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Abstract: In the realm of graph routing, various deterministic algorithms such as Floyd and 

Dijkstra have been instrumental in achieving specified goals. However, as graphs grow larger 

in size, the torch is being passed to meta-heuristic algorithms like genetics and particle swarm 

optimization. These innovative approaches address the challenges posed by extensive graphs, 

particularly in terms of routing time and loop prevention. Distance estimation and fitness 

functions have become pivotal elements in contemporary algorithms, significantly contributing 

to the reduction of route duration. Nonetheless, the persistent challenges of graph routing 

remain in handling loops and optimizing routing time efficiently. A groundbreaking solution 

to these challenges comes in the form of a novel algorithm inspired by the legendary bird, the 

Phoenix. In this algorithm, the history of nodes is inherited by their offspring. During each 

reproductive cycle, the algorithm ensures that the developed child, while fitting on offspring 

and selecting the stronger one, does not reintroduce itself to its own history, effectively 

preventing loops. 

This method outpaces existing routing techniques in terms of speed and scalability, primarily 

attributed to a paradigm shift in creating the adjacency list. The algorithm's unique approach, 

inheriting node history to offspring and employing a stringent loop avoidance mechanism, 

results in faster performance and extends support to larger graphs. The algorithm is anticipated 

to achieve a desired performance level expressed as (n/b)d, where 'b' represents the fitting effect 

coefficient and 'd' signifies the graph's depth. With its innovative features and efficient loop 

prevention mechanism, this algorithm presents a promising avenue for enhancing graph routing 

in large-scale networks. 

key words: bird’s behaviors, collective intelligence, fitness function, graph routing, meta -  

heuristic, optimal path, optimization, parallel routing.

1 Introduction: In contemporary times, the need to conduct searches within graphs has 

become paramount for various applications, especially in road routing, social networks, and 

dynamic complex networks aimed at discovering relations. The prominence of new network 
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routing and the significant support for the Internet of Things (IoT) are increasingly apparent[5]. 

With the daily expansion of information and the imperative to reduce response time, there is a 

growing demand for optimal utilization of existing hardware to enhance system efficiency [11]. 

In response to these challenges and the quest for optimal results, there is a pressing need to 

invent methodologies that increase efficiency and lead to optimal answers in shorter time 

frames. This article aims to introduce an innovative method for graph routing, leveraging 

hardware power while simultaneously providing solutions that are as close to optimal as 

possible. 

The method employed in this research to address the challenges of loops and deadlocks draws 

inspiration from bird behavior algorithms. It involves carrying the history of DNA to offspring, 

where the "DNA" here signifies the history of visited nodes. The process includes converting 

each node into multiple processes, assigning history, and managing the execution of each route 

through processes or their recursive execution. This approach substantially enhances 

parallelism within the graph. 

Unlike SMA*, which relies on an initial memory range[13], this method begins without a 

default starting point, offering greater flexibility. The article commences with a comprehensive 

review of the research background in the field, providing a comparative analysis of existing 

general methods in a table format. The subsequent section details the algorithm, including its 

pseudo-code, flowchart, and an example to enhance understanding. 

To evaluate the algorithm's performance, the article presents tests conducted to measure time, 

determine algorithm efficiency, and compare it with established algorithms such as genetics 

and particle swarm optimization, with these differences illustrated through charts. Finally, the 

article concludes with the presentation of results and suggestions for future exploration. 

The background section categorizes existing graph routing algorithms into two main types: 

deterministic and heuristic (non-deterministic). Deterministic algorithms, including Dijkstra, 

Bellman-Ford, A*, Floyd-Warshall, and Johnson's algorithm, are briefly described, 

highlighting their ability to find optimal solutions accurately [5]. 

In the subsequent sections, the article delves into the specifics of each deterministic algorithm, 

detailing their applications and complexities. The discussion encompasses critical parameters 

such as the number of vertices (V), number of edges (E), branching coefficient (b), and depth 

of optimal solution (d). The distinctive features of algorithms like Dijkstra, Bellman-Ford, A*, 

Floyd-Warshall, and Johnson's algorithm are elucidated [5]. 

The article then explores various heuristic algorithms, their classifications, and the challenges 

they present, such as getting stuck in local optimal points and premature convergence. Meta-

heuristic algorithms, including genetic algorithms, ant colony algorithms, and bee algorithms, 

are introduced as solutions to overcome these challenges. 
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The section on genetic algorithms traces their inception by John Holland in 1960, emphasizing 

their application in solving the shortest path problem. The work of researchers like Mitsuo and 

Sen [29], who used genetic algorithms for routing, is also discussed, offering insights into the 

development of routing and coding paths within a graph. 

Several intelligent shortest path algorithms are presented, including ant colony optimization, 

forbidden search, and collective optimization algorithms. These algorithms showcase 

advancements in optimizing routing efficiency and present viable alternatives for various 

applications. 

The article concludes with discussions on recent approaches using particle swarm optimization 

(PSO) and modified coding techniques to reduce loop formation probability in path 

construction. Simulation experiments, comparisons between different algorithms, and 

proposals for new approaches are presented, providing a comprehensive review in graph 

routing. 

In summary, this article not only introduces an innovative graph routing algorithm but also 

provides a thorough exploration of the existing landscape, offering readers a nuanced 

understanding of the challenges and solutions in the dynamic field of graph routing. 

2- background: Existing algorithms for graph routing are classified into two categories: 

deterministic and heuristic (non-deterministic). Deterministic algorithms are able to find 

optimal solution accurately, and their execution time increases according to problem 

dimensions [5]. 

Deterministic traversals in graphs start from basic traversals such as Dijkstra to find best path 

between two points or other points. Algorithm of shortest paths from single origin (Dijkstra) 

uses an idea similar to first level search. Other methods have been invented and applied 

depending on various applications and what exactly problem is pursuing [11]. 

In following methods, V is number of vertices, E is number of edges, b is branching coefficient, 

and d is depth of optimal solution. 

Among deterministic algorithms to solve this type of problem are: 

Dijkstra Algorithm: solves problem of finding shortest path between two vertices, from a single 

origin to a single destination in O(|V||V|) time [5]. 

Bellman-Ford Algorithm: It solves problem of finding shortest path from single origin in a case 

where edges weight can be negative. Its execution time is O(|V||E|) [5]. 

A* search algorithm: with help of innovative search methods, it accelerates answer of finding 

shortest path between two vertices in O(bd) [11].  

Floyd-Warshall algorithm: solves problem of finding shortest path between two vertices in 

O(|V||V||V|)[5]. 
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Johnson's algorithm: solves problem of finding shortest path between two vertices and in sparse 

graphs, it may work faster than Floyd-Warshall. This algorithm has an execution time of 

O(V2log V +VE) [5]. 

In many researches, path is calculated by considering minimum path. first concept of conflict-

free road routing used Dijkstra's shortest path algorithm to generate a matrix [28]. 

Dijkstra algorithm is a shortest path algorithm used to solve single-source shortest path problem 

when all edges have non-negative weights. Dijkstra’s symmetric algorithm was invented by 

Pole [23], which was derived by implementing two-way search method. process of symmetric 

Dijkstra algorithm was similar to original algorithm, which included forward search (from 

source node to destination node) and backward search (from destination node to source node). 

algorithm process ends when forward search and backward search meet at a certain node. 

According to Pole, this algorithm was invented in an attempt to reduce complexity of Dijkstra 

implementing algorithm. But in worst case, algorithm implementation complexity can be 

converted to two O(bd) searches [23].  

sundari presents a new technique in Dijkstra routing algorithm. In this method, spent time by 

this algorithm is calculated as a combination of input intervals. accuracy of this method is in 

problem of shortest path and problem of finding a path in a graph between two vertices or 

nodes to minimize total weight of its constituent edges. In existing approach, it identifies a 

number of nodes by opening graph and calculates fastest path between it and most other nodes 

[22]. 

Ahrens improved a goal-oriented version of Dijkstra's algorithm to find shortest paths in large 

graphs. He provided distance-to-goal estimates that provided a better correlation between 

execution time and quality of path found than previously known methods, leading to an overall 

algorithm speedup [1]. 

A* algorithm was invented by Hart and Nilsson in 1968, where algorithm implements concept 

of integrating a heuristic into search process. A* algorithm works similarly to Dijkstra 

algorithm except for its different heuristic controls in node selection for each iteration. Instead 

of selecting node with shortest distance from start node, A* algorithm selects node based on 

its distance path from start node by heuristically estimating its proximity to destination node. 

The heuristic estimation is evaluated by one of two main evaluation functions which were 

Euclidean distance and Manhattan distance [13]. Zhang's A* algorithm has reduced search 

space required to reach destination node compared to Dijkstra's algorithm. This shows that A* 

algorithm will perform better compared to Dijkstra algorithm, unless its heuristic function is 

less accurate [32]. 

Bellman-Ford algorithm is suitable when graph has edges with negative value to solve shortest 

path problems. This algorithm works iteratively; number of repetitions is based on number of 
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edges on path from start node to destination node. For each iteration, each of last visited nodes 

expands to its nearest node [6]. 

Floyd-Warshall algorithm [23] works by finding shortest distance path between all pairs of 

nodes in a graph. In addition, Floyd-Warshall algorithm is one of few algorithms that can solve 

problem in a graph that contains negative values of edges and without existence of a cycle of 

negative edges. main advantage of Floyd-Warshall algorithm is that it can obtain shortest 

distance between any two arbitrary nodes [31]. 

Shortest path search is an effective way to find shortest path in heavy traffic congested areas 

by pre-processing previous and current traffic data with different types of inputs and identifying 

shortest path through graph theory. In Shortest route*, start node focuses on finding closest 

target and then processes each step. main advantage of shortest path search algorithm is that it 

does not waste time to spend on any other unwanted nodes [4]. 

Lewis investigates problem of finding shortest paths in graphs with additional penalties 

(additional transmission costs) at their vertices. He proposes a shortest path algorithm that can 

solve problem without having to perform a graph expansion, which is a common algorithmic 

strategy. While his method has a lower growth rate compared to existing approaches, it shows 

that his method is more efficient in sparse graphs [17]. Lakshna presents a new deterministic 

route planning, collision risk monitoring and collision avoidance method for a ship. He 

suggests sailing. This method is based on a modified version of Dijkstra's algorithm. It 

combines conventional weather routing with collision risk monitoring and collision avoidance 

features where edge weights change over time, and some edges may be temporarily blocked 

due to weather conditions [4].  

Another general category for graph traversal algorithms is heuristic or uncertain algorithms. 

Heuristic algorithms are able to find good (near optimal) solutions in a short time for hard 

optimization problems. Heuristic algorithms are also classified into three categories: heuristic, 

meta-heuristic, and hyper-heuristic. In heuristic algorithms, a trick is tried to be used so that 

entire space of states is not searched completely. In other words, by using a specific heuristic, 

search scope is limited to reach answer [20]. A heuristic is a problem estimate that tells us how 

close each existing state can be to solution, and more accurate this estimate can increase 

algorithm's performance. Hill climbing and *A algorithms are of this type. two main problems 

of heuristic algorithms are their getting stuck in local optimal points and premature 

convergence to these points. Designing for special issues is also one of their characteristics. 

Meta-heuristic algorithms are presented to solve such heuristic algorithm problems. In fact, 

meta-heuristic algorithms are one types of heuristic optimization algorithms that have solutions 

for exiting from local optimal points [20]. Meta-heuristic algorithms significantly increase 

ability to find high-quality solutions for hard optimization problems. common feature of these 

algorithms is use of local optimization exit mechanisms. Meta-heuristic algorithms are divided 

into two general groups of break-answer and population-based methods. Algorithms based on 
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break answers return one answer during search process, while population-based algorithms 

consider a population of answers during search. Algorithms based on solution break focus on 

local search areas, on other hand, algorithms based on population can perform search 

simultaneously in different solution areas space [31]. Algorithms such as genetic algorithm, 

ant colony algorithm, bee algorithm are of this type. 

Genetic Algorithm is a meta-heuristic algorithm invented by John Holland in 1960 [14]. It was 

then developed by him and his students and colleagues at University of Michigan in 1960s and 

1970s[24]. This intelligent algorithm was invented to solve shortest path problem in a flexible 

situation that has a very large search space and a constantly changing environment [15]. Mitsuo 

used genetic algorithm to solve shortest path problem, during which, main work for genetic 

algorithm was how to develop routing and coding a path in a graph in form of a chromosome 

[19]. 

Sen examines shortest path algorithms, focusing on graphs of roughly similar length and 

distance. Samaher's research also introduces class of transportation network algorithms and 

includes algorithms for general graphs as well as planar and complex graphs [29]. In contrast 

to shortest path optimization algorithms, Fu explores algorithms that target shortest path 

heuristics to quickly identify shortest path. goal of heuristic algorithms is to minimize 

computation time. This review suggests main distinctive heuristic algorithm features as well as 

their computational costs [10]. 

Xu made some simple modifications to original Dijkstra shortest path algorithm to obtain an 

improved algorithm for finding shortest path for a sparse network [30]. Wang Shu introduced 

Dijkstra label algorithm and stated that algorithm should be improved, then proposed an 

improved algorithm that is more effective than label algorithm and can solve shortcomings of 

label algorithm [25]. Garg presented a dynamic optimization for Dijkstra algorithm, which 

helps to effectively solve dynamic source shortest path problem [33]. 

Today, there are also several intelligent shortest path algorithms that have been used in research 

papers. In an article, Attirata analyzed continuation time of ant colony optimization algorithm 

to find shortest path and presented his results and achievements in this field [3]. Ghoseiri also 

used ant colony optimization algorithm to solve shortest path problem with two objectives. 

Compared with label correction algorithm, this algorithm was able to provide answers with 

higher quality and in a faster time [12]. In another study, kuri used meta-heuristic algorithm of 

forbidden search for routing [16]. Mohemmed, in his article, solved problem of finding shortest 

path in network by using collective optimization algorithm of particles [20]. 

There are many deterministic algorithms for solving shortest path problems in static topologies. 

However, in dynamic topologies, these deterministic algorithms are not efficient due to need 

for restarts. Amar presents research on application of particle swarm optimization (PSO) to 

solve shortest path (SP) routing problems. A modified priority-based coding including a 
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heuristic operator is proposed to reduce probability of loop formation in path construction 

process for particle representation in PSO. 

Simulation experiments have been performed on different network topologies for networks 

consisting of 15 to 70 nodes. It is pointed out that proposed PSO-based approach can find 

optimal path with a good success rate and can also find closer sub-optimal paths with high 

confidence for all tested networks. He also observed that performance of proposed algorithm 

surpasses approaches based on genetic algorithm for this problem [2]. 

Chan's main goal was to investigate and test various shortest path algorithms used in navigation 

system, such as Dijkstra's algorithm, Dijkstra's symmetric algorithm, A* algorithm, Bellman-

Ford algorithm, Floyd-Warshall algorithm and genetic algorithm. In solving shortest path 

problem, results showed that Bellman-Ford algorithm performance is superior to other 

algorithms in most situations. Therefore, authors have concluded that Bellman-Ford algorithm 

is most efficient shortest path algorithm compared to other algorithms. This research also 

shows that performance of genetic algorithm is affected by generations number, in which 

higher number of generations, longer execution time and better solution. Therefore, it is very 

important to adjust generations number until ratio of execution time to optimal solution is 

obtained, so that genetic algorithm can be used in most efficient mode [7]. 

Omar has proposed a new approach to calculate shortest multi-faceted paths. Results showed 

that success rate of new approach in terms of convergence to optimal or near optimal solutions 

is much better than a basic genetic algorithm. Moreover, unlike traditional algorithms such as 

Dijkstra, proposed new approach is fast enough for practical routing applications [9]. 

Mensah proposes an almost efficient and accurate algorithm that is applicable to large-scale 

networks. Algorithm iteratively creates levels of hierarchical networks with a node-dense 

method to construct hierarchical graphs up to threshold. Experiments on real data show that 

algorithm records high efficiency and accuracy compared to other algorithms [8].In general, 

inconsistencies can be reduced by minimizing number of traversals for arcs or edges by 

changing paths to be taken between service points or by changing order of services [11] . 
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Table 1- Comparison of several deterministic and non-deterministic algorithms in terms of 

strength and weakness [5]. 

 3- Algorithm and routing method 

The Phoenix generation method, inspired by the legendary Iranian bird, serves as the 

foundation for the generation process in this algorithm. In this approach, each node transmits 

its history to its offspring before being destructed, laying the groundwork for the production of 

the next generation. Each child follows the same path as its parents until reaching the goal. If 

a child revisits a node in its history, it prunes itself and the rest of its generation. Weaker 

children, identified by having a weight higher than the average weight of their siblings, are 

pruned without selection during fitting. 

In this algorithm, the graph is represented as a list similar to an adjacency list but in a three-

dimensional form for easy access to required information. The fitness function in this method 

is associated with each parent node. To develop its children, the parent node averages twice 

with respect to all its output edges and prune edges with a weight higher than the average. This 

process similar to birds removing weaker offspring or problematic eggs from the nest during 

difficult conditions, ensuring that paths with a lower chance of reaching the goal are pruned 
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early. The fitness function is responsible for selecting generations that are more suitable and 

superior to other paths. 

The algorithm faces a multitude of possible paths for development, leading to a substantial 

initial population. The fitness function prunes paths by selecting those with a higher probability 

of reaching a solution. Pathways progress locally and expand one generation at a time. Each 

generation inherits a string of history from its parents, eliminating the need to go back to the 

start for each generation. 

The algorithm introduces three functions for reproduction: fitting, minimum inhibition (with 

the biggest possible weight), and repetition inhibition (loop prevention). The stopping 

condition for the algorithm is the impossibility of generation. Reproduction involves the fitness 

function selecting candidates from paths ahead. The output of the fitness function serves as 

input for inhibition functions, and if both functions grant reproduction permission, a new 

generation is generated, and history is transferred to them. 

The biggest possible weight is a value approximating the actual distance from the start node to 

the destination, ensuring it is greater than or equal to this distance. This value acts as an upper 

limit, blocking paths incompatible with new conditions or identifying weaker children. A good 

upper limit can be predicted from the beginning by using functions to estimate the distance 

between the start node and destination. Still, it can also be dynamically adjusted during 

execution based on the success of other paths in achieving results with lower weights. 

The algorithm operates in three modes depending on the initial values and method selection 

variable: finding the shortest path between origin and destination, finding all possible paths 

between origin and destination, and finding all possible paths between origin and destination 

with a weight less than or equal to a defined maximum value. 

This algorithm accommodating directed and undirected, weighted and unweighted graphs. It 

supports zero weight and cannot support negative weight graphs. For unweighted graphs, the 

algorithm considers the distance between each level to be 1. The input is the adjacency list of 

the desired graph, and the output falls into one of the three mentioned modes. 

In conclusion, this algorithm aims to obtain the shortest possible path or all possible paths, 

offering high parallelism and optimization during execution. While it may outperform its peers 

in speed for finding all possible ways, its strength lies in the accuracy of its answers when 

seeking the shortest path. If a path leads to the production of a path greater than the final 

estimated cost function, it is pruned, and the continuation of the path is postponed to other 

paths.  The matrix formation in this algorithm deviates from the usual method (adjacency 

matrix) to accommodate changes, making it suitable for both directed and undirected graphs. 
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Algorithm: 

phoenix(history, node, weight) 

begin 

 if active node=goal and pathlenght<max then 

 max= pathlenght 

Way=history of visited nodes 

 End if 

for  i = 0; i<active node childs and next node has child  do  

    if  next node isnt in history  

    set parameters for develop 

     phoenix(history, nextnode, tempweight) 

next 

end 

Code 1-Phoenix algorithm 

 

Figure1-Phoenix algorithm flowchart 
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4- results Comparison and calculations 

To ensure confidence in the comparison results, all algorithms discussed in this section were 

executed on a Dell4800 laptop with the following specifications: Windows 8 operating system, 

i7 processor (2 physical cores, 4 logical cores), 4M cache, 512K L2 cache, 128K L1 cache, and 

16GB RAM. The dataset used for comparison was selected from the standard datasets of 

Stanford University, comprising 800 nodes and 19176 edges. Dr. Yinyu Ye, a professor at 

Stanford University's School of Engineering, provided this dataset, which apparently involves 

interactions among university students through personal emails, reflecting direct or mediated 

communications between students. 

Initially, the dataset was converted into an adjacency list, and the performance of Dijkstra 

algorithms and some other available deterministic algorithms was tested to find connections 

between two nodes (the first and last node). Unfortunately, due to the limited power of the 

hardware used and algorithm limitations, no answers were obtained. 

Genetic algorithms and Particle Swarm Optimization (PSO), as two meta-heuristic algorithms, 

were adjusted and tested on this dataset, with results detailed below. 

In different executions, the algorithm organized and searched up to 70 thousand nodes based 

on changes in the style of creating an adjacency list, which was significantly higher than the 7 

thousand nodes achieved by conventional proximity lists and existing meta-heuristic methods. 

In these datasets, every edge was assigned a fixed weight of 1. To increase pruning and improve 

results, a fitness function using random weights was introduced, overlaying another list on the 

same graph where edges had different weights. This modification did not affect the accuracy 

of answers or path accuracy but increased the speed of obtaining answers by 30%. 

Two effective functions in this method are fitness functions and target depth estimation. Both 

play a significant role in increasing pruning and reducing the speed of obtaining answers. 

- fitness function 

The fitness function is inspired by the behavior of birds towards weaker eggs and young. 

Weaker children, with a lower life expectancy, are pruned above the average limit. The 

operation is done once during the first visit of a node, and the averaging result is written in the 

first cell of the column related to the edge. 

Target Depth Estimation Function: 

This function has the greatest impact on increasing pruning and reducing operations in the 

algorithm. If the weight obtained from the traveled path exceeds the output value of this 

function, it leads to pruning the path. The output of this function (MaxW), when closer to the 

actual weight of the shortest path from the start node to the destination, significantly reduces 

the number of operations in the algorithm. 
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It should be noted that this number is modified by the algorithm, and if a route is found with a 

weight lower than MaxW, it is changed to a new value, and pruning is done based on this new 

value. Even routes larger than the new value are pruned in the current step. The estimation 

function can be obtained based on different mechanisms. 

With the above explanations, the standard dataset of 800 nodes and 19176 edges was tested for 

Phoenix algorithms (with different modes), genetics (in two modes, normal and modified 

mutation), and particle swarm optimization (PSO). The output of the Phoenix algorithm was 

used as training input for genetic algorithm and PSO. 

In addition to finding the optimal path, the Phoenix algorithm can display specific sub-maximal 

paths or a certain number of paths with a specific maximum path length in the output. Sixty 

routes with lengths below 30, below 20, and below 10 were entered as correct examples for 

genetic algorithm and PSO. 

In the genetic algorithm, common data between two samples of the population were divided 

after initial tests, and resulting samples were used after matching to prevent the generation of 

duplicate populations. This mode dramatically increased the speed of obtaining results. Finally, 

the results of running the mentioned algorithms in different situations are shown in the table 

below. The results provided are the averages of 50 runs for each algorithm. 

Table 2- Phoenix parameters setting 

N

o 

Initial Parameter Valu

e 

1 MaxW(maximum allowed 

weight)  

10 to 

30 

2 NN(Nodes Number) 800 

3 M(Max Branch  Factor) 32 

4 Goal NN-

1 

5 MinWay null 

6 Minw 0 

 

 Table 3- algorithms execution time Comparison  

 Algorit

hm 

name  

average 

weight  

average 

Time(s) 

A Normal 

Genetic 

4 13.5 
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B Optimiz

ed 

Genetic 

3 3.8 

C PSO 3 3.85 

D Parallel 

Phoenix   

MaxW=

30 

3 0.134 

E Recursi

ve 

Phoenix   

MaxW=

30 

3 0.0175 

F Parallel 

Phoenix 

4 0.057 

 MW=10 and var Weights 

G Recursi

ve 

Phoenix 

4 0.0125 

 MW=10 and var Weights 

 

 

Figure2-Algorithm execution on dataset with 800 nodes 
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Figure3-Algorithm execution on different datasets 

 

Figure4-Execution of different states of Phoenix algorithm 
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Figure6-processor activity Peak during algorithm execution 
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According to the results of tests and preliminary data, the following results can be considered 

as the execution time. If we consider the execution unit of an instruction as 1 for each node 

visit, or, in fact, we ignore side operations and consider each node visit as equivalent to 

executing one instruction, where the Phoenix algorithm is used without considering MaxW and 

fitting, it can be said that this algorithm has an order of O(n^2) in the worst case. Firstly, it is 

not possible to return to its history at each stage, and every path from the starting node can 

finally visit all nodes and cannot add a duplicate node to history. 

Now, if we add MaxW as a cutting or pruning factor to the algorithm, knowing that the 

algorithm is limited to it and will not go further than that, and if we consider the weight of each 

step to be 1 in the worst case, if we imagine the best number for goal depth is equal to a small 

coefficient (c) multiplied by tree depth (d), which will not be more than that, the result is ndc 

because no return backward to history and adding history as visited path. But according to 

MaxW modification, after reaching the first solution, c will gradually tend to 1 and even smaller 

than that. With the mentioned interpretations, the algorithm in this case is an order of O(n log 

n). 

If we add the fitness function to the mentioned algorithm and observe all previous conditions, 

according to all mentioned cases, n can be changed to half or even less because some of the 

children are not expanded. Even in the movement case among other nodes, because nodes with 

larger weight have development limitations, then practically (n/2)dc nodes will be met, and it 

tends to (n/2) log n, which in large graphs, this difference in result will be remarkable compared 

to the previous case. But in the worst case, it will be O (n log n). 

5- Conclusion 

Experiments have shown that deterministic graph routing algorithms are not capable of routing 

medium and large-scale graphs. Therefore, heuristic and meta-heuristic methods are used for 

such routing. However, in this research, the nature of the reversibility and parallelization of 

graphs by relying on carrying history to prevent more possible loops showed itself. It was found 

that if graphs have proper pruning and effective pruning functions, only by using the Phoenix 

Algorithm recursively, routing graphs can be much faster. Parallelization itself has a higher 

computational overhead than the recursive mode, and if you can work on graphs with the 

recursive mode, the result will naturally be more satisfactory. 

In experiments with more than 70,000 nodes and 200,000 edges, both recursion and parallel 

recursion methods provided much faster answers than other algorithms. In the above methods, 

according to the presented graphs, it was shown that this algorithm is as active as possible in 

relation to using the processor, and complete graph segmentation has made the processor 

completely available to the algorithm. This movement plays a significant role in decreasing 

execution time. Of course, using the parallel method to visit several nodes at the same time will 

be more effective in routing that requires high computational efforts or complex processes to 

visit nodes. 



 
Received: 16-05-2024         Revised: 12-06-2024 Accepted: 07-07-2024 

 

 541 Volume 48 Issue 2 (July 2024) 

https://powertechjournal.com 

 

Resourses 

1) Ahrens, Markus, Henke, Dorothee, Rabenstein, Stefan, Vygen, Jens, Faster goal-oriented 

shortest path search for bulk and incremental detailed routing, Mathematical Programming, 

https://doi.org/10.1007/s10107-023-01962-4,2023. 

2) Amar, D, Flandrin, E, Gancarzewicz, G, Wojda, A.P, Bipartite graphs with every matching 

in a cycle, Discrete Math, 2005 

3) Attiratanasunthron, N, Fakcharoenphol, J, A running time analysis of an Ant Colony 

Optimization algorithm for shortest paths in directed acyclic graphs, Information 

Processing Letters, 105, 88-92, 2007. 

4) Lakshna, S, Gokila, K, Ramesh, R, Smart Traffic: Traffic Congestion Reduction by 

Shortest Route * Search Algorithm, International Journal of Engineering Trends and 

Technology, Volume 71 Issue 3, 423-433, 2023. 

5) Bhatia, Shaveta, Survey of shortest Path Algorithms, SSRG International Journal of 

Computer Science and Engineering (SSRG-IJCSE), 2019. 

6) Bellman, Richard, On a routing problem, Quarterly of Applied Mathematics, 16: 87–90, 

doi:10.1090/ qam/102435. MR 0102435, 1958. 

7) Chan, Simon, Yew, Meng, An experiment on the performance of shortest path algorithm, 

7-12, 2016. 

8) Dennis, Nii, Ayeh, Mensah, Hui, Gao, Liang, Wei Yang, Approximation Algorithm for 

Shortest Path in Large Social Networks, Algorithms, 13, 36:10.3390/13020036, 2020. 

9) Dib, Omar, Manier, Marie-Ange, Caminada, Alexandre, Memetic algorithm for computing 

shortest paths in multimodal transportation networks, Transportation Research Procedia 

10:745-755, 2015. 

10) Fu, Liping, Sun, D, Rilett, Laurence R, Heuristic shortest path algorithms for transportation 

applications: state of the art, Computers & Operations Research, 33.11: 3324-3343, 2006. 

11) Georg, E, Frohlich, A, Gansterer, Margaretha, Doerner, Karl F, Safe and secure vehicle 

routing: a survey on minimization of risk exposure, International Federation of Operational 

Research Societies, 2023. 

12) Ghoseiri, K, Nadjari, B, an ant colony optimization algorithm for the bi-objective shortest 

path problem, Applied Soft Computing. Vol.10, No.4, 1237-1246, 2009. 

13) Hart, P, Nilsson, N, Raphael, B, A Formal Basis for the Heuristic Determination of 

Minimum Cost Paths, IEEE Trans. Syst. Sci. Cybern. 1968, 4, 100107, 2009.  

14) Holland, John, Adaptation, H, in Natural and Artificial Systems, University of Michigan 

Press, Ann Arbor, 1975. 

15) Kairanbay, Magzhan, Hajar, Mat Jani, A review and evaluations of shortest path 

algorithms, International Journal of Scientific and Technology Research, 2, 99-104, 2013. 

16) Kuri, J, Puech, N, Gagnaire, M, Dotaro, E, routing foreseeable light path demands using a 

tabu search meta-heuristic, Proceedings of the IEEE Global Telecommunication 

Conference, pp.28032807, 2003. 



 
Received: 16-05-2024         Revised: 12-06-2024 Accepted: 07-07-2024 

 

 542 Volume 48 Issue 2 (July 2024) 

https://powertechjournal.com 

 

17) Lewis, R, A Shortest Path Algorithm for Graphs Featuring Transfer Costs at their Vertices, 

Cardi_ University, CF24,2020. 

18) Merikh Bayat Farshad, meta-heuristic optimization algorithms (with applications in 

electrical engineering), Jihad Academic Press, 2013. 

19) Mitsuo, G, Runwei, C, Dingwei, W, Genetic Algorithms for Solving Shortest Path 

Problems, Evolutionary Computation, IEEE International Conference on. 401-406,1997. 

20) Mohammadpour, Hamidreza, Madanlu Joybari, Alireza, Review of meta-heuristic 

algorithms and their capabilities, the first national conference on meta-heuristic algorithms 

and their applications in science and engineering,iran,tehtan, 2013. 

21) Mohemmed, A, Chandra, Sahoo, N, Kim Geok, T, solving shortest path problem using 

particle swarm optimization, Applied Soft Computing, Vol.8, No.4, pp. 1643-1653, 2008. 

22) Muthusundari, s, Jothilakshmi, r, Divya, s, Kavitha, a, Umamaheswari, Computation 

Performance Optimization Technique of Shortest Path Routing Algorithm in Networks 

Using Out-degree, geintec, ISSN: 2237-0722. 11. 2, 2021. 

23) Pohl, Ira, Bi-directional Search, Machine Intelligence, vol. 6, Edinburgh University Press, 

pp. 127–140, 1971. 

24) Rigo, Michel , Advanced Graph Theory and Combinatorics,2016. 

25) Robert, w. Floyd, algorithm 97: shortest path, communication of the ACM5(6):345, june 

1962. 

26) Samaher, Adnan, enas, Wahab, Abood, Wafaa, Abdulmuhsin, the multi-point delivery 

problem: Shortest Path Algorithm for Real Roads Network using Dijkstra, Journal of 

Physics: Conference Series 1530 (2020) 012040,2020. 

27) Sunita, Deepak Garg, Dynamizing Dijkstra: A solution to dynamic shortest path problem 

through retroactive priority queu Journal of King Saud University – Computer and 

Information Sciences Article in pressmmm, 2018. 

28) Vivaldini, K. T, Galdames, J. P. M, Pasqual, T. B, Sobral R. M, Araújo, R.C, Becker, M, 

Caurin, G. A. P, Automatic Routing System for Intelligent Warehouses, ICRA10 

International workshop on Robotics and Intelligent Transportation System,2023. 

29) Wang Shu-Xi, The Improved Dijkstra's Shortest Path, Algorithm and Its Application and 

Electronics Engineering (IWIEE) Procedia Engineering 29 (2012) 1186 – 119,0, 2012. 

30) Xu, M Y, Liu, Q, Huang Y, Zhang G, an improved Dijkstra shortest path algorithm for 

sparse network Applied Mathematics and Computation 185 pp.247- 254, 2007. 

31) Yu-Li, Chouy, Edwin, H, Robert, Romeijnz, Smithx, L, Approximating Shortest Paths in 

Large-scale Networks with an Application to Intelligent, Transportation Systems, 

September 27, 1998. 

32) Zhang, H, Zhang, Z, AOA-Based Three-Dimensional Positioning and Tracking Using the 

Factor Graph Technique, Symmetry,2020. 

33) Zyczkowski, Marcin, Szlapczynski, Rafal, Collision risk-informed weather routing for 

sailboats, Institute of Ocean Engineering and Ship Technology, Gdansk University of 

Technology, Poland,2023. 


