The Role of Autonomous Cars on Development of Smart Urban Space

¹Iloosh Vaziri, ^{2*}Fereshteh Ahmadi, ³Zeynab Talebi Rizi, ⁴Mahmoud Saffarzadeh

¹Phd Student in Urban Planning, Department of Urban Planning, Advancement in Architecture and Urban Planning Research Center, Najafabad Branch, Islamic Azad University, Najafabad, Iran

Ilooshvaziri@gmail.com

²Assistant Professor, Department of Urban Planning, Advancement in Architecture and Urban Planning Research Center, Najafabad Branch, Islamic Azad University, Najafabad, Iran (Corresponding author)

Fereshteahmadi2004@yahoo.com

³Assistant Professor, Department of Urban Planning, Advancement in Architecture and Urban Planning Research Center, Najafabad Branch, Islamic Azad University, Najafabad, Iran

z.talebi@par.iaun.ac.ir

⁴Professor in Transportation Planning, civil & Environmental Engineering Faculty , Tarbiat Modares University, Tehran, Iran

Saffar m@modares.ac.ir

Abstract

The process of developing smart urban space as one of the most important challenges of contemporary society has started a new expansion with the arrival of autonomous cars as an effective and transformative factor. This article examines the essential and influential role of autonomous cars in the development of smart urban space. Therefore first, the concept of smart urban space as a comprehensive system that takes advantage of population gathering, information and communication technology, and intelligent management is examined. Then the issue of autonomous cars, which as one of the advanced technologies in the field of transportation, play a very important role in the development of smart urban space, are introduced. These cars have the ability to provide new solutions for traffic problems, creating trouble and improving urban security. Among the important components identified in the role of these cars, it can be mentioned that increasing productivity and reducing travel time, creating smart public transportation networks, and supporting sustainable and green movement in cities. Then, focusing on various components of the urban environment including transportation, traffic, safety and infrastructure, the role of autonomous cars in improving and optimizing these components is analyzed. This analysis includes examining positive effects such as reducing traffic and travel time, increasing safety and improving

access to public services. Finally, in this study, the components and analyzes necessary to identify the effective indicators of the role of autonomous cars in the development of smart urban space have been introduced. Therefore, it was shown that autonomous cars in the urban form were combined in three groups of principles, which include the impact on urbanization, influence on road infrastructure, and influence at the level.

Keywords: autonomous car, smart urban space, urban space

1. Introduction

In recent decades, with the advancement of technology and the introduction of autonomous cars into transportation field, the concept of smart cities as a new approach in urban space management has been highly regarded. As one of the great developments in this field, autonomous cars have the ability to provide new solutions to improve traffic, safety and sustainability in cities. In this regard, evaluating and analyzing the role of these cars in the development of smart urban space and identifying indicators affecting this role is a fundamental and necessary matter that has attracted the attention of researchers and decision makers in the field of urban planning (Julian, 2023). In this research, we investigate the role of autonomous cars in the development of smart urban space. By reviewing the existing literature and providing detailed analysis, we try to identify and evaluate the essential and effective factors on this role. Also, in this research, it is tried to examine the positive and negative effects of the presence of autonomous cars on traffic, safety, environment and the development of smart cities.

Hence, in recent decades, a significant increase in the number of vehicles worldwide is clearly evident. Approximately, the number of vehicles in 2015 reached about 1.3 billion vehicles, most of which were passenger vehicles. This growth is projected to double by the end of the 2020s or early 2030s as the upward trend continues. In the meantime, the presence of driverless cars or autonomous vehicles (AV) has been raised as an important topic of discussion in various forums as well as for governments and universities. The focus of more research is on the technical aspects of this technology, and its effects on urban spaces and the future of people's mobility have been less investigated. In other words, autonomous cars combined with sharing are likely to dramatically change the face of individual transportation and urban space over the next three decades. Research shows that autonomous car technology is developing and advancing rapidly. It is predicted that by 2040-2050, fully autonomous cars will enter the market in the world's largest cities. However, technical, political, legal, and economic issues related to this technology are still being discussed globaly. The presence of autonomous cars does not only affect people's daily trips, but its effects on the appearance and shape of cities can also be seen. Therefore, the effects of autonomous car technology on urban space and its architecture should also be investigated and analyzed (Abrar, 2020).

This article examines the problems of introducing autonomous cars and its effects on urban form and architecture. Due to the rapid development of this technology, the changes made to cities and their spaces will be irreversible. Therefore, it is very important to know the consequences of the implementation of autonomous cars and prevent its negative developments. However, for now, the interrelationship between autonomous vehicles and the urban space and the corresponding urban infrastructure and platform should be explored in a more coordinated and bidirectional way. Cities are now facing many changes in their spatial structure and architecture after centuries of their initial structure. In this regard, long-term construction and urban development activities are considered as one of the most important stages of physical-spatial changes in the city. Changes in the urban spatial structure, especially in the development of trade, tourism, recreation and changes in urban infrastructure have had significant effects on the urban space. These changes were created and benefited by the increasing population and construction needs (Kili et al., 2018).

Much of the nature of the emergence of autonomous cars, whether this is an evolution or a revolution in the urban space, will gradually and soon become clear. But without a doubt, this technological progress is a revolution in the history of modernity. The long-term impact of this development on our daily lives, the safety of our citizens, and the environments in which we live and work, on our streets and in our metropolises, will redefine our society, and this impact will be greater than any other technology which has appeared before.

It is clear that the literature supporting autonomous vehicles is essential for smart and sustainable development. This research is one of the first efforts in the field of investigating the adaptation components of the texture and spatial structure of cities on the traffic and use of autonomous cars. It explains the effects of this technology on the urban space, the environment, sustainable urban development, the livability of streets and passages, the improvement of the urban landscape and visual factors, the effects on neighborhoods and different urban areas, and their mutual effects on each other. Until now, most of the studies have focused on the production and technical performance of autonomous cars, or their environmental or economic aspects have been researched at the level of the cars' performance. In this research, an attempt has been made to examine the way cars travel and the adaptation of the spatial structure and texture of cities, and to highlight the importance of street redesign in localities and the comfort of users, which has been neglected in previous researches.

In short, this research emphasizes that innovation, from the point of view of the possibility of using this emerging technology in existing cities or new cities, has important and extensive effects, including the well-being and comfort of users, improving the livelihood of city residents, affecting the quality of life, and is based on the dimensions of sustainable

development. This research aims to help achieve these components and provide solutions for better and more effective management of urban space and transportation in cities.

2- Theoretical framework

2-1- Theoretical definition of autonomous car

Theoretical basis related to autonomous cars are often based on legal definitions and technical concepts. For example, Section 8 of the Nevada State Code of 1988 defines an autonomous vehicle as a motorized vehicle that uses artificial intelligence, sensors, and a global positioning system to drive itself without the intervention of a human operator. This definition provides a basic basis for knowing the autonomous car and emphasizes its importance in determining the limits and characteristics of this type of vehicle. A autonomous car is known as a type of car equipped with an artificial intelligence system that allows moving between two places without the intervention of the driver. This concept is the basis on which driverless cars are seen as an example of technological advancement in the field of transportation. In this model, the main role of the human driver is in driving as recognizing and determining the destination, while artificial intelligence systems and sensors are used to control and manage driving operations. These theoretical concepts show that the autonomous car is not only a means of transportation, but also a representative of technological advances in the field of automobile manufacturing, which offers more facilities for the comfort and safety of passengers. In addition, these basic definitions emphasize the importance of more detailed analysis of the various effects and impacts of this technology in the field of urban space and transportation.

2-2- urban space

Urban space generally reproduces the general order of the human world (Rob Carrier), if we want to clarify the concept of urban space without imposing aesthetic criteria, we must consider all examples of the space between buildings in cities and other places as urban space. This space is geometrically surrounded by various symbols. It is only the revelation of its geometric features and aesthetic qualities that allows us to consciously consider the outer open space as an urban space. The two fundamental elements in this field are street and square (Jean-Pierre) More urban spaces inside or around cities are places specific to the social life of citizens, which include green and civil spaces, sidewalks, squares, and playgrounds. The use of these spaces is numerous and includes: traffic, recreation, play, meeting, etc. On the other hand, urban space as a platform for social functions plays a prominent role in facilitating these functions and campaigns related to it, which appear in the form of institutions, organizations, etc., and facilitates relationships and refines social construction. Since the urban space, by interfering in the facilitation and refinement of social construction.

is generally involved with social strategies and sometimes strengthens, consolidates or weakens them, therefore it has a social role due to the generality, certainty and repetition of its effects. (Khazaei, 2015, Bagh Mohammadi and Salavarzizadeh, 2019: 94, Garg & Praliya 922: 2021)

2-3- Components of urban space and their qualities

In the last two decades, various theorists at the global level have addressed the components of urban spaces and examined their role, effectiveness and quality from various dimensions. Among the different dimensions and contexts of urban space quality, three functional, experiential-aesthetic and environmental components are deduced as the shaping forces of urban space.

According to karmona (2003), on the one hand, the functional components include the provision of movement and easy and convenient access to attractive and focal urban centers, and on the other hand, they include other functions such as passive recreation, watching various events, etc. To guarantee the vitality and richness of the spatial experience of the city. Also, the experimental-aesthetic components deal with the perceptual, cognitive perceptions and environmental preferences of people in front of the routes as an urban space and finally, the environmental components in its micro dimensions including categories such as: micro climate regulation of urban spaces (sun, air flow, wind, shading, etc.) and in its macro dimensions, it has been concerned with environmental sustainability such as balance in the environment, reduction of pollutants and cleanliness of the environment, etc. (Mohammadi et al.: 2013)

In the following, based on time precedence, the most important indicators of the quality of urban space are discussed according to functional, experimental-aesthetic and environmental components from the point of view of theorists.

Table 1. Opinions of experts on the components of urban space and their qualities

theorists	Functional component	Experimental-aesthetic	Environmental
		component	component
Jane Jacobs	The priority of order of	Attention to the element of	-
1961	activities over visual order,	the street, the possibility of	
	mixed use, permeability,	social mixing, wealth of	
	possibility of monitoring	activities, flexible spaces	
	and care, variety and wealth		
	of activities		
Cullen 1961	Creating connections	Personal perceptions,	-
	between elements of the	relative aesthetics, order	

		1	
	physical environment such	and sequential views,	
	as trees, landscapes,	environmental grace	
	buildings and urban traffic,		
	functional connections		
Kevin Lynch	Adaptability, access, control	vitality of life, meaningfull	Biological
1983	and supervision, efficiency,		vitality
	justice		
Violich 1983		readability of the	Attention to
		environment, freedom of	local-regional
		choice, different urban	links
		forms, the possibility of	
		social life, listening to the	
		past (reading cultural	
		heritage)	
Wilkinson	Selectivity, evoking a sense	Balancing and calming	Communicate
1983	of mastery	human dynamics, the	with nature
		ability to create social	
		relationships, a sense of	
		self-fulfillment	
Transic 1986	maintaining movement	Enclosure of spaces,	-
	sequence (communication)	continuity of edges,	
		control to axes of vision	
		and perspectives,	
		combination of inside and	
		outside.	
Green 1992	Performance includes:	Order includes: doing,	Climatic comfort
	access and communication,	clarity, consistency	
	diversity of users, security	Identity includes: center of	
		unity, personality	
		Attractiveness includes:	
		scale, visual fit,	
		functionality, vitality,	
		harmony	
theorists	Functional component	Experimental-aesthetic	Environmental
		component	component
Tibbalds	Mixed use, attention to the	attention to places more	Climatic comfort
1992	needs of all groups,	than buildings, learning	of pedestrians
	flexibility, growth and	from the past and	

Brian Goody 1993 Permeability, flexibility, measured and controlled growth and development Planning Advisory Committee London 1993 Prime Minister's Special Urban Design Force 1994 Architecture and Artifact Environment Commission 2000 theorists Functional component Frank 2001 Distance, security, cost, time, convenience Sorkin 2002 Functional mixing, cavalry-pedestrian movement system Permenation development Planning Advisory Committee London 1993 Safety, use and mixed activities, existence of public spaces and special spaces, case of movement on foot and on horseback Appropriate structure, legibility and identity, visual wealth, human scale and compactness of the city fabric, optimal urban management. Responding to local characteristics and needs, the relevance of plans to the congoing future developments, and strengthening ties to the past Experimental-aesthetic component Experimental-aesthetic component Sorkin 2002 Functional mixing, cavalry-pedestrian movement system Sorkin 2002 Functional mixing, cavalry-pedestrian movement system Architecture, privacy, beauty		gradual changes, attention to	respecting the existing	
Brian Goody 1993 Permeability, flexibility, measured and controlled growth and development Planning Advisory Committee London 1993 Responding to local Winister's Special Urban Design Force 1994 Architecture and Artifact Environment Commission 2000 Theorists Functional component Frank 2001 Functional component Brian Goody Remeability, flexibility, measured and controlled growth and development wistering platform, diversity, human scale, possibility of personalization, readability, wealth Appropriate structure, legibility and identity, visual wealth, human scale and compactness of the city fabric, optimal urban management. Responding to local characteristics and needs, the relevance of plans to the conditions of the local world developments, and strengthening ties to the past Adaptability, diversity, freedom of movement Commission 2000 Theorists Functional component Frank 2001 Distance, security, cost, time, convenience Sorkin 2002 Functional mixing, cavalry-pedestrian movement system Sorkin 2002 Functional mixing, cavalry-pedestrian movement system Regibility, harmony with the existing platform, diversity, human scale, possibility of personalization, readability and identity, cleantity and identity, visual wealth, human scale legibility and identity, and celestion in the city fabric, optimal urban management. Restoring plans to adapt to ongoing future developments, and strengthening ties to the past Readability, character, continuity, quality of public space Environmental component Values and attitudes, environmental pleasant, personal habits Circular neighborhood, preservation of edges, control of view and landscape, centrality of public places, native architecture, privacy, and the conditions, readability, diversity, diversity, day representation of edges, control of view and landscape, centrality of public places, native architecture, privacy, and conditions of the catalogue presental transported and component of public places, native architecture, privacy, and conditions, readability, de				
Permeability, flexibility, measured and controlled growth and development Pinning Advisory Committee London 1993 Permeability spaces and special spaces, ease of movement on foot and on horseback Characteristics and needs, the relevance of pluss to the conditions of the local world Design Force 1994 Architecture and Artifact Environment Commission 2000 Theorists Functional component Frank 2001 Distance, security, cost, time, convenience Sorkin 2002 Functional mixing, cavalry pedestrian movement system Safety, use and mixed activities, existence of public space and special spaces, ease of movement Appropriate structure, legibility and identity, visual wealth, human scale and compactness of the city fabric, optimal urban management. Restoring plans to adapt to ongoing future developments, and strengthening ties to the past Distance, security, cost, time, convenience Experimental-aesthetic component Component Experimental-aesthetic component		pedestrians		
measured and controlled growth and development growth and development diversity, human scale, possibility of personalization, readability, wealth Planning Advisory Committee London 1993	Brian Goody	Permeability flevibility		_
Planning				_
Planning Advisory Committee public spaces and special spaces, ease of movement on foot and on horseback Prime Alimiter's Special Urban Design Force 1994 Architecture and Artifact Environment Commission 2000 Thronks Prank 2001 Frank 2001 Planning Safety, use and mixed activities, existence of public spaces and special spaces, ease of movement on foot and on horseback on foot and on	1993			
Planning Advisory Committee London 1993 Prime Minister's Special Urban Design Force 1994 Architecture and Artifact Environment Commission 2000 Theorists Functional component Frank 2001 Final 2001 Functional mixing, exavalry-pedestrian movement system Planning Advisory Committee London 1993 Safety, use and mixed activities, existence of public spaces and special spaces and special spaces, case of movement on foot and on horseback Appropriate structure, legibility, and identity, visual wealth, human scale and compactness of the city fabric, optimal urban management. Restoring plans to adapt to ongoing future developments, and strengthening ties to the past Readability, character, continuity, quality of public space Environment Component Values and attitudes, environmental pleasant, personal habits Circular neighborhood, preservation of edges, control of view and landscape, centrality of public places, native architecture, privacy,		growth and development	•	
Planning Advisory Committee London 1993 Prime Minister's Special Urban Design Force 1994 Architecture and Artifact Environment Commission 2000 Theorists Frank 2001 Frank 2001 Frank 2002 Functional component Safety, use and mixed activities, existence of public spaces and special spaces, ease of movement on foot and on horseback and compactness of the city fabric, optimal urban management. Responding to local characteristics and needs, Special the relevance of plans to the conditions of the local world Design Force 1994 Architecture and Artifact Environment Commission 2000 Theorists Functional component Frank 2001 Functional mixing, cavalry-pedestrian movement system Functional mixing, cavalry-pedestrian movement Sorkin 2002 Functional mixing, cavalry-pedestrian movement system Final Adpartability, we alth Appropriate structure, legibility and identity, visual wealth, human scale and compactness of the city fabric, optimal urban management. Restoring plans to adapt to ongoing future developments, and strengthening ties to the past Activities, existence of public space background of designs Frank 2001 Functional component Experimental-aesthetic component Values and attitudes, environmental pleasant, personal habits Circular neighborhood, preservation of edges, control of view and landscape, centrality of public places, native architecture, privacy,			= -	
Planning Advisory Committee London 1993 Prime Minister's Special Urban Design Force 1994 Architecture and Artifact Environment Commission 2000 Theorists Functional component Frank 2001 Final 2001 Functional mixing, cavalrypedestrian movement Sorkin 2002 Functional mixing, cavalrypedestrian movement System Safety, use and mixed activities, existence of public spaces and special spaces, ease of movement on foot and special spaces, ease of movement on foot and on horseback Responding to local characteristics and needs, the relevance of plans to the conditions of the local world of designs Restoring plans to adapt to ongoing future developments, and strengthening ties to the past Adaptability, diversity, freedom of movement Experimental-aesthetic component Component Values and attitudes, environmental pleasant, personal habits Circular neighborhood, preservation of edges, control of view and landscape, centrality of public places, native architecture, privacy,			*	
Advisory Committee London 1993 Prime Minister's Special Urban Design Force 1994 Architecture and Artifact Environment Commission 2000 Theorists Functional component Frank 2001 Distance, security, cost, time, convenience Sorkin 2002 Functional mixing, cavalry-pedestrian movement system Advisory Committee London public spaces and special spaces, ease of movement on foot and on horseback legibility and identity, visual wealth, human scale and compactness of the city fabric, optimal urban management. Restoring plans to adapt to ongoing future developments, and strengthening ties to the past Beach of the city fabric, optimal urban management. Restoring plans to adapt to ongoing future developments, and strengthening ties to the past Beach of the city fabric, optimal urban management. Restoring plans to adapt to ongoing future developments, and strengthening ties to the past Beach of the city fabric, optimal urban management. Restoring plans to adapt to ongoing future developments, and strengthening ties to the past Beach of the city fabric, optimal urban management. Restoring plans to adapt to ongoing future developments, and strengthening ties to the past Beach of the city fabric, optimal urban management. Restoring plans to adapt to ongoing future developments, and strengthening ties to the past Beach of the city fabric, optimal urban management. Restoring plans to adapt to ongoing future developments, and strengthening ties to the past Beach of the city fabric, optimal urban management. Restoring plans to adapt to ongoing future developments, and strengthening ties to the past Beach of the city fabric, optimal urban management. Restoring plans to adapt to ongoing future developments, and strengthening ties to the past Beach of the city fabric, optimal versus plans to adapt to ongoing future developments, and strengthening ties to the past optimal artificial background of Design Continuity, quality of public space Sorkin 2001 Beach of the city fabric, cost, continuity, cast, cos			<u> </u>	
Committee London 1993 Prime Minister's Special Urban Design Force 1994 Architecture and Artifact Environment Commission 2000 Theorists Functional component Frank 2001 Distance, security, cost, time, convenience Sorkin 2002 Functional mixing, cavalrypedestrian movement system Prime Minister's Special Urban Design Force 1994 Architecture and Artifact Environment Commission 2000 Theorists Functional component Frank 2001 Pinter Adaptability, diversity, firedom of movement Sorkin 2002 Functional mixing, cavalrypedestrian movement system Prime Minister's Special Urban Design Force 1994 Architecture and Artifact Environment Commission 2000 Theorists Functional component Experimental-aesthetic component Values and attitudes, environmental pleasant, personal habits Circular neighborhood, preservation of edges, control of view and landscape, centrality of public places, native architecture, privacy,	_			cleanliness
London 1993 spaces, ease of movement on foot and on horseback Prime Minister's Special Urban Design Force 1994 Architecture and Artifact Environment Commission 2000 Theorists Functional component Frank 2001 Distance, security, cost, time, convenience Sorkin 2002 Functional mixing, cavalry-pedestrian movement system Spaces, ease of movement on foot and on horseback and compactness of the city fabric, optimal urban management. Restoring plans to adapt to ongoing future developments, and strengthening ties to the past Adaptability, diversity, freedom of movement Experimental-aesthetic component Experimental-aesthetic component Commonent Component Circular neighborhood, preservation of edges, control of view and landscape, centrality of public places, native architecture, privacy,	1	*		
Prime Responding to local characteristics and needs, the relevance of plans to the conditions of the local world Design Force 1994	Committee	public spaces and special	visual wealth, human scale	
Prime Responding to local characteristics and needs, Special Urban Design Force 1994 Architecture and Artifact Environment Commission 2000 Theorists Functional component Frank 2001 Distance, security, cost, time, convenience Sorkin 2002 Functional mixing, cavalry-pedestrian movement system Minister's Characteristics and needs, the relevance of plans to the characteristics and needs, developments, and artificial background of designs Readability, character, continuity, quality of public space Experimental-aesthetic component Experimental-aesthetic component Circular neighborhood, preservation of edges, control of view and landscape, centrality of public places, native architecture, privacy,	London	-	and compactness of the	
Prime Minister's Characteristics and needs, the relevance of plans to the conditions of the local world Design Force 1994 Architecture and Artifact Environment Commission 2000 Theorists Frank 2001 Distance, security, cost, time, convenience Sorkin 2002 Functional mixing, cavalry-pedestrian movement system Restoring plans to adapt to ongoing future developments, and strengthening ties to the past past background of designs Readability, character, continuity, quality of public space Experimental-aesthetic component component Experimental-aesthetic component Component Circular neighborhood, preservation of edges, control of view and landscape, centrality of public places, native architecture, privacy,	1993	on foot and on horseback	city fabric, optimal urban	
Minister's Special Urban Design Force 1994 Architecture and Artifact Environment Commission 2000 Theorists Sorkin 2002 The relevance of plans to the conditions of the local world Design Force 1994 Environment Component Space Functional component Frank 2001 Functional mixing, cavalry-pedestrian movement system Characteristics and needs, the relevance of plans to the developments, and strengthening ties to the past Readability, character, continuity, quality of public space Environment Component Experimental-aesthetic component Values and attitudes, environmental pleasant, personal habits Circular neighborhood, preservation of edges, control of view and landscape, centrality of public places, native architecture, privacy,			management.	
Special Urban Design Force 1994 Architecture and Artifact Environment Commission 2000 Theorists Frank 2001 Distance, security, cost, time, convenience Sorkin 2002 Functional mixing, cavalry-pedestrian movement system Theorists Sorkin 2002 Theorists The relevance of plans to the conditions of the local world strengthening ties to the past Readability, character, continuity, quality of public space Environment Component Experimental-aesthetic component Values and attitudes, environmental pleasant, personal habits Circular neighborhood, preservation of edges, control of view and landscape, centrality of public places, native architecture, privacy, Sorkin conditions of the local world strengthening ties to the past Background of designs Tenditical background of designs Torcitoal background of designs Continuity, quality of public space Environmental component Circular neighborhood, preservation of edges, control of view and landscape, centrality of public places, native architecture, privacy,	Prime	Responding to local	Restoring plans to adapt to	attention to the
Urban Design Force 1994 Architecture and Artifact Environment Commission 2000 Theorists Frank 2001 Frank 2001 Sorkin 2002 Functional mixing, cavalry-pedestrian movement System Sorkin 2002 Theorists Functional component Frank 2001 Functional mixing, cavalry-pedestrian movement System Sorkin 2002 Theorists Sorkin 2002 Functional mixing, cavalry-pedestrian movement System Sorkin 2002 Sorkin 2002 Theorists Sorkin 2002 Functional mixing, cavalry-pedestrian movement System Sorkin 2002 Sorkin 2002 Functional mixing, cavalry-pedestrian movement System Sorkin 2002 Sorkin 2002 Functional mixing, cavalry-pedestrian movement System Sorkin 2002 Sorkin 2002 Functional mixing, cavalry-pedestrian movement System Sorkin 2002 Sorkin 2002 Functional mixing, cavalry-pedestrian movement System Sorkin 2002 Sorkin 2002 Sorkin 2002 Functional mixing, cavalry-pedestrian movement System Sorkin 2002 Sorkin 2002 Sorkin 2003 Sorkin 2004 Sorki	Minister's	characteristics and needs,	ongoing future	natural and
Design Force 1994 Architecture Adaptability, diversity, and Artifact Environment Commission 2000 theorists Functional component Frank 2001 Distance, security, cost, time, convenience Sorkin 2002 Functional mixing, cavalry-pedestrian movement system Sorkin 2002 Functional mixing, cavalry-pedestrian movement all and scape, centrality of public places, native architecture, privacy, Design past designs Readability, character, continuity, quality of public places, native architecture, privacy,	Special	the relevance of plans to the	developments, and	artificial
Force 1994 Architecture and Artifact freedom of movement Environment Commission 2000 Theorists Functional component Frank 2001 Distance, security, cost, time, convenience system Sorkin 2002 Functional mixing, cavalry-pedestrian movement system Frank 2001 Functional mixing, cavalry-pedestrian movement system Frank 2001 Functional mixing, cavalry-pedestrian movement system Frank 2002 Functional mixing, cavalry-pedestrian movement system Frank 2003 Functional mixing, cavalry-pedestrian movement system Functional mixing, cavalry-pedestrian movement system Functional mixing, cavalry-pedestrian movement system Functional component Experimental-aesthetic component Functional component Circular neighborhood, preservation of edges, control of view and landscape, centrality of public places, native architecture, privacy,	Urban	conditions of the local world	strengthening ties to the	background of
Architecture and Artifact freedom of movement	Design		past	designs
and Artifact Environment Commission 2000 theorists Functional component Frank 2001 Distance, security, cost, time, convenience Sorkin 2002 Functional mixing, cavalry-pedestrian movement system Experimental-aesthetic component Values and attitudes, environmental pleasant, personal habits Circular neighborhood, preservation of edges, control of view and landscape, centrality of public places, native architecture, privacy,	Force 1994			
Environment Commission 2000 theorists Functional component Frank 2001 Distance, security, cost, time, convenience Sorkin 2002 Functional mixing, cavalry-pedestrian movement system Experimental-aesthetic component Values and attitudes, environmental pleasant, personal habits Circular neighborhood, preservation of edges, control of view and landscape, centrality of public places, native architecture, privacy,	Architecture	Adaptability, diversity,	Readability, character,	
Commission 2000 theorists Functional component Experimental-aesthetic component Component Component Values and attitudes, environmental pleasant, personal habits Sorkin 2002 Functional mixing, cavalry-pedestrian movement system Circular neighborhood, preservation of edges, control of view and landscape, centrality of public places, native architecture, privacy,	and Artifact	freedom of movement	continuity, quality of	
theorists Functional component Frank 2001 Distance, security, cost, time, convenience Sorkin 2002 Functional mixing, cavalry-pedestrian movement system Circular neighborhood, preservation of edges, control of view and landscape, centrality of public places, native architecture, privacy, Environmental component Component Values and attitudes, environmental pleasant, personal habits Circular neighborhood, preservation of edges, control of view and landscape, centrality of public places, native architecture, privacy,	Environment		public space	
theoristsFunctional componentExperimental-aesthetic componentEnvironmental componentFrank 2001Distance, security, cost, time, convenienceValues and attitudes, environmental pleasant, personal habits-Sorkin 2002Functional mixing, cavalry-pedestrian movement systemCircular neighborhood, preservation of edges, control of view and landscape, centrality of public places, native architecture, privacy,Greenness, sustainability	Commission			
Frank 2001 Distance, security, cost, time, convenience environmental pleasant, personal habits Sorkin 2002 Functional mixing, cavalry-pedestrian movement system Sorkin 2002 Functional mixing, cavalry-pedestrian movement system Sorkin 2002 Circular neighborhood, preservation of edges, control of view and landscape, centrality of public places, native architecture, privacy,	2000			
Frank 2001 Distance, security, cost, time, convenience environmental pleasant, personal habits Sorkin 2002 Functional mixing, cavalry-pedestrian movement system Circular neighborhood, preservation of edges, control of view and landscape, centrality of public places, native architecture, privacy,	theorists	Functional component	Experimental-aesthetic	Environmental
time, convenience environmental pleasant, personal habits Sorkin 2002 Functional mixing, cavalry-pedestrian movement system Sorkin 2002 Functional mixing, cavalry-pedestrian movement system Circular neighborhood, preservation of edges, control of view and landscape, centrality of public places, native architecture, privacy,			component	component
Sorkin 2002 Functional mixing, cavalry- pedestrian movement system Circular neighborhood, preservation of edges, control of view and landscape, centrality of public places, native architecture, privacy,	Frank 2001	Distance, security, cost,	Values and attitudes,	-
Sorkin 2002 Functional mixing, cavalry- pedestrian movement system Circular neighborhood, preservation of edges, control of view and landscape, centrality of public places, native architecture, privacy, Greenness, sustainability		time, convenience	environmental pleasant,	
pedestrian movement system preservation of edges, control of view and landscape, centrality of public places, native architecture, privacy,			personal habits	
system control of view and landscape, centrality of public places, native architecture, privacy,	Sorkin 2002	Functional mixing, cavalry-	Circular neighborhood,	Greenness,
landscape, centrality of public places, native architecture, privacy,		pedestrian movement	preservation of edges,	sustainability
public places, native architecture, privacy,		system	control of view and	
architecture, privacy,			landscape, centrality of	
			public places, native	
beauty			architecture, privacy,	
			beauty	

Can 2004	Public ownership, access,	_	_
Can 2004	interaction of space facilities	-	_
Handi 2006	Density and intensity, mixed	Scale of the route, three-	Shada paraantaga
Trailur 2000	use, street connectivity,	dimensional space,	Shade percentage at noon
		•	at 110011
	regional structure	aesthetic quality,	
		pleasantness and	
X7 2014	D 11:	attractiveness of the place	
Varna 2014	Public ownership, control,	Enlivening (vitality),	-
	physical composition	decency (Induction of	
		social behavior)	
Cremona	Providing easy and	Perceptual, cognitive and	In micro
2003	appropriate movement and	environmental preferences	dimensions of
2010	access to attractive and focal	of people in front of routes	micro regulation
	centers, passive recreation,	as urban space, vitality,	of the climate of
	watching various events,	richness of experience,	urban spaces
	safety and security	public space and urban	(sun, air flow,
		landscape	wind, shading,
			etc.) and in macro
			dimensions of
			environmental
			sustainability,
			such as balance
			in the
			environment,
			reduction of
			pollutants and
			cleanliness of the
			environment, etc.
Habibi 1999	Diversity, safety, security,	Conductor and guidance,	Weather
	neighborhood, compatibility	memorable, social role,	conditions, road
		differentiation and	cleanliness
		personality, legibility,	
		temporal and spatial	
		continuity, spatial contrast,	
		milestones, detail design,	
		pause places, human scale,	
		flexibility	
theorists	Functional component	Experimental-aesthetic	Environmental
111011010		p	

		component	component
Golkar 1379	Quality of behavioral camps	Quality of the physical-	
	(compatibility of activity,	spatial environment	
	time, space)	(objective environment)	
	Quality of urban form	Quality of perceptual-	
	compatibility with uses,	sensory environment	
	pedestrian and bicycle	(perceptual environment)	
	network	Quality of the perceptual-	
	Safety quality of the	mental environment	
	environment for activities	(cognitive environment)	
	Quality of security of the	Quality of mental	
	environment for activities	landscape (spatial and	
		temporal)	
Pakzad 1383	Active and permanent	Sense of belonging,	
	presence of users in the	recognition of people's	
	space and social interaction	spiritual and psychological	
	of citizens	needs and their reflection	
		in public spaces	
Behzadfar et	Mixing of uses, flexibility,	Vitality, readability, scale,	
al. 2018	access, permeability,	variety	
	walkability		
Zekavat et	Behavioral accommodation,	Background and	
al. 2015	mixing function and activity,	recognition of aspect,	
	facilitating access,	transparency, legibility,	
	functional diversity, fit and	visualization, vitality,	
	confinement, permeability,	sense of belonging,	
	physical diversity,	collective memories, sense	
	Safety and security,	of place, sense of time,	
	inclusiveness, flexibility and	sensory richness,	
	adaptability	identification and identity,	
		urban tourism, night life,	
		livability	

2-4- Effect of autonomous cars on the city structure

Autonomous cars can be one of the biggest and most powerful challenges to influence the structure of cities. While the excitement and attraction of autonomous cars is well known to the general public, many cities are still not ready for what impact smart cars will have on

their urban development and future, and many urban development organizations do not know the effects that autonomous cars will have on infrastructure. They have not considered the tax structure, safety and traffic equipment, and even real estate. In the future, the impact of technology on distance, speed and urban development will be determined. This means that they will change and many of them will be unpredictable. Some of these items are given in the table below.

Table 2. Impact of autonomous cars on the city structure

Effective	Special	Sample	
factors	characteristic		
Reducing the	One of the most	San Francisco alone	Autonomous cars also reduce
need for	important effects	generates about 132	the need for parking permits
parking	autonomous cars on	million dollars	and other costs of having a
	the urban structure is	annually through	parking space.
	reducing the need for	parking. In America,	
	parking. Many cities	cars spend 95% of	
	generate a large	their time in urban	
	amount of their	areas in park mode	
	revenue each year		
	through parking fees		
	and other parking		
	fines.		
Reduce	One of the biggest	Autonomous car	They will be able to devote
wasted time	complaints and	technology will	their time to other activities
	concerns of local	meet the needs of	instead of losing their time
	travelers who go to	millions of	that is mostly spent
	cities every day is	Americans and	commuting.
	wasting their time.	people in other	
		countries to improve	
		their livelihoods.	
Public	For decades, urban		Autonomous cars can have a
transportation	planners have hoped		significant impact on the
	to define a point-to-		public transport fleet
	point, low-density		
	transportation system		
	without the costs that		
	traditional		
	transportation systems		

	currently incur.		
Changing	Autonomous cars can	It will be noticeable	Transportation systems
urban	have different and	in small cities and	consisting of autonomous
transport	significant effects on	suburbs where	cars are not efficient and
policies	city performance and	public transportation	cheap enough to be available
	income generation	is inadequately	as bus lines at all times.
		provided.	Experts also believe that the
			privatization of public
			services should not be rushed
			and the security of this
			system should be guaranteed
			first

2-5- Benefits of autonomous vehicles a set of measures to reduce traffic

Regulating the use of urban transportation and encouraging car sharing companies to purchase autonomous vehicles in bulk and changing their service delivery model will help achieve a fundamental improvement in the traffic situation, including factors specific to the urban environment. However, the costs of this type of improvement may turn into other problems. AV can have a different impact on urban forms depending on the type and form of ownership. From the point of view of technological, legal and economic changes, it is the first and the simplest scenario in which a simple car is replaced by an autonomous car. From the point of view of urbanization, the scope of this study shows the need to promote the introduction of the second scenario, which eliminates the private ownership of vehicles and in turn reduces their number. One of the negative consequences of the introduction of AV is the change of urban infrastructure in order to meet the requirements of AV. Transport infrastructure tools should be redesigned with the possibility of greater adaptability and reuse with other functions.

Therefore, based on the theoretical theory presented and researchers' opinions, the development of autonomous cars are classified as described in Table 3:

Table 3. Research theory literature

Ro	Title	Year	Researche	Research	Goals	Results
w			r	method		
1	Environmen	2022	ÓscarSilva,	Qualitativ	Concept of	Due to the lack of
	tal impacts		RubénCord	e	environmental	study of some of the
	of		era		effects relates	environmental results

	1 .	ı		I	I .	0.177
	autonomous				to many	of AVs, it is not
	vehicles: A				aspects of air	possible to draw
	review of				pollution, this	accurate conclusions
	the				paper aims to	about their overall
	scientific				review and	impact, and calls for
	literature				present the	more comprehensive
					findings and	studies that allow the
					shortcomings	identification of all
					of current	necessary measures to
					research with a	achieve a sustainable
					broader	future.
					perspective.	
2	Impact of	2020	SerioAgrie	Descriptiv	Purpose of this	Planners, policy
	Driverless		stibFausto	e-survey	research is to	makers and car
	Vehicles on		BreviaPaol	-	focus on the	manufacturers and
	Urban		oGandini		way this	other new
	Environmen				technology can	stakeholders must
	t and Future				affect our	take a comprehensive
	Mobility				urban	and multidisciplinary
	j				environments	approach in
					and create a	understanding and
					basis for policy	evaluating the impact
					change at	of this technology on
					multiple levels.	our lives and cities.
3	Impact of	2022			1	
	Automated					
	Vehicles on					
	Urban Form					
4	Smart cars,	2020	Celen	Descriptiv	How these	This chapter
	smart cities		Pasalar	e - library	three socio-	addresses the
	and smart			,	economic and	fundamental changes
	sharing: The				technological	brought about by
	changing				changes may	intelligent vehicles or
	nature of				affect the	autonomous AVs.
	public urban				current and	Smart city
	spaces on				future use of	technologies; And
	streets,				urban public	business models and
	5.000.5,				space	technologies related
					space	technologies related

						to urban spaces
						facilitate the sharing
						of resources,
						infrastructure, goods,
						services, experiences
						and capabilities.
5		2020	Cena	Descriptiv	Developing	Our review shows that
			Selser	e-	"planning"	the development of
				analytical	approaches to	car-reduced
					reduce the	neighborhoods is (i)
	on the path				negative	consciously
	of urban				effects of car	embedded in a
	developmen				traffic for more	sustainability context,
	t and				sustainable	(ii) characterized by
	sustainable				urban	power relations, (iii)
					development	as follows. Normative
	transportatio				and	indicators, and iv do
	n developmen				transportation	not always correspond
	t in the					to lived realities. In
	automotive					sum, the traced
						narratives of car-
	community? Traces of					depleted
						neighborhoods are
	declining					embedded in the
	car					general discussion of
	neighborhoo ds around					sustainability, while
	the world					also revealing
						society's dependence
	were traced					on the car; Thus, the
						hegemonic system of
						the car – although
						cracking – continues
						to exist.
6	A design	2020	William	Qualitativ	Possible	We refuse to let
	framework		Riggsa,	e	opportunities	machine-centric
	for livable		Bruce		for street	thinking dictate the
	streets in the		Appleyardb		design in a	design of our cities
	era of		and		autonomous	again. We need to

	autonomous		Michael		future based on	ensure that the
	vehicles		Johnsone		taking	physical design of our
					advantage of	streets and urban
					the existing	environments keeps
					situation and	pace with rapid
					eliminating	advances in
					parking	automotive
						technology. While AV
						is currently being
						tested in many of our
						streets, it may take
						decades for its
						benefits to be fully
						realized in our cities.
						Now is the time to
						plan, design, and
						implement flexible
						street environments to
						ensure that AVs don't
						further destroy our
						cities by putting
						efficient automation
						before people. As AV
						technology continues
						to advance, cities
						must stay connected
						by doing what they've
						always done best:
						celebrating people
						and emphasizing
						human connection,
						interaction and
						commerce.
7	Autonomou	2006	Kolski,	Qualitativ	Ву	Our system is able to
	s driving in		Sascha;	e	investigating a	navigate based on
	structured		Ferguson,		hybrid	observations from its
	and		Dave;		autonomous	laser and safely reach
	unstructured		Bellino,		system that	a given target while

	F ·		3.5	1		
	Environmen		Mario;		recognizes and	avoiding obstacles
	ts		Siegwart,		exploits	such as curbs and
			Roland		structure in the	parking cars. We have
					environment	presented results
					with a form of	showing vehicle
					driving lanes,	operation in both
					we present.	structured and
						unstructured
						environments. We are
						currently working on
						a number of
						extensions to this
						approach.
8	Analysis of	1400	Mohamma	Descriptiv	Investigating	Results of this
	the		di	e-survey	the effect of	research show that
	influence of				spatial design	spatial and
	spatial				and city	architectural design
	design and				architecture on	including (distribution
	city				the intra-city	of architectural plans,
	architecture				transportation	distribution of
	on the intra-				system of Neka	infrastructure in the
	city				city	transportation system,
	transportatio					distribution of
	n system					accesses in urban
	(case study					spaces) has an effect
	of Neka					on the intra-city
	city)					transportation system
	J /					and the component of
						accesses distribution
						in urban spaces with
						the highest average
						(22.2) and The
						distribution of
						infrastructures in the
						transportation system
						has the lowest average
						(1.86) impact on the
						intra-city
		1				mua-city

						transportation system.
9	Evaluating	1400	Salarvandia	Explorator		Results of Friedman's
	the impact		n	y-Delphi		comparative test
	of urban			technique		showed that the
	transportatio					ecological-
	n policies					environmental, social-
	on					cultural, economic
	improving					and infrastructural-
	the quality					physical dimension
	of public					respectively received
	spaces in					the most influence
	the central					from traffic policies.
	part of					The results show that
	Tehran, case					the policy of
	study: Bazar					developing sidewalks
	neighborhoo					with the highest
	d					average, i.e. 65.66,
						development of public
						transportation. With
						63/23, car traffic
						restriction with 48/72
						and parking
						restriction policy (Mj)
						with 40/08 have had
						the greatest impact on
						the quality of public
						spaces in the central
						part of Tehran,
						respectively.
10	The	1398	Oveisi	Library	Explaining the	One of these
	principles of			studies	principles of	approaches, whose
	aspect and			and	controlling and	benefits are known all
	landscape			review of	maintaining	over the world and is
	control and			world	visual order in	also followed in Iran,
	visual order			literature	TOD centers,	is urban development
	in urban				the	based on TOD public
	planning				components of	transportation.
	based on				visual	

				1	_	
	public				organization in	
	transportatio				urban planning	
	n				based on	
					public	
					transportation	
11	The role of	1395	Soleimani	Descriptiv	The role and	After that, through
	urban			e-	importance of	transportation, the
	transportatio			analytical	transportation	role and importance
	n in the				in economic-	of urban
	socio-				social urban	transportation has
	economic				development	been addressed, then
	developmen				_	the effects of this
	t of cities					category in urban
						development from an
						economic-social point
						of view have been
						taken into account.
						The perspective of the
						economy of
						investment in
						transportation has
						directly caused the
						price of agricultural
						data to decrease and,
						accordingly, it has
						reduced production
						costs It has also
						increased the
						possibility of access
						to the market, which
						has led to the
						diversification and
						output of production,
						and finally, it has
						provided the tools for
						the development of
						non-agricultural
						sectors in urban areas.
<u> </u>	1			1		

12	The role of	1395	Ali Sarlak	Descriptiv	The role of	Separating the effects
	urban space			e-library	urban space	of mixed land use and
	structure in				structure in	urban design from the
	transportatio				transportation.	effects of density is a
	n is one of					difficult task, and the
	the basic					reason for this is due
	needs of					to the qualitative and
	efficient and					unmeasurable nature
	modern					of the variables of
	societies.					mixed use and urban
						design, and
						determining its
						indicators due to their
						quality should be
						done either with zero
						and one virtual
						variables or with
						High, medium and
						low quality indicators
						are graded, which is
						very difficult to
						analyze and quantify,
						but in contrast to the
						role of density, its
						effects can be
						measured with
						accurate measurement
						indicators.

3- Parameters of the impact of autonomous vehicles on the future development of urban space

The impact of autonomous vehicles on the future development of urban space is examined based on several different parameters. The first parameter is the impact on urbanization. Using artificial intelligence systems and advanced sensors, autonomous vehicles are able to continuously monitor the environment and perform driving operations more accurately, which improves urban safety on the streets and reduces accidents. The second parameter is

economic. Autonomous vehicles can help reduce transportation costs, increase productivity, and reduce traffic, which directly contributes to economic development and urban growth.

The third parameter is the environment. Autonomous vehicles produce less air pollution and greenhouse gas emissions than traditional vehicles because they are more fuel efficient and drive more intelligently. As a result, these vehicles can help improve the air quality of cities and reduce environmental pollution. And finally, the fourth parameter is social. Autonomous vehicles can help increase access to transportation for people with disabilities or the elderly, as well as help create more commuter-friendly and community-friendly cities, as people may use public or private transportation that uses autonomous vehicles more often, which reduces traffic and congestion in cities.

According to the results of the study, three groups of principles of AV influence on the urban form can be highlighted:

First group - impact on urbanization:

It includes factors affecting the structure of the city. The introduction of AV can lead to urban sprawl and reduce building density. On the other hand, AV can increase the density of buildings and make some areas more accessible. (Development and Density)

Second group - impact on road infrastructure:

These principles include effective factors in the use and physical change of the street space. The introduction of AV improves road safety and eliminates the conflict between drivers and pedestrians. The complete replacement of conventional vehicles with AVs not only expands sidewalks, but also completely eliminates the separation of cars and pedestrians on low-traffic streets. Uniform driving speed and synchronized AV actions improve traffic flow without widening roads. Also, the introduction of AV reduces the width of lanes and completely eliminates parking along the side.

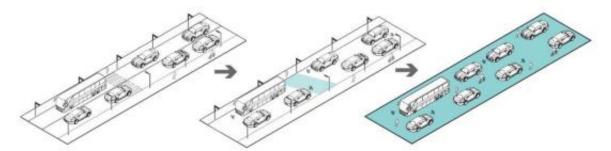


Figure 1. Conversion of walkways and sidewalks in the implementation of AV

Received: 06-04-2024 Revised: 15-05-2024 Accepted: 28-06-2024

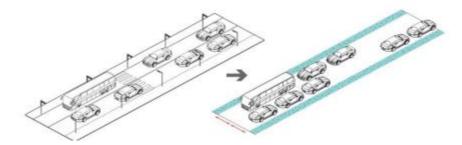


Figure 2. More efficient road use when implementing AV

Third group: influence at local level

This group covers more local changes: the impact on residential development in the city center and suburbs. With the advent of AV to reduce the need for parking, existing parking must be adapted to other functions. Renovation of parking in residential areas increases the density of buildings. In the central areas of the city, parking lots can be converted into offices, housing, retail spaces or recreational spaces. It is necessary to change the infrastructure related to cars: sales halls, car shops. And all kinds of services, gas stations and the emergence of autonomous cars are a reality of the next decade. All over the world, the technical and economic issues of automated technology are being investigated (Corwin S, 2015).

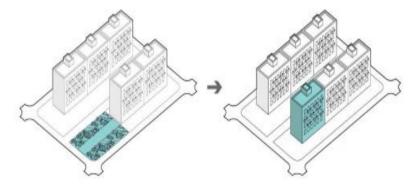


Figure 3. The effect of AV on residential areas

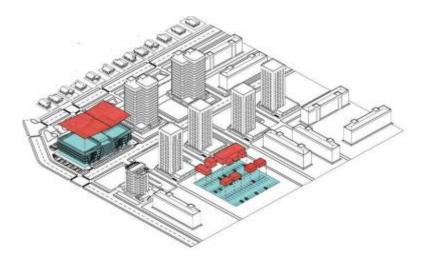


Figure 4. The effect of AV on city center

4- The stages of achieving the parameters of car's impact on urban space

Table 4. Car impact parameters on urban space

Indicators	Sub-indicators (steps)		
recession	-Prohibition of using cars over 10 years old		
	- Construction of multi-level parking lots in residential areas and along the		
	third transportation ring		
	-Uniform parking rate for single and multi-level parking in residential areas		
	for local residents		
	- Continued support for car sharing providers		
	- Promoting the development of conventional public transportation services		
share	-Registration of personal cars only for people who have a parking space near		
	their home		
	-Paid parking for private cars throughout the city		
	-An increase in tax on private cars or the introduction of a road pricing		
	instrument with a corresponding increase in ownership costs		
	- Separation of parking lots in residential areas based on the type of		
	ownership. Creating parking spaces along the streets for shared vehicles only		
	-Increasing car sharing costs to ensure the attractiveness of regular public		
	transport		
Robot	-Increase in taxes on private cars		
making	-Improvement of automatic multi-level parking services in residential areas		
	and along the third transportation ring and gas station services		
	- Municipalities finance the construction of autonomous vehicle infrastructure		

	(5G networks, data processing centers, data protection centers, and dedicated		
	parking lots).		
Absolute	-Increasing the vehicle tax on private cars depending on the level of autonomy		
mobility	(the higher the level, the lower the rate) or introducing a road pricing tool with		
	adjustment coefficients for the base rate depending on the level of autonomy		
	of the vehicle.		
	- Providing car sharing services completely throughout the urban area		
	- Municipal budget for autonomous car research		

Table 5. Parameters of the impact of autonomous vehicles on the future development of cities

Indicator groups	Aspects studied	Components
Transportation and	Transportation and technology	-Traffic situation
technology indicators	indicators	- Reduction of time in traffic
	Impact on traffic conditions and	 parking place need
	space requirements, depending	
	on the supply/demand balance	
	for road transport services	
Economic indicators	Indirect impact of autonomous	- Development of related
	technology on city budgets and	infrastructure
	consumer finances, depending on	- Reducing costs and damages
	the balance of supply and	caused by traffic accidents
	demand for road transportation	-Changes in property value
	services.	- Transportation productivity
Environmental	environmental effects	- Turning unnecessary parking
indicators		lots into green areas
		- Urban transportation that is
		more environmentally friendly
Social indicators	The impact of autonomous	- Changes in employment
	technologies on living conditions	structure
	in the city and access to these	-Street and road safety
	technologies	- New user participation
Political indicators	transportation policy and	Management of autonomous
	regulations	transportation services

4- The impact of autonomous cars on urban environment

Autonomous car technology will change the urban environment and the changes will be irreversible. It is important to have an idea about the consequences of its implementation in order to avoid negative developments and try to get the maximum benefit from the introduction of autonomous cars. The purpose of this study is to predict the amount of changes in the quantitative and qualitative characteristics of the urban space as a result of the introduction of autonomous cars. In the work, based on the analysis of scientific and applied literature, certain principles of the impact of autonomous vehicles on the urban form are revealed. Autonomous cars have both advantages and disadvantages. The main benefits include increased mobility, access to areas of cities not currently served by public transport. One of the main advantages of autonomous cars is the increase in safety. Autonomous cars can be used by wider groups of the population, including the elderly and people with disabilities. The widespread introduction of automated vehicles is expected to shorten travel times, as all road users move at a uniform speed; Faster crossing of intersections (due to intellectual coordination of actions), automatic selection of the optimal route using cloud technologies, eliminating the need to find a parking space using public autonomous cars can reduce the need for parking. Also, the introduction of autonomous electric cars significantly reduces the amount of toxic emissions (Heinrichs D, 2016).

There are a number of predictable drawbacks. First, the widespread distribution of autonomous cars and their accessibility by a wider range of the population may reinforce the current trend towards sprawling cities. If autonomous cars are privately owned, increased road traffic will block time-saving movement. Negative impact on human health due to sedentary lifestyle, if driving is preferred over cycling or walking. The introduction of autonomous cars requires a review of professions and infrastructure related to transportation (truck and taxi drivers, gas stations and car shops, traffic police, etc.). Currently, there are several scenarios for the introduction of automatic transportation (Zhu S, 2018).

Depending on the form of ownership, there are basically two scenarios:

The private ownership of the vehicle, to the controls without the external environment and with the help of the automatic system integrated in the public environment and based on urban information.

Public car ownership and division into taxi system and mass network in public transportation system.

These types of autonomous cars will affect the urban environment in different ways, so they will be examined separately in this article. In the first scenario, when cars will continue to be privately owned, global changes are not expected. In a private house, where there is a parking space in a plot near the house, a autonomous car is simply replaced by a conventional car. In

areas with higher density, it can be assumed that communal parking lots will be flooded during the construction of the house, so there will be no need for parking inside the residential building(Vaziri,2024). It will be possible to call the car from the parking lot through the application on the phone. A similar situation will occur with public buildings. Autonomous cars park themselves in a remote parking lot and return. In the second scenario, a new type of mobility appears: an autonomous taxi system. This type can be considered as a logical continuation of a car sharing system. These taxis do not operate on specific schedules or routes, but are focused on demand. In this mode, the machine is working continuously and is more efficient. The next step in this scenario is to integrate such a taxi into the public transport system, thereby solving the "last place" problem. Public transport transports passengers over long distances to Taksim Central Station and a autonomous taxi delivers them to their destination. All this can lead to a fundamental transformation in the public transport system, and in this regard there are different types of ownership of a autonomous taxi: public or private. This use of AV can significantly affect the urban environment. Another issue is the need for a complete reconstruction of the parking lot because the need for parking lots will change in their current form. Parking lots on the side of the streets can be reconstructed into pedestrian spaces or bicycle lanes. In residential areas with denser buildings, there will be no need for parking. After the car reaches the passenger's destination, it moves to the next passenger. A similar situation will occur with public buildings. There will be parking as passenger charging stations on the outskirts of the city. Autonomous taxis can increase group travel. Thanks to the similar structure of public transport, it will be possible to increase access to all areas of the city and increase the density of urban space. Some studies predict that interest in suburban residential areas will increase with the advent of autonomous cars. Autonomous vehicles will provide access to green areas with lower housing prices, but away from the city center, which can lead to urban sprawl and less building density. All this creates additional costs for infrastructure maintenance. (Mearian L,s 2015)

Table 6. The impact of autonomous vehicles on city and residents

scenario	Impact on residents	Impact on urban space
recession	- Reasonable price of private	- Constant traffic
	cars	-Severe lack of car storage
	- Car maintenance problems in	- The need to build multi-
	residential areas	level parking lots
	- Wasting time in traffic	- Reducing the accident
	- High unit ride costs	rate
	- Low access to road transport	- Worsening of the
	services for people with low	environmental situation
	mobility and low income	

	groups	
	- Loss of transport-related jobs	
share	-Wide access to motor	-Reducing the rate of
	transport services regardless of	accidents
	Wealth and health	- Improving the
	Low and middle income	environmental situation
	groups abandon private cars	- Increasing property
	In favor of car sharing	value in restricted areas
	- Low travel costs, but more	- Transportation access
	than the general public	- Environmental situation
	transportation	has improved slightly
	- A big increase in the cost of	1 8 7
	owning a car	
	- Mobility increase	
	-Loss of jobs related to	
	transportation	
Robot making	- High attractiveness of owning	- Permanent traffic
S	a autonomous vehicle	without accidents
	- Low price of private cars	- The need to build
	- Big increase in the costs of	automatic parking lots
	owning a private car	along the ring road in
	- Increasing the availability of	residential areas
	motorized transport services	- Great reduction in the
	for people with limited	rate of accidents
	mobility	- Increasing property
	-Loss of jobs related to	value in areas with limited
	transportation	transportation access
	-Less problems in parking and	- Environmental situation
	vehicle maintenance	has slightly improved
Absolute mobility		- Reduction of road
·		congestion, very
		predictable traveling
		- Reducing to the rate of
		accidents
		- Highest improvement in
		the environment ondition

Received: 06-04-2024 Revised: 15-05-2024 Accepted: 28-06-2024

6- Results

Autonomous vehicles also offer new opportunities for people with mobility problems, including the elderly (growing population), people with disabilities, and marginalized groups. It is estimated that transportation as a service makes the cost of a ride less than the price of a public transportation ticket, thus helping to break down barriers of inequality and realize social justice. Similarly, the evolution of autonomous vehicles could bring many benefits to society. It can be measured directly and indirectly. Critical indicators for optimizing autonomous vehicle services in urban areas include (1) traffic accidents and traffic volume, (2) transportation costs, (3) parking space, and (4) energy consumption and travel time. A livable city should be safe, clean and with plenty of green spaces. Cars can damage any of these aspects. With the advancement of autonomous technology, road safety and environmental sustainability will greatly increase. The autonomous vehicle revolution could create a future of smoother, more predictable traffic and more efficient public transportation, creating more space for citizens. Also, people can move easily in urban areas, with fewer risks for pedestrians and cyclists. These benefits of autonomous vehicles and smart cities can improve people's quality of life and protect the environment. Therefore, future cities should become smart hubs. The development of smart cities with autonomous vehicles can serve as a guide for long-term urban planning. The main issue is, can autonomous vehicles make cities better places to live? Urban space planning should be designed with the idea that autonomous vehicles do not need parking spaces in city centers, and these spaces can be turned into other facilities that make cities more pleasant places to live.

At the same time, there are challenges such as the difference between the direction in which the automotive sector is moving and the aspirations of cities. But it should be noted that sustainable cities can benefit from better cooperation and sharing in various matters. It also shows that cities still need cars, and it's likely that cars will remain an essential form of transportation. On the other hand, the automobile sector also needs the cooperation of cities, and the adoption of new technologies mainly depends on the policies and desires of cities.

Today, it is safe to say that autonomous vehicle technology will be used in any form in the foreseeable future and will significantly change the approach to transportation and owning a personal car. Autonomous vehicles will lose their fully personal status in favor of the shared model. In addition, autonomous technology can only have a positive impact on the urban environment and transportation if sharing services are developed sufficiently at the same time. Car-sharing and ride-sharing services are expected to grow worldwide over the next decade, with autonomous vehicles making them especially attractive.

Received: 06-04-2024 Revised: 15-05-2024 Accepted: 28-06-2024

References

- 1. Ahmadi, Toheed and Teymouri, Razieh and Eghanaei, Fatemeh, 2020, strategies for the development of sustainable transport in megacities with an emphasis on smart transport, Civil, Architecture and Urban Development Conference of Islamic World Countries
- 2. Amiri, Kh. (2020). Organizing and managing urban traffic with the help of intelligent transportation systems. Architecture, 3(17)
- 3. Torabi, Mehrdad and Abbasi, Ali, 2019, A review on the impact of intelligent transportation systems in the direction of sustainable urban development, National Conference on Green Education, Environmental Protection and Promotion of Social Capital, Isfahan
- 4. Zoorbakhsh, Mojtaba and Basat Anaz, Qasem, 2019, The role of intelligent transportation systems in the sustainability of cities, Civil, Architecture and Urban Development Conference of Islamic World Countries, Tabriz
- 5. Mortazavi Nia, M. 2018. Intelligent transportation system, the third conference of intelligent decision-making systems, Tehran, Fuzzy Systems Association of Iran Azada-Salmi University, Research Sciences Branch.
- 6. A. J. Jara, D. Genoud, and Y. Bocchi, "Big Data in Smart Cities: From Poisson to Human Dynamics",in Proceedings of the 28th International Conference on Advanced Information Networking and Applications Workshops (WAINA), 2014, pp. 785-790.
- 7. Maeda, "Technology innovations for smart cities", in Proc. of Symposium on VLSI Circuits (VLSIC),2012, pp. 6-9.
- 8. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi, "Internet of Things for Smart Cities", IEEE Internet of Things Journal, 2014, Vol. 1, Issue 1, pp. 22-32.
- 9. Ali Abdulsamea Hameed1, Smart city planning and sustainable development, IOP Conf. Series: Materials Science and Engineering
- 10. Corwin S, Vitale J, Kelly E and Cathles E 2015 The future of mobility. How transportation technology and social trends are creating a new business ecosystem (Deloitte University Press)
- 11. Farah H 2016 State of Art on Infrastructure for Automated Vehicles (Netherlands: Delft University of Technology)
- 12. Heinrichs D 2016 Autonomous Driving. Technical, Legal and Social Aspects Autonomous Driving and Urban Land Use (Springer, Cham) pp 213-231
- 13. Ibrar, Yaqoob., Latif, U., Khan., S., M., Ahsan, Kazmi., Muhammad, Imran., Nadra, Guizani., Choong, Seon, Hong. (2020). Autonomous Driving Cars in Smart Cities: Recent Advances, Requirements, and Challenges. IEEE Network, doi: 10.1109/MNET.2019.1900120

- 14. Isaac L 2015 Driving Towards Driverless: A Guide for Government Agencies (New York City: WSP Parsons Brinckerhoff)
- 15. Julian, Stahler., Carsten, Markgraf., Mathias, Pechinger., David, Wenzhong, Gao. (2023). High-Performance Perception: A camera-based approach for smart autonomous electric vehicles in smart cities. IEEE Electrification Magazine, doi: 10.1109/MELE.2023.3264920
- 16. Mearian L 2015 Computer World Researchers developing roads that charge your electric car while you're driving https://www.computerworld.com/article/2998356/researchers-developingroads-that-charge-your-electric-car-while-youre-driving.html)
- 17. Mohamed A, Vitulli C, Slocum K, Herrero R and Zhu S 2018 Shifting Gears: An Urbanist's Take on Autonomous Vehicles (Watertown: Sasaki)
- 18. Van Acker M 2017 Highway x City: The Future of the Urban Ring road (Amsterdam: BNA Onderzoek)
- 19. Vaziri, I., Ahmadi, F., Rizi, Z. T., & Saffarzadeh, M. (2024). The Impact of Interactions between Resources, Technology, and Technical Aspects of Autonomous Vehicles on Urban Smart Spaces. *International Journal of Innovation Management and Organizational Behavior (IJIMOB)*, 4(2), 142-154.