-~ Power System Technology

)

~ Y ISSN:1000-3673

Received: 16-05-2024 Revised: 12-06-2024 Accepted: 07-07-2024

Metaheuristic Recursive Graph Routing based on Collective
Intelligence Algorithms Inspired by Birds Behaviors

Mohsen Taki!, Kamal Mirzaie*2, Mohammadreza Mollahoseini Ardakani?

Abstract: In the realm of graph routing, various deterministic algorithms such as Floyd and
Dijkstra have been instrumental in achieving specified goals. However, as graphs grow larger
in size, the torch is being passed to meta-heuristic algorithms like genetics and particle swarm
optimization. These innovative approaches address the challenges posed by extensive graphs,
particularly in terms of routing time and loop prevention. Distance estimation and fitness
functions have become pivotal elements in contemporary algorithms, significantly contributing
to the reduction of route duration. Nonetheless, the persistent challenges of graph routing
remain in handling loops and optimizing routing time efficiently. A groundbreaking solution
to these challenges comes in the form of a novel algorithm inspired by the legendary bird, the
Phoenix. In this algorithm, the history of nodes is inherited by their offspring. During each
reproductive cycle, the algorithm ensures that the developed child, while fitting on offspring
and selecting the stronger one, does not reintroduce itself to its own history, effectively
preventing loops.

This method outpaces existing routing techniques in terms of speed and scalability, primarily
attributed to a paradigm shift in creating the adjacency list. The algorithm's unique approach,
inheriting node history to offspring and employing a stringent loop avoidance mechanism,
results in faster performance and extends support to larger graphs. The algorithm is anticipated
to achieve a desired performance level expressed as (n/b)d, where 'b* represents the fitting effect
coefficient and 'd" signifies the graph's depth. With its innovative features and efficient loop
prevention mechanism, this algorithm presents a promising avenue for enhancing graph routing
in large-scale networks.

key words: bird’s behaviors, collective intelligence, fitness function, graph routing, meta -
heuristic, optimal path, optimization, parallel routing.

1 Introduction: In contemporary times, the need to conduct searches within graphs has
become paramount for various applications, especially in road routing, social networks, and
dynamic complex networks aimed at discovering relations. The prominence of new network

1Department of computer Engineering,Maybod Branch,Islamic Azad University,Maybod,Iran.
taki_mohsen@yahoo.com

’Department of computer Engineering,Maybod Branch,Islamic Azad University,Maybod,ran.
kamal.mirzaie@iau.ac.ir*

3Department of computer Engineering,Maybod Branch,Islamic Azad University,Maybod,Iran
Mr.mollahoseini@iau.ac.ir

Volume 48 Issue 2 (July 2024)
https://powertechjournal.com

mailto:taki_mohsen@yahoo.com
mailto:kamal.mirzaie@iau.ac.ir

-~ Power System Technology

~ Y~ 1SSN:1000-3673

Received: 16-05-2024 Revised: 12-06-2024 Accepted: 07-07-2024

routing and the significant support for the Internet of Things (I0T) are increasingly apparent[5].
With the daily expansion of information and the imperative to reduce response time, there is a
growing demand for optimal utilization of existing hardware to enhance system efficiency [11].

In response to these challenges and the quest for optimal results, there is a pressing need to
invent methodologies that increase efficiency and lead to optimal answers in shorter time
frames. This article aims to introduce an innovative method for graph routing, leveraging
hardware power while simultaneously providing solutions that are as close to optimal as
possible.

The method employed in this research to address the challenges of loops and deadlocks draws
inspiration from bird behavior algorithms. It involves carrying the history of DNA to offspring,
where the "DNA" here signifies the history of visited nodes. The process includes converting
each node into multiple processes, assigning history, and managing the execution of each route
through processes or their recursive execution. This approach substantially enhances
parallelism within the graph.

Unlike SMA*, which relies on an initial memory range[13], this method begins without a
default starting point, offering greater flexibility. The article commences with a comprehensive
review of the research background in the field, providing a comparative analysis of existing
general methods in a table format. The subsequent section details the algorithm, including its
pseudo-code, flowchart, and an example to enhance understanding.

To evaluate the algorithm's performance, the article presents tests conducted to measure time,
determine algorithm efficiency, and compare it with established algorithms such as genetics
and particle swarm optimization, with these differences illustrated through charts. Finally, the
article concludes with the presentation of results and suggestions for future exploration.

The background section categorizes existing graph routing algorithms into two main types:
deterministic and heuristic (non-deterministic). Deterministic algorithms, including Dijkstra,
Bellman-Ford, A*, Floyd-Warshall, and Johnson's algorithm, are briefly described,
highlighting their ability to find optimal solutions accurately [5].

In the subsequent sections, the article delves into the specifics of each deterministic algorithm,
detailing their applications and complexities. The discussion encompasses critical parameters
such as the number of vertices (V), number of edges (E), branching coefficient (b), and depth
of optimal solution (d). The distinctive features of algorithms like Dijkstra, Bellman-Ford, A*,
Floyd-Warshall, and Johnson's algorithm are elucidated [5].

The article then explores various heuristic algorithms, their classifications, and the challenges
they present, such as getting stuck in local optimal points and premature convergence. Meta-
heuristic algorithms, including genetic algorithms, ant colony algorithms, and bee algorithms,
are introduced as solutions to overcome these challenges.

Volume 48 Issue 2 (July 2024)
https://powertechjournal.com

-~ Power System Technology

)

~ Y ISSN:1000-3673

Received: 16-05-2024 Revised: 12-06-2024 Accepted: 07-07-2024

The section on genetic algorithms traces their inception by John Holland in 1960, emphasizing
their application in solving the shortest path problem. The work of researchers like Mitsuo and
Sen [29], who used genetic algorithms for routing, is also discussed, offering insights into the
development of routing and coding paths within a graph.

Several intelligent shortest path algorithms are presented, including ant colony optimization,
forbidden search, and collective optimization algorithms. These algorithms showcase
advancements in optimizing routing efficiency and present viable alternatives for various
applications.

The article concludes with discussions on recent approaches using particle swarm optimization
(PSO) and modified coding techniques to reduce loop formation probability in path
construction. Simulation experiments, comparisons between different algorithms, and
proposals for new approaches are presented, providing a comprehensive review in graph
routing.

In summary, this article not only introduces an innovative graph routing algorithm but also
provides a thorough exploration of the existing landscape, offering readers a nuanced
understanding of the challenges and solutions in the dynamic field of graph routing.

2- background: Existing algorithms for graph routing are classified into two categories:
deterministic and heuristic (non-deterministic). Deterministic algorithms are able to find
optimal solution accurately, and their execution time increases according to problem
dimensions [5].

Deterministic traversals in graphs start from basic traversals such as Dijkstra to find best path
between two points or other points. Algorithm of shortest paths from single origin (Dijkstra)
uses an idea similar to first level search. Other methods have been invented and applied
depending on various applications and what exactly problem is pursuing [11].

In following methods, V is number of vertices, E is number of edges, b is branching coefficient,
and d is depth of optimal solution.

Among deterministic algorithms to solve this type of problem are:

Dijkstra Algorithm: solves problem of finding shortest path between two vertices, from a single
origin to a single destination in O(|V||V|) time [5].

Bellman-Ford Algorithm: It solves problem of finding shortest path from single origin in a case
where edges weight can be negative. Its execution time is O(|V||E|) [5].

A* search algorithm: with help of innovative search methods, it accelerates answer of finding
shortest path between two vertices in O(bd) [11].

Floyd-Warshall algorithm: solves problem of finding shortest path between two vertices i
O(VIVIVDIB]-

Volume 48 Issue 2 (July 2024)
https://powertechjournal.com

-~ Power System Technology

)

~ Y ISSN:1000-3673

Received: 16-05-2024 Revised: 12-06-2024 Accepted: 07-07-2024

Johnson's algorithm: solves problem of finding shortest path between two vertices and in sparse
graphs, it may work faster than Floyd-Warshall. This algorithm has an execution time of
O(V2log V +VE) [5].

In many researches, path is calculated by considering minimum path. first concept of conflict-
free road routing used Dijkstra's shortest path algorithm to generate a matrix [28].

Dijkstra algorithm is a shortest path algorithm used to solve single-source shortest path problem
when all edges have non-negative weights. Dijkstra’s symmetric algorithm was invented by
Pole [23], which was derived by implementing two-way search method. process of symmetric
Dijkstra algorithm was similar to original algorithm, which included forward search (from
source node to destination node) and backward search (from destination node to source node).
algorithm process ends when forward search and backward search meet at a certain node.
According to Pole, this algorithm was invented in an attempt to reduce complexity of Dijkstra
implementing algorithm. But in worst case, algorithm implementation complexity can be
converted to two O(bd) searches [23].

sundari presents a new technique in Dijkstra routing algorithm. In this method, spent time by
this algorithm is calculated as a combination of input intervals. accuracy of this method is in
problem of shortest path and problem of finding a path in a graph between two vertices or
nodes to minimize total weight of its constituent edges. In existing approach, it identifies a
number of nodes by opening graph and calculates fastest path between it and most other nodes
[22].

Ahrens improved a goal-oriented version of Dijkstra's algorithm to find shortest paths in large
graphs. He provided distance-to-goal estimates that provided a better correlation between
execution time and quality of path found than previously known methods, leading to an overall
algorithm speedup [1].

A* algorithm was invented by Hart and Nilsson in 1968, where algorithm implements concept
of integrating a heuristic into search process. A* algorithm works similarly to Dijkstra
algorithm except for its different heuristic controls in node selection for each iteration. Instead
of selecting node with shortest distance from start node, A* algorithm selects node based on
its distance path from start node by heuristically estimating its proximity to destination node.
The heuristic estimation is evaluated by one of two main evaluation functions which were
Euclidean distance and Manhattan distance [13]. Zhang's A* algorithm has reduced search
space required to reach destination node compared to Dijkstra’s algorithm. This shows that A*
algorithm will perform better compared to Dijkstra algorithm, unless its heuristic function is
less accurate [32].

Bellman-Ford algorithm is suitable when graph has edges with negative value to solve shortest
path problems. This algorithm works iteratively; number of repetitions is based on number of

Volume 48 Issue 2 (July 2024)
https://powertechjournal.com

-~ Power System Technology

~ Y~ 1SSN:1000-3673

Received: 16-05-2024 Revised: 12-06-2024 Accepted: 07-07-2024

edges on path from start node to destination node. For each iteration, each of last visited nodes
expands to its nearest node [6].

Floyd-Warshall algorithm [23] works by finding shortest distance path between all pairs of
nodes in a graph. In addition, Floyd-Warshall algorithm is one of few algorithms that can solve
problem in a graph that contains negative values of edges and without existence of a cycle of
negative edges. main advantage of Floyd-Warshall algorithm is that it can obtain shortest
distance between any two arbitrary nodes [31].

Shortest path search is an effective way to find shortest path in heavy traffic congested areas
by pre-processing previous and current traffic data with different types of inputs and identifying
shortest path through graph theory. In Shortest route*, start node focuses on finding closest
target and then processes each step. main advantage of shortest path search algorithm is that it
does not waste time to spend on any other unwanted nodes [4].

Lewis investigates problem of finding shortest paths in graphs with additional penalties
(additional transmission costs) at their vertices. He proposes a shortest path algorithm that can
solve problem without having to perform a graph expansion, which is a common algorithmic
strategy. While his method has a lower growth rate compared to existing approaches, it shows
that his method is more efficient in sparse graphs [17]. Lakshna presents a new deterministic
route planning, collision risk monitoring and collision avoidance method for a ship. He
suggests sailing. This method is based on a modified version of Dijkstra's algorithm. It
combines conventional weather routing with collision risk monitoring and collision avoidance
features where edge weights change over time, and some edges may be temporarily blocked
due to weather conditions [4].

Another general category for graph traversal algorithms is heuristic or uncertain algorithms.
Heuristic algorithms are able to find good (near optimal) solutions in a short time for hard
optimization problems. Heuristic algorithms are also classified into three categories: heuristic,
meta-heuristic, and hyper-heuristic. In heuristic algorithms, a trick is tried to be used so that
entire space of states is not searched completely. In other words, by using a specific heuristic,
search scope is limited to reach answer [20]. A heuristic is a problem estimate that tells us how
close each existing state can be to solution, and more accurate this estimate can increase
algorithm's performance. Hill climbing and *A algorithms are of this type. two main problems
of heuristic algorithms are their getting stuck in local optimal points and premature
convergence to these points. Designing for special issues is also one of their characteristics.
Meta-heuristic algorithms are presented to solve such heuristic algorithm problems. In fact,
meta-heuristic algorithms are one types of heuristic optimization algorithms that have solutions
for exiting from local optimal points [20]. Meta-heuristic algorithms significantly increase
ability to find high-quality solutions for hard optimization problems. common feature of these
algorithms is use of local optimization exit mechanisms. Meta-heuristic algorithms are divided
into two general groups of break-answer and population-based methods. Algorithms based g

Volume 48 Issue 2 (July 2024)
https://powertechjournal.com

-~ Power System Technology

~ Y~ 1SSN:1000-3673

Received: 16-05-2024 Revised: 12-06-2024 Accepted: 07-07-2024

break answers return one answer during search process, while population-based algorithms
consider a population of answers during search. Algorithms based on solution break focus on
local search areas, on other hand, algorithms based on population can perform search
simultaneously in different solution areas space [31]. Algorithms such as genetic algorithm,
ant colony algorithm, bee algorithm are of this type.

Genetic Algorithm is a meta-heuristic algorithm invented by John Holland in 1960 [14]. It was
then developed by him and his students and colleagues at University of Michigan in 1960s and
1970s[24]. This intelligent algorithm was invented to solve shortest path problem in a flexible
situation that has a very large search space and a constantly changing environment [15]. Mitsuo
used genetic algorithm to solve shortest path problem, during which, main work for genetic
algorithm was how to develop routing and coding a path in a graph in form of a chromosome
[19].

Sen examines shortest path algorithms, focusing on graphs of roughly similar length and
distance. Samaher's research also introduces class of transportation network algorithms and
includes algorithms for general graphs as well as planar and complex graphs [29]. In contrast
to shortest path optimization algorithms, Fu explores algorithms that target shortest path
heuristics to quickly identify shortest path. goal of heuristic algorithms is to minimize
computation time. This review suggests main distinctive heuristic algorithm features as well as
their computational costs [10].

Xu made some simple modifications to original Dijkstra shortest path algorithm to obtain an
improved algorithm for finding shortest path for a sparse network [30]. Wang Shu introduced
Dijkstra label algorithm and stated that algorithm should be improved, then proposed an
improved algorithm that is more effective than label algorithm and can solve shortcomings of
label algorithm [25]. Garg presented a dynamic optimization for Dijkstra algorithm, which
helps to effectively solve dynamic source shortest path problem [33].

Today, there are also several intelligent shortest path algorithms that have been used in research
papers. In an article, Attirata analyzed continuation time of ant colony optimization algorithm
to find shortest path and presented his results and achievements in this field [3]. Ghoseiri also
used ant colony optimization algorithm to solve shortest path problem with two objectives.
Compared with label correction algorithm, this algorithm was able to provide answers with
higher quality and in a faster time [12]. In another study, kuri used meta-heuristic algorithm of
forbidden search for routing [16]. Mohemmed, in his article, solved problem of finding shortest
path in network by using collective optimization algorithm of particles [20].

There are many deterministic algorithms for solving shortest path problems in static topologies.
However, in dynamic topologies, these deterministic algorithms are not efficient due to need
for restarts. Amar presents research on application of particle swarm optimization (PSO) to
solve shortest path (SP) routing problems. A modified priority-based coding including

Volume 48 Issue 2 (July 2024)
https://powertechjournal.com

-~ Power System Technology

)

~ Y ISSN:1000-3673

Received: 16-05-2024 Revised: 12-06-2024 Accepted: 07-07-2024

heuristic operator is proposed to reduce probability of loop formation in path construction
process for particle representation in PSO.

Simulation experiments have been performed on different network topologies for networks
consisting of 15 to 70 nodes. It is pointed out that proposed PSO-based approach can find
optimal path with a good success rate and can also find closer sub-optimal paths with high
confidence for all tested networks. He also observed that performance of proposed algorithm
surpasses approaches based on genetic algorithm for this problem [2].

Chan's main goal was to investigate and test various shortest path algorithms used in navigation
system, such as Dijkstra's algorithm, Dijkstra's symmetric algorithm, A* algorithm, Bellman-
Ford algorithm, Floyd-Warshall algorithm and genetic algorithm. In solving shortest path
problem, results showed that Bellman-Ford algorithm performance is superior to other
algorithms in most situations. Therefore, authors have concluded that Bellman-Ford algorithm
is most efficient shortest path algorithm compared to other algorithms. This research also
shows that performance of genetic algorithm is affected by generations number, in which
higher number of generations, longer execution time and better solution. Therefore, it is very
important to adjust generations number until ratio of execution time to optimal solution is
obtained, so that genetic algorithm can be used in most efficient mode [7].

Omar has proposed a new approach to calculate shortest multi-faceted paths. Results showed
that success rate of new approach in terms of convergence to optimal or near optimal solutions
is much better than a basic genetic algorithm. Moreover, unlike traditional algorithms such as
Dijkstra, proposed new approach is fast enough for practical routing applications [9].

Mensah proposes an almost efficient and accurate algorithm that is applicable to large-scale
networks. Algorithm iteratively creates levels of hierarchical networks with a node-dense
method to construct hierarchical graphs up to threshold. Experiments on real data show that
algorithm records high efficiency and accuracy compared to other algorithms [8].In general,
inconsistencies can be reduced by minimizing number of traversals for arcs or edges by
changing paths to be taken between service points or by changing order of services [11] .

Techniq | Algori | power

ue thm weaknes
s
A Safe Dynamic
. and condition
Dijkstr ..

_ definite | sor
determin | a conditi | uncertain
istic Bellma

ons. ty are not
nFord | 5% | anorooria
Johnso B PPIep

zation | te.

Volume 48 Issue 2 (July 2024)
https://powertechjournal.com

» Power System Technology

ISSN:1000-3673

Received: 16-05-2024 Revised: 12-06-2024 Accepted: 07-07-2024
n include | Several
Floyd | sstatic | criteria

distanc | and

es, cost | scenarios

and cannot be

defined | calculate

constrai | d

nts effectivel
y.

Anticip | Better

ation, performa

reasoni | nce,

ng or especiall
adaptab | y when
ility there are

non- Geneti _ .

deemin | csAnt | OO0 | A

istic colony of needs to
dynami | be

c traffic | combine

situatio | d with

nsand | other

events | methods.

Table 1- Comparison of several deterministic and non-deterministic algorithms in terms of
strength and weakness [5].

3- Algorithm and routing method

The Phoenix generation method, inspired by the legendary Iranian bird, serves as the
foundation for the generation process in this algorithm. In this approach, each node transmits
its history to its offspring before being destructed, laying the groundwork for the production of
the next generation. Each child follows the same path as its parents until reaching the goal. If
a child revisits a node in its history, it prunes itself and the rest of its generation. Weaker
children, identified by having a weight higher than the average weight of their siblings, are
pruned without selection during fitting.

In this algorithm, the graph is represented as a list similar to an adjacency list but in a three-
dimensional form for easy access to required information. The fitness function in this method
is associated with each parent node. To develop its children, the parent node averages twice
with respect to all its output edges and prune edges with a weight higher than the average. This
process similar to birds removing weaker offspring or problematic eggs from the nest during
difficult conditions, ensuring that paths with a lower chance of reaching the goal are pruned

Volume 48 Issue 2 (July 2024)
https://powertechjournal.com

-~ Power System Technology

)

~ Y ISSN:1000-3673

Received: 16-05-2024 Revised: 12-06-2024 Accepted: 07-07-2024

early. The fitness function is responsible for selecting generations that are more suitable and
superior to other paths.

The algorithm faces a multitude of possible paths for development, leading to a substantial
initial population. The fitness function prunes paths by selecting those with a higher probability
of reaching a solution. Pathways progress locally and expand one generation at a time. Each
generation inherits a string of history from its parents, eliminating the need to go back to the
start for each generation.

The algorithm introduces three functions for reproduction: fitting, minimum inhibition (with
the biggest possible weight), and repetition inhibition (loop prevention). The stopping
condition for the algorithm is the impossibility of generation. Reproduction involves the fitness
function selecting candidates from paths ahead. The output of the fitness function serves as
input for inhibition functions, and if both functions grant reproduction permission, a new
generation is generated, and history is transferred to them.

The biggest possible weight is a value approximating the actual distance from the start node to
the destination, ensuring it is greater than or equal to this distance. This value acts as an upper
limit, blocking paths incompatible with new conditions or identifying weaker children. A good
upper limit can be predicted from the beginning by using functions to estimate the distance
between the start node and destination. Still, it can also be dynamically adjusted during
execution based on the success of other paths in achieving results with lower weights.

The algorithm operates in three modes depending on the initial values and method selection
variable: finding the shortest path between origin and destination, finding all possible paths
between origin and destination, and finding all possible paths between origin and destination
with a weight less than or equal to a defined maximum value.

This algorithm accommodating directed and undirected, weighted and unweighted graphs. It
supports zero weight and cannot support negative weight graphs. For unweighted graphs, the
algorithm considers the distance between each level to be 1. The input is the adjacency list of
the desired graph, and the output falls into one of the three mentioned modes.

In conclusion, this algorithm aims to obtain the shortest possible path or all possible paths,
offering high parallelism and optimization during execution. While it may outperform its peers
in speed for finding all possible ways, its strength lies in the accuracy of its answers when
seeking the shortest path. If a path leads to the production of a path greater than the final
estimated cost function, it is pruned, and the continuation of the path is postponed to other
paths. The matrix formation in this algorithm deviates from the usual method (adjacency
matrix) to accommodate changes, making it suitable for both directed and undirected graphs.

Volume 48 Issue 2 (July 2024)
https://powertechjournal.com

Y Power System Technology

ISSN:1000-3673

Received: 16-05-2024 Revised: 12-06-2024 Accepted: 07-07-2024

Algorithm:
phoenix(history, node, weight)
begin
if active node=goal and pathlenght<max then
max= pathlenght
Way=nhistory of visited nodes
End if
for i =0; i<active node childs and next node has child do
if next node isnt in history
set parameters for develop
phoenix(history, nextnode, tempweight)
next
end

Code 1-Phoenix algorithm

e RN Y A W A |
.0 BTN L e YL ey,
A LR N RS A LS AR DX TR X L)
DAY DG IR LA LT b (e e DD,

" histon L" eight

Figurel-Phoenix algorithm flowchart

Volume 48 Issue 2 (July 2024)
https://powertechjournal.com

-~ Power System Technology

)

~ Y ISSN:1000-3673

Received: 16-05-2024 Revised: 12-06-2024 Accepted: 07-07-2024

4- results Comparison and calculations

To ensure confidence in the comparison results, all algorithms discussed in this section were
executed on a Dell4800 laptop with the following specifications: Windows 8 operating system,
i7 processor (2 physical cores, 4 logical cores), 4M cache, 512K L2 cache, 128K L1 cache, and
16GB RAM. The dataset used for comparison was selected from the standard datasets of
Stanford University, comprising 800 nodes and 19176 edges. Dr. Yinyu Ye, a professor at
Stanford University's School of Engineering, provided this dataset, which apparently involves
interactions among university students through personal emails, reflecting direct or mediated
communications between students.

Initially, the dataset was converted into an adjacency list, and the performance of Dijkstra
algorithms and some other available deterministic algorithms was tested to find connections
between two nodes (the first and last node). Unfortunately, due to the limited power of the
hardware used and algorithm limitations, no answers were obtained.

Genetic algorithms and Particle Swarm Optimization (PSO), as two meta-heuristic algorithms,
were adjusted and tested on this dataset, with results detailed below.

In different executions, the algorithm organized and searched up to 70 thousand nodes based
on changes in the style of creating an adjacency list, which was significantly higher than the 7
thousand nodes achieved by conventional proximity lists and existing meta-heuristic methods.

In these datasets, every edge was assigned a fixed weight of 1. To increase pruning and improve
results, a fitness function using random weights was introduced, overlaying another list on the
same graph where edges had different weights. This modification did not affect the accuracy
of answers or path accuracy but increased the speed of obtaining answers by 30%.

Two effective functions in this method are fitness functions and target depth estimation. Both
play a significant role in increasing pruning and reducing the speed of obtaining answers.

- fitness function

The fitness function is inspired by the behavior of birds towards weaker eggs and young.
Weaker children, with a lower life expectancy, are pruned above the average limit. The
operation is done once during the first visit of a node, and the averaging result is written in the
first cell of the column related to the edge.

Target Depth Estimation Function:

This function has the greatest impact on increasing pruning and reducing operations in the
algorithm. If the weight obtained from the traveled path exceeds the output value of this
function, it leads to pruning the path. The output of this function (MaxW), when closer to the
actual weight of the shortest path from the start node to the destination, significantly reduces
the number of operations in the algorithm.

Volume 48 Issue 2 (July 2024)
https://powertechjournal.com

-~ Power System Technology

)|

~_J~ I1SSN:1000-3673

Received: 16-05-2024 Revised: 12-06-2024 Accepted: 07-07-2024

It should be noted that this number is modified by the algorithm, and if a route is found with a
weight lower than MaxW, it is changed to a new value, and pruning is done based on this new
value. Even routes larger than the new value are pruned in the current step. The estimation
function can be obtained based on different mechanisms.

With the above explanations, the standard dataset of 800 nodes and 19176 edges was tested for
Phoenix algorithms (with different modes), genetics (in two modes, normal and modified
mutation), and particle swarm optimization (PSO). The output of the Phoenix algorithm was
used as training input for genetic algorithm and PSO.

In addition to finding the optimal path, the Phoenix algorithm can display specific sub-maximal
paths or a certain number of paths with a specific maximum path length in the output. Sixty
routes with lengths below 30, below 20, and below 10 were entered as correct examples for
genetic algorithm and PSO.

In the genetic algorithm, common data between two samples of the population were divided
after initial tests, and resulting samples were used after matching to prevent the generation of
duplicate populations. This mode dramatically increased the speed of obtaining results. Finally,
the results of running the mentioned algorithms in different situations are shown in the table
below. The results provided are the averages of 50 runs for each algorithm.

Table 2- Phoenix parameters setting

N Initial Parameter Valu
0 e

1 | MaxW(maximum allowed | 10to
weight) 30

2 | NN(Nodes Number) 800
3 | M(Max Branch Factor) 32

4 | Goal NN-
1

5 | MinWay null
6 | Minw 0

Table 3- algorithms execution time Comparison

Algorit | average | average
hm weight | Time(s)
name

A Normal 4 13.5
Genetic

Volume 48 Issue 2 (July 2024)
https://powertechjournal.com

-~ Power System Technology

Y+ I1SSN:1000-3673

N7 -

Received: 16-05-2024 Revised: 12-06-2024 Accepted: 07-07-2024

B Optimiz 3 3.8
ed
Genetic

PSO 3 3.85

D Parallel 3 0.134
Phoenix
MaxW=
30

@

E Recursi 3 0.0175
ve
Phoenix
MaxW=
30

F Parallel 4 0.057
Phoenix

MW=10 and var Weights

G Recursi 4 0.0125
ve
Phoenix

MW=10 and var Weights

15

10

Figure2-Algorithm execution on dataset with 800 nodes

Volume 48 Issue 2 (July 2024)
https://powertechjournal.com

= Power System Technology

~Y~ I1SSN:1000-3673

Received: 16-05-2024 Revised: 12-06-2024 Accepted: 07-07-2024

40
30

20
10
0 o e w

=@=3800 =@==3000 7000

Figure3-Algorithm execution on different datasets

1.4
1.2

0.8
0.6
0.4
0.2

D E F G
—9=800 —0=—3000 7000

Figure4-Execution of different states of Phoenix algorithm

0.1
0.08
0.06
0.04
0.02

0
800 3000 7000

Figure5-Execution algorithm with closest Max

4 |
A
WAL A A

H
i e A

Figure6-processor activity Peak during algorithm execution

Volume 48 Issue 2 (July 2024)
https://powertechjournal.com

-~ Power System Technology

~ Y~ 1SSN:1000-3673

Received: 16-05-2024 Revised: 12-06-2024 Accepted: 07-07-2024

According to the results of tests and preliminary data, the following results can be considered
as the execution time. If we consider the execution unit of an instruction as 1 for each node
visit, or, in fact, we ignore side operations and consider each node visit as equivalent to
executing one instruction, where the Phoenix algorithm is used without considering MaxW and
fitting, it can be said that this algorithm has an order of O(n”*2) in the worst case. Firstly, it is
not possible to return to its history at each stage, and every path from the starting node can
finally visit all nodes and cannot add a duplicate node to history.

Now, if we add MaxW as a cutting or pruning factor to the algorithm, knowing that the
algorithm is limited to it and will not go further than that, and if we consider the weight of each
step to be 1 in the worst case, if we imagine the best number for goal depth is equal to a small
coefficient (c) multiplied by tree depth (d), which will not be more than that, the result is ndc
because no return backward to history and adding history as visited path. But according to
MaxW modification, after reaching the first solution, ¢ will gradually tend to 1 and even smaller
than that. With the mentioned interpretations, the algorithm in this case is an order of O(n log

n).

If we add the fitness function to the mentioned algorithm and observe all previous conditions,
according to all mentioned cases, n can be changed to half or even less because some of the
children are not expanded. Even in the movement case among other nodes, because nodes with
larger weight have development limitations, then practically (n/2)dc nodes will be met, and it
tends to (n/2) log n, which in large graphs, this difference in result will be remarkable compared
to the previous case. But in the worst case, it will be O (n log n).

5- Conclusion

Experiments have shown that deterministic graph routing algorithms are not capable of routing
medium and large-scale graphs. Therefore, heuristic and meta-heuristic methods are used for
such routing. However, in this research, the nature of the reversibility and parallelization of
graphs by relying on carrying history to prevent more possible loops showed itself. It was found
that if graphs have proper pruning and effective pruning functions, only by using the Phoenix
Algorithm recursively, routing graphs can be much faster. Parallelization itself has a higher
computational overhead than the recursive mode, and if you can work on graphs with the
recursive mode, the result will naturally be more satisfactory.

In experiments with more than 70,000 nodes and 200,000 edges, both recursion and parallel
recursion methods provided much faster answers than other algorithms. In the above methods,
according to the presented graphs, it was shown that this algorithm is as active as possible in
relation to using the processor, and complete graph segmentation has made the processor
completely available to the algorithm. This movement plays a significant role in decreasing
execution time. Of course, using the parallel method to visit several nodes at the same time will
be more effective in routing that requires high computational efforts or complex processes to
visit nodes.

Volume 48 Issue 2 (July 2024)
https://powertechjournal.com

Power System Technology

ISSN:1000-3673

Received: 16-05-2024 Revised: 12-06-2024 Accepted: 07-07-2024

Resourses

1) Ahrens, Markus, Henke, Dorothee, Rabenstein, Stefan, VVygen, Jens, Faster goal-oriented
shortest path search for bulk and incremental detailed routing, Mathematical Programming,
https://doi.org/10.1007/s10107-023-01962-4,2023.

2) Amar, D, Flandrin, E, Gancarzewicz, G, Wojda, A.P, Bipartite graphs with every matching
in a cycle, Discrete Math, 2005

3) Attiratanasunthron, N, Fakcharoenphol, J, A running time analysis of an Ant Colony
Optimization algorithm for shortest paths in directed acyclic graphs, Information
Processing Letters, 105, 88-92, 2007.

4) Lakshna, S, Gokila, K, Ramesh, R, Smart Traffic: Traffic Congestion Reduction by
Shortest Route * Search Algorithm, International Journal of Engineering Trends and
Technology, Volume 71 Issue 3, 423-433, 2023.

5) Bhatia, Shaveta, Survey of shortest Path Algorithms, SSRG International Journal of
Computer Science and Engineering (SSRG-1JCSE), 2019.

6) Bellman, Richard, On a routing problem, Quarterly of Applied Mathematics, 16: 8790,
d0i:10.1090/ qam/102435. MR 0102435, 1958.

7) Chan, Simon, Yew, Meng, An experiment on the performance of shortest path algorithm,
7-12, 2016.

8) Dennis, Nii, Ayeh, Mensah, Hui, Gao, Liang, Wei Yang, Approximation Algorithm for
Shortest Path in Large Social Networks, Algorithms, 13, 36:10.3390/13020036, 2020.

9) Dib, Omar, Manier, Marie-Ange, Caminada, Alexandre, Memetic algorithm for computing
shortest paths in multimodal transportation networks, Transportation Research Procedia
10:745-755, 2015.

10) Fu, Liping, Sun, D, Rilett, Laurence R, Heuristic shortest path algorithms for transportation
applications: state of the art, Computers & Operations Research, 33.11: 3324-3343, 2006.

11) Georg, E, Frohlich, A, Gansterer, Margaretha, Doerner, Karl F, Safe and secure vehicle
routing: a survey on minimization of risk exposure, International Federation of Operational
Research Societies, 2023.

12) Ghoseiri, K, Nadjari, B, an ant colony optimization algorithm for the bi-objective shortest
path problem, Applied Soft Computing. Vol.10, No.4, 1237-1246, 2009.

13) Hart, P, Nilsson, N, Raphael, B, A Formal Basis for the Heuristic Determination of
Minimum Cost Paths, IEEE Trans. Syst. Sci. Cybern. 1968, 4, 100107, 2009.

14) Holland, John, Adaptation, H, in Natural and Artificial Systems, University of Michigan
Press, Ann Arbor, 1975.

15) Kairanbay, Magzhan, Hajar, Mat Jani, A review and evaluations of shortest path
algorithms, International Journal of Scientific and Technology Research, 2, 99-104, 2013.

16) Kuri, J, Puech, N, Gagnaire, M, Dotaro, E, routing foreseeable light path demands using a
tabu search meta-heuristic, Proceedings of the IEEE Global Telecommunication
Conference, pp.28032807, 2003.

Volume 48 Issue 2 (July 2024)
https://powertechjournal.com

-~ Power System Technology

)

~ Y ISSN:1000-3673

Received: 16-05-2024 Revised: 12-06-2024 Accepted: 07-07-2024

17) Lewis, R, A Shortest Path Algorithm for Graphs Featuring Transfer Costs at their Vertices,
Cardi_ University, CF24,2020.

18) Merikh Bayat Farshad, meta-heuristic optimization algorithms (with applications in
electrical engineering), Jihad Academic Press, 2013.

19) Mitsuo, G, Runwei, C, Dingwei, W, Genetic Algorithms for Solving Shortest Path
Problems, Evolutionary Computation, IEEE International Conference on. 401-406,1997.

20) Mohammadpour, Hamidreza, Madanlu Joybari, Alireza, Review of meta-heuristic
algorithms and their capabilities, the first national conference on meta-heuristic algorithms
and their applications in science and engineering,iran,tehtan, 2013.

21) Mohemmed, A, Chandra, Sahoo, N, Kim Geok, T, solving shortest path problem using
particle swarm optimization, Applied Soft Computing, VVol.8, No.4, pp. 1643-1653, 2008.

22) Muthusundari, s, Jothilakshmi, r, Divya, s, Kavitha, a, Umamaheswari, Computation
Performance Optimization Technique of Shortest Path Routing Algorithm in Networks
Using Out-degree, geintec, ISSN: 2237-0722. 11. 2, 2021.

23) Pohl, Ira, Bi-directional Search, Machine Intelligence, vol. 6, Edinburgh University Press,
pp. 127-140, 1971.

24) Rigo, Michel , Advanced Graph Theory and Combinatorics,2016.

25) Robert, w. Floyd, algorithm 97: shortest path, communication of the ACM5(6):345, june
1962.

26) Samaher, Adnan, enas, Wahab, Abood, Wafaa, Abdulmuhsin, the multi-point delivery
problem: Shortest Path Algorithm for Real Roads Network using Dijkstra, Journal of
Physics: Conference Series 1530 (2020) 012040,2020.

27) Sunita, Deepak Garg, Dynamizing Dijkstra: A solution to dynamic shortest path problem
through retroactive priority queu Journal of King Saud University — Computer and
Information Sciences Article in pressmmm, 2018.

28) Vivaldini, K. T, Galdames, J. P. M, Pasqual, T. B, Sobral R. M, Araudjo, R.C, Becker, M,
Caurin, G. A. P, Automatic Routing System for Intelligent Warehouses, ICRA10
International workshop on Robotics and Intelligent Transportation System,2023.

29) Wang Shu-Xi, The Improved Dijkstra's Shortest Path, Algorithm and Its Application and
Electronics Engineering (IWIEE) Procedia Engineering 29 (2012) 1186 — 119,0, 2012.
30) Xu, M Y, Liu, Q, Huang Y, Zhang G, an improved Dijkstra shortest path algorithm for

sparse network Applied Mathematics and Computation 185 pp.247- 254, 2007.

31) Yu-Li, Chouy, Edwin, H, Robert, Romeijnz, Smithx, L, Approximating Shortest Paths in
Large-scale Networks with an Application to Intelligent, Transportation Systems,
September 27, 1998.

32) Zhang, H, Zhang, Z, AOA-Based Three-Dimensional Positioning and Tracking Using the
Factor Graph Technique, Symmetry,2020.

33) Zyczkowski, Marcin, Szlapczynski, Rafal, Collision risk-informed weather routing for
sailboats, Institute of Ocean Engineering and Ship Technology, Gdansk University of
Technology, Poland,2023.

Volume 48 Issue 2 (July 2024)
https://powertechjournal.com

