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Abstract:

Cost-effective and efficient engineering of solar cells, in addition to creative design, necessitates
a detailed examination of the physics involved in solar energy absorption. Solar energy does not
operate at night without storage means such as batteries, and cloudy weather can render this
technology unreliable during the day. Since solar cells are used to convert light into electricity,
they must be composed of materials efficient in light absorption. Like any other power generation
source, solar cells face challenges, including reduced output power with increasing cell surface
temperature. With each degree rise in temperature, efficiency can decrease by up to 54.0%,
highlighting the importance of addressing and implementing solutions to this issue.

This study explores different specifications of solar cells after a general overview and modeling.
It investigates methods for estimating solar cell temperature using ambient temperature and solar
radiation, comparing them with a proposed neural network approach. If the neural network can
achieve lower error rates than the desired thresholds, it would offer advantages over mathematical
estimators mentioned in the literature. Additionally, this neural network demonstrates the
capability to predict future solar cell temperatures, unlike instantaneous mathematical estimators
for temperature and radiation.

Keywords: Solar cells, temperature estimation methods, neural networks, maximum power point
tracking

Introduction:
Solar energy, an infinite source of energy, is completely free from environmental pollution. It
easily compensates for energy derived from non-renewable sources such as fossil fuels and
underground oil reserves. In recent years, solar energy has experienced extraordinary growth d
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to technological advancements leading to cost reductions and governmental policies supporting
the development and use of renewable energies. Solar cells have been widely utilized in various
applications due to their environmental cleanliness and direct conversion of solar energy into
electricity. Silicon-based solar cells are prevalent but costly to produce, whereas polymer solar
cells offer flexibility and lower manufacturing costs. Indium tin oxide (ITO) is the most important
and practical material used as an electrode in polymer solar cells (Sadeghi et al., 2023).

The increasing global demand for energy, alongside population growth, has escalated the global
need for energy. This trend has sparked a global movement towards new energy sources,
particularly green energies with minimal environmental impact, spearheaded by solar energy. On
the other hand, a crucial prerequisite for the advancement of solar cells is the reduction in
production costs and the scaling-up of production speed (Raei et al., 2023). Therefore, this paper
explores the application of neural networks in predicting temperature and power output of solar
cells.

Theoretical Foundations and Research Methodology:

Modeling of Photovoltaic Modules

A photovoltaic module itself is composed of smaller units known as photovoltaic cells. Therefore,
to examine the structure of a PV module, it is necessary to first understand the photovoltaic cell.
Typically, a solar cell is represented as an equivalent circuit of a single diode, as shown in Figure
4.

Bl 13 & 7> 1°
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Figure 4: Single Diode Equivalent Circuit in a Solar Cell [41]

—_

Iph represents the photocurrent generated in the PV cell, which is proportional to different levels
of irradiance. | is the output current of the PV cell, Id is the diode current, and 15 is the reverse
saturation current of the solar cell. VV denotes the output voltage of the PV cell. Rsh and Rs are
respectively the parallel and series resistances, with Rsh being very large and Rs being very small.
When several solar cells are connected in series, they are denoted by ns, and if connected in
parallel, they are denoted by np.

The above parameters are derived from the following equations:
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Here are the parameters obtained from the equations above:

Io = Igo [exp—] ex P[q g( ——)] (2)

Ion = sy (5o + Cr (T = Tref) )

These formulas relate to electron charge \( q \), with a value of g = 1.6022 * 1079 C and k the
Boltzmann constant K = JK~1, which is 1.3807 = 1023 Additionally, n, represents the diode
ideality factor, C.denotes the temperature coefficient of the reverse diode current, and S refers to
different levels of solar irradiance in units ofw/m?. T, is the reference temperature, and T's the
ambient temperature in Kelvin. Bandgap energy Ejfor silicon typically ranges between
ev (1 —3).

Photovoltaic cells produce low levels of voltage and current, which are not suitable for most
applications. Therefore, cells are connected in series and parallel configurations to increase voltage
and current levels, forming what is known as a photovoltaic module.

Manufacturers assemble modules using parallel branches of Np,where each branch consists of
Ng), cells connected in series.

There are two main approaches to model photovoltaic modules:

1. Electrical method: Involves replacing each photovoltaic cell with an electrical model. This
method is less commonly used due to its difficulty in providing accurate results and simulation
challenges.

2. Mathematical modeling method: Invented by Lorenz in 411, this method uses manufacturer's
catalog data to create the model. Its main advantage lies in the ability to create the model solely
based on available information and data.

The current I of a photovoltaic module under operating conditions can be obtained from the
following equation [12]:

VoctI™ R
M = 131 - exp )| )

Unfortunately, the sentence ends abruptly and the equation is not fully provided. If you need
further assistance with completing the translation or understanding specific parts, feel free to as
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Various variables in the above equation are derived as follows:
The short-circuit current of the module

Is¢ = Npy * Isc
The open-circuit voltage of the module

Vot = Neu * Ve

The equivalent parallel resistance of the module

NSM
R{' = ——*R§
S = Npay * Ry

The equivalent thermal voltage in the module
Vi = Vsy * V£

mkT¢
B e
The ideality factor \( m\) in the p-n junction significantly influences the characteristics of the
photovoltaic module as depicted in the characteristic curve.
Module specifications manufactured by producers are usually tailored for specific conditions,
such as nominal or standard conditions, as listed in the table below:

M
t

Table 1: Standard and Nominal Conditions for Photovoltaic Modules

Standard Conditions Nominal Conditions
Irradiance (G, , = 1000) W/m? Irradiance (G, , = 800) W/m?
Cell Temperature (TS = 25 °C) Reference Ambient Temperature (T, = 25°C)

Reference Cell Temperature (Tfef = 25°C)

In standard test conditions (STC), which refer to standard irradiance and temperature, the
parameters of short-circuit current of the module, open-circuit voltage of the module, and
maximum power of the module (B, ,) are measured.

In nominal conditions, parameters such as reference irradiance (Ggqrr), reference ambient
temperature (T, ,.f), and reference cell temperature are measured.

The general algorithm for calculating the PV module current under specified operating conditions
(vM,T,, G,) is as follows:

- NSM: Number of cells in series

- NPM: Number of cells in parallel
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- IM: Module short-circuit current

- VM: Module open-circuit voltage

- FF: Fill Factor

- a: Short-circuit current temperature coefficient

- C4: Cell temperature coefficient of power

- C1: Voltage temperature coefficient of power

- B: Voltage temperature coefficient

- VMPP and IMPP: Voltage and current at maximum power point (MPP) of the module under
standard conditions.

Next step is to determine the characteristics of cell parameters under operating conditions
(VM,T,, G,). Therefore, the short-circuit current of a solar cell, ISC, is calculated based on its linear
dependency on the environmental temperature:

(9) Isc = C1 * G,

where:

-\(1_{SC}\): Short-circuit current of the solar cell

-\( C_4)\): Coefficient related to the dependence on the environmental temperature

-\( G_a\): Irradiance in the operating conditions

Afterwards, the fill factor (FF), open-circuit voltage (VOC,0), and series resistance (RT,D) are

determined using the following equations:
FF = Voco—INn(Voco+0.72) +1(5)
Voco

C

- C
(Vgc:loc)

— 1 _ FF
s =1-1 (D)

RE =75+ (7 (8)
Parameters such as \( C_4\) are directly related to the environmental irradiance and temperature.

The operational temperature of cells, \( T_C \), is exclusively dependent on environmental
irradiance and temperature:

T¢ =T, + C,G,
where:
- T¢:Operational temperature of cells
-\( T_a\): Ambient temperature
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-\(C_1\): Approximately \( 5450 \, \text{cm}"{-1} \cdot \text{W}"{-1} \cdot \text{m}\)
The short-circuit current of the module also depends on cell temperature, given by:

The open-circuit voltage varies directly with cell temperature and logarithmically with
environmental irradiance. Thus, the relationship is:

1
VOA/é‘ = m * (VOI%,O + .B(TC - TOC) + C-(log (G5 + 1) —log ( Ga,o)))

Constants \( C_r\) and \( \beta \) are available in manufacturer catalogs, otherwise obtainable
from V-1 module characteristics typically found in all catalogs.

The presence of the number 4 inside \(\log(G_a + 4) \) ensures that the logarithm value does not
become infinite when \( G_a \) approaches zero.

The thermal voltage of the cell is derived from:

_ mk(2734T€)

(14) V¢ =

Once these steps are completed, the calculation steps for photovoltaic module under operating
conditions are as follows:

(15) IM = Npy  Isc * [1 — exp (V™ — Nsu Vi + IMRED) / (V7))

Most PV modules have relatively low direct current voltage levels, but with advancements in PV
cell technology and the inclination towards single-stage systems and MIC structures, there is a
trend towards higher DC voltage modules, often referred to as high-voltage modules (Amiri,
2010).

Methods for Predicting Temperature
As discussed in previous sections, temperature plays a crucial role in solar cells, influencing both
economic considerations and energy estimation from photovoltaic (PV) cells. The main objective
of this section is to review methods that can calculate module temperature with high sensitivity
and minimal error using simple calculations.
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Several correlation coefficients have been examined by Cokun et al. (2015) using real data from a
solar power plant to evaluate the relationship between PV cell temperature, ambient temperature,
solar irradiance, and wind speed.

In real-world conditions, the results for correlation coefficients vary significantly. These
discrepancies in temperature correlations with actual data are determined by changes in irradiance.
Adjusted virtual correlations and 41 new correlations have been proposed. These correlation
equations can easily be used for practical calculations of solar cell system temperatures.

Here, we will examine methods based on ambient temperature (Tambiant) and irradiance
(Irradiance) for estimating cell temperature (Cokun et al., 2015).

Review of Major Methods for Estimating Solar Cell Temperature

In this section, we will review the most important methods for estimating solar cell temperature,
comparing their respective errors and performance against each other.

Here is the translated and organized version of the additional text:

Temperature Prediction Methods
Parameters and Frequency Error
The parameters of the model are \(a, b, ¢, d\). \( E_{\text{Frequency}} \) refers to the virtual or
absolute frequency correlation error.

Calculation Methods for Temperature Prediction
These models are clearly derived using mathematical equations to predict PV module
temperatures directly.

MAE: Mean Absolute Error

1 N
MAE = N § |TBack,recorded - TBack,predict'
i=1

Coskun Method
Coskun proposed the following correlation for calculating the temperature of a silicon module \(
T _{\text{Back}}\) (Coskun et al., 2016):

Tgack = 1.14 % (T,) + 0.01 = (Gy — 500) — V8

This correlation was tested, and the results are shown in Figure 0. The mean absolute error for
this method is 4.0 degrees Celsius. \( WV \) represents wind speed.
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Mondol Method 2
Mondol proposed the following correlation for module temperature \( T_{\text{Cadk}}\)
(Mondol et al., 2015):

Toack = T, + 0.031 * G — 0.058

This correlation is for wind speeds above 4 meters per second with a constant coefficient for heat
loss. This correlation was tested, and the results are shown in Figure 1. The mean absolute error
was calculated to be 0.00 degrees Celsius.

Mondol Method 1
Mondol proposed another correlation for module temperature \( T_{\text{Cadk}} \) (Mondol et
al., 2015):

Tgack = Ta +0.031 % Gy

This correlation is also for wind speeds above 4 meters per second with a constant coefficient for
heat loss. This correlation was tested, and the results are shown in Figure 1. The mean absolute
error was calculated to be 4.0 degrees Celsius.

Rose and Smockler Method
Rose and Smockler proposed the following correlation for module temperature \(
T _{\text{Cadk}}\):

Tgack = Ta + 0.035 % G

When wind speed reaches 4 meters per second, it is accompanied by a heat loss coefficient. This
correlation was tested, and the results are shown in Figure 0. The mean absolute error was
calculated to be 4.411 degrees Celsius.

Below are the graphs related to these correlations, showing the actual data and the values obtained
from the provided functions, which can be observed and compared.

In the charts below, the correlation between the measured and estimated temperatures, as well as
the distribution for each of these methods, can be seen and compared with each other.
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& Smookler Methods
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Figure 5: Correlation Graph Between Measured and Predicted Temperatures Using the Tselepis and
Tripanagnostopoulos Methods

Temperature Correction
In this section, we address the correction of the correlations discussed in the previous section and
present new equations with lower errors.

MRSSI Method
The correlations by Mondol 1 and 2, Rose, Smookler, Scott, and Irodionov have been corrected
and are referred to as the MRSSI method. This method proposes the following formula for
calculating the module temperature:

Tgack = Ta — 1.52567 + 0.01981336 * G — 0.000003451 * G2
This corrected correlation was tested and shown in Figure 1-0. The mean absolute error of this
method is calculated to be 1.04 degrees Celsius (Coskun et al., 1541).

LT Method
The correlations by Lansier and Ang, combined with Tselepis and Tripanagnostopoulos, have
been revised and renamed as the LT method. This correlation is proposed with the following
formula for the sample temperature \(T_{\text{Back}}\):

Tgack = 1.14 % T, — 3.101 + 0.01806 * G; — 0.0000042758G%
This correlation was tested, and the results are shown below. The mean absolute error is 1.14
degrees Celsius. The graph for the corrected equations of this correlation is presented below
(Coskun et al., 1541).
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Figures

Figure 1-0: Mean Absolute Error for MRSSI Method

This figure shows the comparison of the calculated and actual temperatures using the MRSSI
method. The mean absolute error is represented as 1.04 degrees Celsius.

Figure 2-0: Mean Absolute Error for LT Method
This figure shows the comparison of the calculated and actual temperatures using the LT
method. The mean absolute error is represented as 1.14 degrees Celsius.
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Figure 6: Corrected Correlations for PV Temperature Estimation in LT and MRSSI Methods
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The mean absolute error rate ranged from 1.42°C to 1.44°C for the correlation methods. Based on
these results, the Lansier and Ang correlations exhibited the best performance among all
correlations. The corrected MRSSI and LT methods can be easily used to predict PV module
temperature using the single parameter of total solar irradiance and ambient temperature, with less
error than other methods.

Implementing a Better Method for Achieving Optimal Output from Neural Networks
We aim to use MLP neural networks, with the following algorithm and 3 inputs:

- Ambient temperature

- Solar irradiance

- Time (in hours, on a smaller scale, seconds)

We will train the neural network to output the current and future panel temperature:
- Current panel (cell) temperature
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- Future panel temperature

If this output (panel temperature using temperature and irradiance inputs) has high accuracy and
low error (less than 1°C), it can outperform all mathematical estimators mentioned above.
Additionally, this network can predict the cell temperature for the next moment, whereas
mathematical estimators only respond to the immediate temperature and irradiance.

First, we will train the output in a single-layer hidden network and analyze the results for different
neuron counts.

Although time does not directly affect the panel temperature (the main factors are ambient
temperature and irradiance), time is included as an input factor because irradiance and ambient
temperature are functions of time. Thus, we can use time as an input to further predict cell
temperature.

We will start with a hidden layer containing 45 neurons. The next figure will show the
specifications and values of the inputs and targets in a table

@ ®
& ® ® @
@
L
g .
@ e .
2 D
@
® ® o ® ®
B , @

2 vidden layers

%0 newwons 10 newons

Figure 7: Proposed Neural Network for Estimating Cell Surface Temperature and Predicting Future
Temperature and Power

In this network, a hidden layer with 45 neurons each has been used to achieve better results.

Part One:

The input data includes:
- Time

- Irradiance

- Ambient temperature
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The output is the estimated cell temperature by the following network:

A neural network with the trainlm training function or Levenberg-Marquardt backpropagation
training function is used in this part.

The network consists of three hidden layers with 45, 45, and 30 neurons, respectively, and it is
trained using the fitnet function. The network is named net, and the general form is:

\[ \text{net} = \text{fitnet(hiddenLayerSize,trainFcn)} \]

- 15% of the data is used for training

- 40% for validation

- 40% for testing

Part Two:

The proposed neural network for power estimation is presented:
The output from the first part (estimated cell temperature) is used as an input for this part. The
inputs are:

- Time

- Irradiance

- Estimated temperature from the previous stage

The output of this part, and the overall network, is the maximum power output estimated by our
network.

In this part, a neural network with the trainlm training function or Levenberg-Marquardt
backpropagation training function is also used.

The network consists of three hidden layers, each with 45 neurons, and is trained using the fitnet
function. The network is named net4, and the general form is:

\[ \text{net4} = \text{fitnet(hiddenLayerSize,trainFcn)} \]

- 15% of the data is used for training

- 40% for validation

- 40% for testing

Tables 1 and 2, taken from [Mostapha et al., 2012], were used for training the neural network.

- Columns 1, 2, and 4 are our inputs

- Column 3 is the output or target

The network's output should be close to these target values to demonstrate high accuracy and
.correlation between inputs and outputs
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Table 2: Solar Cell Temperature Estimation Table

Tune (H) Irradiation Module  AmbientTemp. Estimated Cell

(W)  Temp. (°C) (*C) Temp. (°C)
06.00 1] 1546 12.00 1564
06:30 1585 2.80 16.68
0700 1693 13.20 17.39
07:30 1880 14.50 19.12
08-00 20.16 1550 | 30.46
0830 2188 1650 | 2181
09:00 T 2230 810
09.30 T 10180 | 2 18,70 1 3505
10:00 88.50 20.00 26.30
10:30 100,85 20,70 2132
11:00 168.50 21.90 2987
11:30 250,15 22.20 364
12:00 397.00 22.70 34.78
12.30 149,05 23.00 3080
13:00 47733 23.60 3721
13:30 732.78 24,00 42,14
14:00 83537 24.30 4428
14:30 881,08 24,30 4508
15:00 922.87 2440 4592
15:30 25.00 46.24
7]!\ 00 2(:(’!;! 4‘\‘9:
16:30 3550 | 4763
17.00 2520 | 16,87
1730 512.00 25.50 39.99

.In the following table, the estimated power values of the panel are also displayed in tabular form

Table 3: Estimated Power from Solar Cell at Various Times and Cell Temperatures

Tume (H) Back Surface Estimated Measured
Temperature (°C) Power (W) Power (W)

06:00 15.46 0.00 0.00
06:30 15.85 9.66 0.00
07:00 16,93 2845 0,00
07:30 18.80 4633 0.00
08:00 20,16 60.87 0.00
08:30 21.55 76.15 0.00
09:00 22.80 90,57 100,00
09:30 2548 12991 105.21
10:00 25.80 113.27 110,48
10:30 27,28 129,08 149,43
11:00 3040 215.67 197.73
11:30 33.20 320,18 211,22
12:00 37.10 508.15 530.04
12:30 40,40 191,93 250,00
13:00 40.60 610,97 650,39
13:30 $3.20 937.91 803
14:00 60.33 1069.26 89091
14:30 60,95 1127.73 915,38
15:00 62.16 1181.26 858.81
15:30 $2.70 115423 920.22
16:00 57.76 901,27 860,58
16:30 61.30 1197.30 915,36
17:00 60,70 1161.62 816,80
17:30 $2.70 655.35 41017
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a. Power Output of the PV system and back surface temperature in 2013.
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b. Power Output of the PV system and back surface temperature in 2016.
197 Figure 11. is a representation between experimental and estimated values to uradiation
1908 level for year 2016.

Figure 8: PV System Output Power for the Years 2113 and 2116

This power and temperatures are for a sample of polycrystalline photovoltaic systems, which are
widely used in today's market and have gained significant volume.

The work done here with the neural network is to predict the cell temperature accurately using the
available data, and then derive the output power from it, yielding several important results:

This intelligent network, if it has low error in its testing phase, can show us the maximum power
by providing time, temperature, and irradiance (under any conditions), offering two advantages:
a) At any moment, it can easily indicate the maximum power without oscillation and without
knowing the specific voltage and current.

b) With low error and high correlation, it can perform better than formulaic methods used for
estimating cell temperature and power output, particularly those derived from this article's data,
providing outputs that are closer and easier to compute.

Initially, 1 implemented the equation provided in this article, determining their correlation and
error for estimated temperature and power using the formulas presented:
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7. = 30.006 +0.0175 (p— 300)+1 ],l(I:7 —20)

The coefficient and correlation between the article's equation and the measured value in cell
surface temperature are equal to:

Measured Backside Temperature = F{(Estimated Cell Temperature)

~
=

S
E.'I .
~eo y=1,5265x- 11,554 -t
2 R®* = 0,9619 s e
a 50 — -
e
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Figure 9: Coefficient and Correlation between the Equation of this Article and Measured Values ((Mostapha
et al. 2012))

However, the article ((Mostapha et al. 2012)) does not specify which year this correlation
pertains to. The correlation between the temperature derived from the equation and the measured
cell surface temperature is 0.4442 for the year 1542, as shown in the figure along with the error
values in temperature and power in terms of MSE and RMSE.

The power equation provided in the article is:

The coefficient and correlation between the article's equation and the measured output power for
the year 1542 are:

Pcakulattd: 1~2161 Pmeasmed =3 5~2345-
R?=96%.

However, this pertains to the year 1542, and for the previous years 1540 and 1541, the value is
lower, approximately 0.5401.
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Figure 11: Correlation between measured and predicted values in power output.

As mentioned, if we plot the correlation coefficient \( R \), average error, and RMSE (Root Mean
Square Error) for the results of the year 1542 in this paper (Mostapha et al., 2012), although there
is no mention of these in the paper, we can implement them using MATLAB functions.
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Figure 11: R and RMSE values for the results of the article in the year 2116

We can observe that there is a relatively high MSE and RMSE error for the estimated values of
temperature and power of polycrystalline photovoltaic cells. The correlation coefficient for
temperature in this year is approximately 0.54014.

After implementing the model proposed in this article, work on neural networks for temperature
and power estimation has begun, aiming for our results to surpass those reported in this article,
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Working with neural networks offers several advantages, such as:

- It can be applied for all different years with high correlation and significantly lower error
compared to this article, which is a valuable outcome.

- Unlike methods like P&O, neural networks can handle severe fluctuations in temperature or
irradiance to identify maximum power output more effectively.

| have implemented the neural network with the data from this article, but the results obtained from
the neural network are as follows:
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Figure 12: Regression for the desired data for temperature estimation

Although this neural network has been trained to achieve better MSE, RMSE values, and
correlation between predicted and measured temperatures in the referenced article, we proceeded
by normalizing the neural network and placing the data between 5 to 4, with the largest data being
4 and the smallest data being equal to 5. Then, we trained the network.

In the new network, the error values were significantly lower, which was an excellent outcome.
Additionally, its regression and values of mu and sigma were much better compared to the previous
network. The regression had reached a level above 4, indicating a very good correlation for the
trained network with our target values in both temperature and power. This improved state
performs better than all previous networks. However, what mattered more was whether the error
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of this new network in estimating temperature and power was better than the normalized network
of the reviewed article.

First, below you can see the result of the first part of the neural network which shows the estimated
temperature of the photovoltaic cell.
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Figure 13: Estimated solar cell temperature and regression with error values using the proposed method.

It can be observed that the regression value is significantly better than that reported in Mostapha
etal. (2012), and similarly, its error has also been greatly reduced. Below are the values as reported
in the examined article.
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Figure 14: Estimated temperature and power and their errors in Mostapha et al. (2012).
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The above values indicate the error and correlation between the estimated and measured
temperatures, as well as the estimated and measured output power. With the modifications made
in the neural network, the performance metrics, error, and their normal distribution have
significantly improved, and the regression value has approached 4. The results of this final section
are also presented below for your observation.

We can observe regression, gradient, and the best performance, which are plotted by the neural
network itself.

As we can see below, the regression value and the error in estimated output power have
significantly improved, and its gradient has also decreased.
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Figure 15: Error value of estimated output power in the proposed network.
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Figure 16: Regression value and validation data.
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In this section, using the function we have constructed, we observe our own plots in each scenario
for output power, showing significant improvements in results. In this 1 plot, we can see all the
trained values and approximate outputs moving close to the target data values.
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Figure 17: Graph of all data and neural network trained data.

In this section, the results for validation and test data can also be observed.
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Figure 18: Validation and test data for the proposed neural network.

Conclusion and Discussion:
As observed, initially, a PV model was presented, and the impact of temperature on its various
variables was demonstrated. Then, mathematical methods for estimating temperature were
introduced, and the error of each was mentioned. Subsequently, a study of a paper containing real
data from a solar cell and a mathematical model for estimating temperature and power w.
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conducted. Finally, the method from this paper, which used neural networks for estimating
temperature and power, was compared, and its advantages were observed. We can use this network
to estimate temperature with much less error than mathematical models for predicting the
temperature and power of a solar cell. Additionally, fuzzy and neural networks can be used for
more accurate estimates compared to mathematical methods, and this model can also be used for
power plants.
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