easily used to predict PV module 

temperature using the single parameter of total solar irradiance and ambient temperature, with less 

error than other methods. 

 

Implementing a Better Method for Achieving Optimal Output from Neural Networks 

We aim to use MLP neural networks, with the following algorithm and 3 inputs: 

- Ambient temperature 

- Solar irradiance 

- Time (in hours, on a smaller scale, seconds) 

We will train the neural network to output the current and future panel temperature: 

- Current panel (cell) temperature 
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- Future panel temperature 

 

If this output (panel temperature using temperature and irradiance inputs) has high accuracy and 

low error (less than 1°C), it can outperform all mathematical estimators mentioned above. 

Additionally, this network can predict the cell temperature for the next moment, whereas 

mathematical estimators only respond to the immediate temperature and irradiance. 

First, we will train the output in a single-layer hidden network and analyze the results for different 

neuron counts. 

Although time does not directly affect the panel temperature (the main factors are ambient 

temperature and irradiance), time is included as an input factor because irradiance and ambient 

temperature are functions of time. Thus, we can use time as an input to further predict cell 

temperature. 

We will start with a hidden layer containing 45 neurons. The next figure will show the 

specifications and values of the inputs and targets in a table 

 

 

 
Figure 7: Proposed Neural Network for Estimating Cell Surface Temperature and Predicting Future 

Temperature and Power 

 

In this network, a hidden layer with 45 neurons each has been used to achieve better results. 

 

Part One: 

The input data includes: 

- Time 

- Irradiance 

- Ambient temperature 
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The output is the estimated cell temperature by the following network: 

A neural network with the trainlm training function or Levenberg-Marquardt backpropagation 

training function is used in this part. 

The network consists of three hidden layers with 45, 45, and 30 neurons, respectively, and it is 

trained using the fitnet function. The network is named net, and the general form is:  

\[ \text{net} = \text{fitnet(hiddenLayerSize,trainFcn)} \] 

- 15% of the data is used for training 

- 40% for validation 

- 40% for testing 

 

Part Two: 

The proposed neural network for power estimation is presented: 

The output from the first part (estimated cell temperature) is used as an input for this part. The 

inputs are: 

- Time 

- Irradiance 

- Estimated temperature from the previous stage 

The output of this part, and the overall network, is the maximum power output estimated by our 

network. 

In this part, a neural network with the trainlm training function or Levenberg-Marquardt 

backpropagation training function is also used. 

The network consists of three hidden layers, each with 45 neurons, and is trained using the fitnet 

function. The network is named net4, and the general form is: 

\[ \text{net4} = \text{fitnet(hiddenLayerSize,trainFcn)} \] 

- 15% of the data is used for training 

- 40% for validation 

- 40% for testing 

Tables 1 and 2, taken from [Mostapha et al., 2012], were used for training the neural network. 

- Columns 1, 2, and 4 are our inputs 

- Column 3 is the output or target 

The network's output should be close to these target values to demonstrate high accuracy and 

correlation between inputs and outputs. 
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Table 2: Solar Cell Temperature Estimation Table 

 
In the following table, the estimated power values of the panel are also displayed in tabular form . 

 

Table 3: Estimated Power from Solar Cell at Various Times and Cell Temperatures 
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Figure 8: PV System Output Power for the Years 2113 and 2116 

 

This power and temperatures are for a sample of polycrystalline photovoltaic systems, which are 

widely used in today's market and have gained significant volume. 

The work done here with the neural network is to predict the cell temperature accurately using the 

available data, and then derive the output power from it, yielding several important results: 

This intelligent network, if it has low error in its testing phase, can show us the maximum power 

by providing time, temperature, and irradiance (under any conditions), offering two advantages: 

a) At any moment, it can easily indicate the maximum power without oscillation and without 

knowing the specific voltage and current. 

b) With low error and high correlation, it can perform better than formulaic methods used for 

estimating cell temperature and power output, particularly those derived from this article's data, 

providing outputs that are closer and easier to compute. 

Initially, I implemented the equation provided in this article, determining their correlation and 

error for estimated temperature and power using the formulas presented: 
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The coefficient and correlation between the article's equation and the measured value in cell 

surface temperature are equal to: 

 

 
Figure 9: Coefficient and Correlation between the Equation of this Article and Measured Values ((Mostapha 

et al. 2012)) 

 

However, the article ((Mostapha et al. 2012)) does not specify which year this correlation 

pertains to. The correlation between the temperature derived from the equation and the measured 

cell surface temperature is 0.4442 for the year 1542, as shown in the figure along with the error 

values in temperature and power in terms of MSE and RMSE. 

The power equation provided in the article is: 

 

The coefficient and correlation between the article's equation and the measured output power for 

the year 1542 are: 

 

 
However, this pertains to the year 1542, and for the previous years 1540 and 1541, the value is 

lower, approximately 0.5401. 
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Figure 11: Correlation between measured and predicted values in power output. 

 

As mentioned, if we plot the correlation coefficient \( R \), average error, and RMSE (Root Mean 

Square Error) for the results of the year 1542 in this paper (Mostapha et al., 2012), although there 

is no mention of these in the paper, we can implement them using MATLAB functions. 

 

 
Figure 11: R and RMSE values for the results of the article in the year 2116 

 

We can observe that there is a relatively high MSE and RMSE error for the estimated values of 

temperature and power of polycrystalline photovoltaic cells. The correlation coefficient for 

temperature in this year is approximately 0.54014. 

 

After implementing the model proposed in this article, work on neural networks for temperature 

and power estimation has begun, aiming for our results to surpass those reported in this article. 
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Working with neural networks offers several advantages, such as: 

- It can be applied for all different years with high correlation and significantly lower error 

compared to this article, which is a valuable outcome. 

- Unlike methods like P&O, neural networks can handle severe fluctuations in temperature or 

irradiance to identify maximum power output more effectively. 

I have implemented the neural network with the data from this article, but the results obtained from 

the neural network are as follows: 

 

 
Figure 12: Regression for the desired data for temperature estimation 

 

Although this neural network has been trained to achieve better MSE, RMSE values, and 

correlation between predicted and measured temperatures in the referenced article, we proceeded 

by normalizing the neural network and placing the data between 5 to 4, with the largest data being 

4 and the smallest data being equal to 5. Then, we trained the network. 

In the new network, the error values were significantly lower, which was an excellent outcome. 

Additionally, its regression and values of mu and sigma were much better compared to the previous 

network. The regression had reached a level above 4, indicating a very good correlation for the 

trained network with our target values in both temperature and power. This improved state 

performs better than all previous networks. However, what mattered more was whether the error 
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of this new network in estimating temperature and power was better than the normalized network 

of the reviewed article. 

 

First, below you can see the result of the first part of the neural network which shows the estimated 

temperature of the photovoltaic cell. 

 

 
Figure 13: Estimated solar cell temperature and regression with error values using the proposed method. 

 

It can be observed that the regression value is significantly better than that reported in Mostapha 

et al. (2012), and similarly, its error has also been greatly reduced. Below are the values as reported 

in the examined article. 

 

 
 

Figure 14: Estimated temperature and power and their errors in Mostapha et al. (2012). 
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The above values indicate the error and correlation between the estimated and measured 

temperatures, as well as the estimated and measured output power. With the modifications made 

in the neural network, the performance metrics, error, and their normal distribution have 

significantly improved, and the regression value has approached 4. The results of this final section 

are also presented below for your observation. 

We can observe regression, gradient, and the best performance, which are plotted by the neural 

network itself. 

As we can see below, the regression value and the error in estimated output power have 

significantly improved, and its gradient has also decreased . 

 

 
Figure 15: Error value of estimated output power in the proposed network. 

 

 
Figure 16: Regression value and validation data. 
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In this section, using the function we have constructed, we observe our own plots in each scenario 

for output power, showing significant improvements in results. In this 1 plot, we can see all the 

trained values and approximate outputs moving close to the target data values. 

 

 
Figure 17: Graph of all data and neural network trained data. 

 

In this section, the results for validation and test data can also be observed. 

 
Figure 18: Validation and test data for the proposed neural network. 

 

Conclusion and Discussion: 

As observed, initially, a PV model was presented, and the impact of temperature on its various 

variables was demonstrated. Then, mathematical methods for estimating temperature were 

introduced, and the error of each was mentioned. Subsequently, a study of a paper containing real 

data from a solar cell and a mathematical model for estimating temperature and power was 
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conducted. Finally, the method from this paper, which used neural networks for estimating 

temperature and power, was compared, and its advantages were observed. We can use this network 

to estimate temperature with much less error than mathematical models for predicting the 

temperature and power of a solar cell. Additionally, fuzzy and neural networks can be used for 

more accurate estimates compared to mathematical methods, and this model can also be used for 

power plants. 
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