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Abstract:- Energy derived from renewable sources in modern times has paved the way 

towards a sustainable and greener future. Although renewable energy is undisputedly the 

answer towards decarbonisation, there are certain challenges that need to be overcome before 

we can completely do away with the use of fossil fuels for power generation. Integrating 

renewable energy sources into power systems introduces inherent variability to electricity 

generation, creating a need for robust strategies to ensure system stability. This article 

addresses one of these challenges by developing a customized security-constrained 

probabilistic optimal power flow framework tailored for integrated renewable energy 

systems. The model incorporates solar and wind energy resources through the Two Point 

Estimate (2m-PEM) method, improving its accuracy and practicality. To enhance the 

effectiveness of this framework, two advanced evolutionary algorithms, specifically the Fox 

Inspired Optimization and Coronavirus Herd Immunity Optimizer, are utilized to identify 

optimal parameter settings for specific objectives. The results demonstrate the model's ability 

to maintain transient stability even in scenarios where fault clearing times are significantly 

extended. This study makes a significant contribution to the secure integration of renewable 

energy sources into power systems. It offers valuable insights into improving transient 

stability by employing a sophisticated combination of probabilistic optimization and 

evolutionary algorithms. These findings pave the way for a robust integration of renewable 

energy while adhering to the stringent stability requirements of modern power systems. 
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1. Introduction 

Contemporary power systems are meticulously engineered to operate both efficiently and 

economically. However, the ever-increasing demands on these systems, coupled with the 

dynamic nature of network characteristics, can potentially introduce instability into the 

existing infrastructure. To mitigate this challenge, optimal power flow (OPF) emerges as a 

crucial tool in optimizing the utilization of the power system's capabilities. 
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An OPF model is designed with the primary objective of minimizing operational costs while 

adhering to various operational constraints. This entails identifying the optimal operating 

conditions for generators within the system.  

Nomenclature 

𝐉 Objective Function 𝛉𝐢𝐣 Phase angle difference 

of voltages at the ith 

and jth buses of line i - j 

𝐜𝟏 Probability of hunting while 

jumping in north eastern 

direction with value 0.82 

𝐦 Vector of 

dependent variable 

𝐍𝐁𝐔𝐒 Total number of buses 

in the system 

𝐜𝟐 Probability of hunting while 

jumping in other direction with 

value 0.18 

𝐧 Vector of 

independent 

variable 

𝐜 Set of variables of the 

deterministic OPF 

problem 

𝐌𝐢𝐧𝐓 Minimum time variable 

𝐏𝐆𝐞𝐧 Real power output 

of generator bus 

𝛅 Rotor angle 𝐭𝐭 Minimum time average 

𝐏𝐋𝐨𝐚𝐝 Real power demand 

of load bus 

𝐌 Inertia constant 𝐚 Variable used to control search 

space 

𝐕𝐆𝐞𝐧 Generator bus 

voltage 

𝑵𝑮 Number of generators 𝑩𝒆𝒔𝒕𝑿𝒊𝒕 Best solution 

𝑽𝒍𝒐𝒂𝒅 Load bus voltage 𝒑𝒏𝟏, 𝒑𝒏𝟐 Locations (specified 

values of random 

variables in the input) 

𝑴𝒂𝒙𝒊𝒕 Maximum number of iterations 

𝑸𝑮𝒆𝒏 Reactive power 

delivered by 

generator 

𝑬(𝒀) First moments of the 

output variable 

𝒇(𝒙) Objective function or 

immunity rate of individual 

𝑸𝑳𝒐𝒂𝒅 Reactive power 

demand of load bus 

𝑬(𝒀𝟐) Second moments of the 

output variable 

𝒙 Gene or decision variable in 

CHIO 

𝑸𝑪𝒐𝒎𝒑 Shunt VAR 

compensator output 

𝝋𝒑𝒏
 Skewness 𝒍𝒃, 𝒖𝒃 Lower and upper bounds of 𝑥 

𝑺𝑳𝒐𝒂𝒅 Transmission line 

loading 

𝜻𝒑𝒏,𝒉
 Standard locations 𝒑 CHIO population dimension 

(number of control parameters) 
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In addition to cost minimization, the OPF problem also encompasses other vital objectives 

such as the reduction of voltage deviation, transmission losses, and the enhancement of 

voltage stability indices. These multifaceted goals collectively contribute to the effective and 

secure operation of modern power systems. Addressing the optimal power flow (OPF) 

problem through conventional methodologies proves to be intricate due to the nonlinearity 

and lack of convexity exhibited by electrical power flow equations with respect to the 

system's physical variables. 

𝑻 Transformer tap 

setting 

𝑾𝒏,𝒉 Weight factor 𝑯𝑰𝑺 Population size of CHIO 

𝑷𝑸 Total number of 

load buses 

𝑫𝒊𝒔𝒕_𝑺_𝑻𝒊𝒕  Distance of sound 

travel 

𝒙𝒄 Infected case 

𝑷𝑽 Total number of 

generator buses 

𝑺𝒑_𝑺 Speed of sound in air  𝑺 Status vector 

𝑻𝑳 Total number of 

transmission lines 

𝑻𝒊𝒎𝒆_𝑺_𝑻𝒊𝒕 Sound travel time, a 

random number in the 

range [0,1] 

𝒙𝒎 Susceptible case 

𝑵𝑪 Total number of 

compensators 

𝑫𝒊𝒔𝒕_𝑭𝒐𝒙_𝑷𝒓𝒆𝒚𝒊𝒕 Distance of 

FOX from 

prey 

𝒙𝒗 Immune case 

𝑵𝑻 Total number of 

transformer taps 

𝑩𝒆𝒔𝒕𝑷𝒐𝒔𝒊𝒕𝒊𝒐𝒏𝒊𝒕 Best search 

agent 

∆𝒇(𝒙) Average of population 

immunity rates 

𝒌 Equality constraint 𝒊𝒕        Number of 

iterations 

𝑴𝒂𝒙_𝑨𝒈𝒆 Maximum infected cases age 

𝒍 Inequality 

constraint 

𝑱𝒖𝒎𝒑𝒊𝒕 Jump height 𝒂𝒌, 𝒃𝒌, 𝒄𝒌 Cost coefficients of kth 

generator 

𝑮𝒊𝒋 Conductance  of 

line i - j 

𝒕 Average time of sound 

travel 

𝑮𝒎 Conductance of line m 

connecting two buses 

𝑩𝒊𝒋 Susceptance of line 

i - j 

𝑿(𝒊𝒕+𝟏) New position of red 

FOX 

𝜽𝒊𝒌 Phase angle difference between 

two buses 

𝑽𝒊
𝒓𝒆𝒇

 Reference voltage magnitude at ith load bus (1 p.u.) 
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Classical optimization techniques encounter limitations when dealing with objective 

functions that lack differentiability and/or continuity within the problem's nonlinearity. 

Considering the inherent nonlinearity of OPF, the adoption of metaheuristic algorithms 

becomes crucial for adeptly navigating and optimizing this intricate problem [1 – 5].The 

literature offers a host of heuristic algorithms that proficiently tackle the fundamental OPF 

problem which are Differential Evolution, Hybrid Evolutionary Programming, Tabu Search, 

Bacteria Foraging, Gravitational Search, and Particle Swarm Optimization [6 - 13]. 

Moreover, several Pareto-based multiobjective optimization strategies have demonstrated 

efficacy in resolving multi-objective OPF (MOPF) issues. These approaches encompass 

methods such as Quasi-Oppositional Teaching Learning Based Optimization, Biogeography-

Based Optimization, Harmony Search Algorithm, and Symbiotic Organisms Search 

Algorithm, facilitating the identification of optimal solutions that strike a balance among 

conflicting objectives [14 – 19].  

As the power system evolves to accommodate the dynamic inputs from renewable sources, 

the formulation of the probabilistic optimal power flow (POPF) problem gains complexity, 

necessitating innovative approaches to ensure secure and efficient operation. The stochastic 

variability of renewable generation necessitates the development of a probabilistic OPF 

framework to appropriately account for uncertainties introduced by renewable energy sources 

(RESs). The confluence of renewable generation and power electronics technologies enables 

effective integration, resulting in the emergence of diverse control strategies [20–21] and 

optimization techniques [22–23] tailored to augment system stability and efficiency. 

However, the seamless integration of renewable resources demands a deeper consideration of 

system contingencies to ensure safe operation. Unforeseen disturbances, with regard to load 

fluctuations, line switching, line-to-ground faults, and unexpected outages, can propel the 

system into transient instability conditions, characterized by significant rotor angle 

deviations. Addressing these challenges mandates not only the minimization of the objective 

function but also the meticulous management of transient stability. While conventional OPF 

strategies excel in maintaining voltage stability under normal conditions, they often fail in 

guaranteeing transient stability during fault events. To effectively safeguard system stability 

in the face of such adversities, it becomes imperative to introduce an additional constraint 

pertaining to transient stability within the context of the probabilistic OPF formulation, 

thereby giving rise to transient stability constrained probabilistic optimal power flow (TSC-

POPF) model. By amalgamating the probabilistic treatment of renewable uncertainty with the 

consideration of transient stability, this research endeavours to holistically address the 

multifaceted challenges arising from the integration of renewable energy sources within the 

power system framework. 



 
Received: 06-04-2024         Revised: 15-05-2024 Accepted: 28-06-2024 

 

 1242 Volume 48 Issue 2 (July 2024) 

https://powertechjournal.com 

 

Diverse methodologies have been proposed in the literature to tackle distinct aspects of 

power system optimization. Specifically, the probabilistic optimal power flow (POPF) 

problem and the transient stability-constrained optimal power flow (TSC-OPF) problem have 

been addressed through separate approaches. Various techniques have emerged to address the 

probabilistic OPF problem, including Monte Carlo simulation (MCS), point estimate 

methods, first-order second moments, and the Cumulant method [24 - 30]. However, MCS 

suffers from computational inefficiency due to prolong processing times. Meanwhile, the 

Cumulant method becomes progressively intricate as the number of variables increases in 

POPF analyses. To mitigate these challenges, a promising alternative is the Two-Point 

Estimate Method (2m PEM). 

The TSC-OPF problem has also attracted considerable attention in the literature [31 - 33]. 

One approach utilized the Chaotic Artificial Bee Colony algorithm [31], while another 

introduced a single machine equivalent (SIME) technique [32] that efficiently managed 

transient stability without involving complex sets of differential algebraic equations.  

Research Gaps and Proposed Methodology 

As observed in the literature, the SIME method's reliance on approximations and its inability 

to optimize generation shifts limit its optimality. In this context, the transient stability 

constraint (TSC) is quantified as rotor angle deviations from the center of inertia frame, using 

Taylor series expansion of differential equations [34]. Particle swarm optimization (PSO) was 

employed in [35] to minimize costs while satisfying TSC-OPF constraints. Additionally, [36] 

presented two distinct techniques for TSC-OPF resolution: one involving the generators' 

maximum relative rotor angle deviations (RRAD) as a constraint and another based on 

generator power outputs. Metaheuristic algorithms, such as oppositional krill herd, chaotic 

whale optimization, hybrid symbiotic search, and group search optimization, have 

demonstrated promise in effectively addressing the TSC-OPF problem by adhering to system 

constraints without compromising accuracy [38 - 43]. Notably, a strategy dividing the system 

into coherent sections was proposed in [37] for faster TSC-OPF resolution.  

In this paper, we introduce novel methodologies for addressing the TSC-OPF problem, 

avoiding the limitations associated with the SIME method [43]. Our approach leverages the 

RRAD constraint to enhance transient stability in the system. In this study, we introduce an 

innovative TSC-OPF model with renewable energy integration. We leverage the 2PEM [44] 

to effectively model the inherent uncertainty associated with renewable energy source (RES) 

generation. To assess the performance and robustness of our model, we employ two cutting-

edge metaheuristic algorithms: Fox Inspired Optimization (FOX) [45] and Coronavirus Herd 

Immunity Optimizer (CHIO) [46]. These algorithms are evaluated using the IEEE 30 bus 

system [47], [48]. We benchmark our results against those presented in [50] to estimate the 

annual savings in generation cost. 
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Contributions of the Article 

Our study formulates the probabilistic aspect of the OPF problem by employing 2m PEM. 

This approach accounts for the uncertainties in RES outputs by representing each uncertain 

variable with two deterministic values adjoining its mean value. Consequently, for every n 

uncertain variable, we necessitate 2n runs of deterministic OPF. 

The principal contributions of this paper encompass: 

• The introduction of 2m PEM-based POPF model. 

• The extension of the 2m PEM-based POPF model to incorporate TSC. 

• The utilization of two state-of-the-art algorithms, FOX and CHIO, to solve the designed 

problem. 

Section 2 elucidates the formulation of the TSC-POPF problem and provides an abridged 

explanation of the 2m PEM technique. Section 3 furnishes a comprehensive overview of the 

FOX and CHIO algorithms as applied to the TSC-POPF problem. In Section 4, we define the 

objective functions and delineate the test system in Section 5, while Section 6 presents an 

exhaustive analysis of our results, followed by the conclusion. 

The algorithms are tested using the IEEE 30 bus system, scrutinizing various objectives for 

different fault clearing times. Our findings underscore the efficacy of the proposed TSC-

POPF model in achieving optimal outcomes while ensuring transient stability within the 

system across all scenarios examined. 

2. Mathematical Formulation  

This section presents an exhaustive mathematical formulation of the proposed problem. 

Formulation of the TSC-OPF Problem 

A deterministic OPF model identifies the best settings for network parameters to minimize 

certain objectives after meeting different equality and inequality criterions. The deterministic 

OPF problem is mathematically formulated and described below: 

 

𝑚𝑖𝑛 𝐽(𝑚, 𝑛)                               (1) 

Subject to 𝑘(𝑚, 𝑛) = 0           (2) 

         and 𝑙(𝑚, 𝑛) = 0           (3) 

m constitutes the slack bus power PGen1, VLoad, QGen, and SLoad and can be stated as: 

𝑚𝑇 = [𝑃𝐺𝑒𝑛1, 𝑉𝐿𝑜𝑎𝑑𝑃𝑄, 𝑄𝐺𝑒𝑛1, … 𝑄𝐺𝑒𝑛𝑃𝑉, 𝑆𝐿𝑜𝑎𝑑1, … 𝑆𝐿𝑜𝑎𝑑𝑇𝐿]         (4) 
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n constitutes PGen (except slack bus), VGen, QComp, Ti and can be stated as: 

𝑛𝑇 = [𝑃𝐺𝑒𝑛2, . . 𝑃𝐺𝑒𝑛𝑃𝑉, 𝑉𝐺𝑒𝑛1, . . 𝑉𝐺𝑒𝑛𝑃𝑉, 𝑄𝐶𝑜𝑚𝑝1, . . 𝑄𝐶𝑜𝑚𝑝𝑁𝐶, 𝑇1, . . 𝑇𝑁𝑇]    (5) 

Equality constraints’ set k denotes load flow equations, which are expressed as shown below: 

𝑃𝐺𝑒𝑛𝑖 −  𝑃𝐿𝑜𝑎𝑑𝑖 =  𝑉𝑖 ∑ 𝑉𝑗(𝐺𝑖𝑗𝑐𝑜𝑠𝜃𝑖𝑗 − 𝐵𝑖𝑗𝑠𝑖𝑛𝜃𝑖𝑗)𝑁𝐵𝑈𝑆
𝑗=1         (6) 

where, i=1,2,3,…..NBUS. 

𝑄𝐺𝑒𝑛𝑖 −  𝑄𝐿𝑜𝑎𝑑𝑖 =  𝑉𝑖 ∑ 𝑉𝑗(𝐺𝑖𝑗𝑐𝑜𝑠𝜃𝑖𝑗 + 𝐵𝑖𝑗𝑐𝑜𝑠𝜃𝑖𝑗)𝑁𝐵𝑈𝑆
𝑗=1       (7) 

where, i= 1,2,3,…..NBUS. 

Inequality constraints’ set l is comprised of lower and upper limits on generator (considers 

limits on PV bus voltages and 𝑃𝐺𝑒𝑛 and 𝑄𝐺𝑒𝑛), transformer (limits of the T), shunt reactive 

compensator (limits on 𝑄𝐶𝑜𝑚𝑝) and security constraints (limit on the PQ bus voltages and the 

line loadings) by the following equations: 

 

𝑉𝐺𝑒𝑛𝑖
𝑚𝑖𝑛 ≤ 𝑉𝐺𝑒𝑛𝑖 ≤ 𝑉𝐺𝑒𝑛𝑖

𝑚𝑎𝑥                                                           (8) 

𝑃𝐺𝑒𝑛𝑖
𝑚𝑖𝑛 ≤ 𝑃𝐺𝑒𝑛𝑖 ≤ 𝑃𝐺𝑒𝑛𝑖

𝑚𝑎𝑥              𝑖 = 1,2, … , 𝑃𝑉                      (9) 

𝑄𝐺𝑒𝑛𝑖
𝑚𝑖𝑛 ≤ 𝑄𝐺𝑒𝑛𝑖 ≤ 𝑄𝐺𝑒𝑛𝑖

𝑚𝑎𝑥                                                               (10) 

𝑇𝑖
𝑚𝑖𝑛 ≤ 𝑇𝑖 ≤ 𝑇𝑖

𝑚𝑎𝑥                    𝑖 = 1,2, … , 𝑁𝑇                        (11) 

𝑄𝐶𝑜𝑚𝑝𝑖
𝑚𝑖𝑛 ≤ 𝑄𝐶𝑜𝑚𝑝𝑖 ≤ 𝑄𝐶𝑜𝑚𝑝𝑖

𝑚𝑎𝑥       𝑖 = 1,2, … , 𝑁𝐶                            (12) 

𝑉𝐿𝑜𝑎𝑑𝑖
𝑚𝑖𝑛 ≤ 𝑉𝐿𝑜𝑎𝑑𝑖 ≤ 𝑉𝐿𝑜𝑎𝑑𝑖

𝑚𝑎𝑥            𝑖 = 1,2, … , 𝑃𝑄                        (13) 

𝑆𝐿𝑜𝑎𝑑𝑖
𝑚𝑖𝑛 ≤ 𝑆𝐿𝑜𝑎𝑑𝑖 ≤ 𝑆𝐿𝑜𝑎𝑑𝑖

𝑚𝑎𝑥            𝑖 = 1,2, … , 𝑇𝐿                        (14) 

 

For the system to be able to handle fault conditions, we must incorporate TSC into our 

OPF problem apart from constraints given by (8) – (11) and (13) – (14). TSC is defined as 

modulus of the maximum allowed difference between rotor angles and initial centre of the 

generators [31]: 

100 ≤ |𝜕 − 𝜕𝐶𝑂𝐼| ≤ 180°                 (15) 

where, 𝜕𝐶𝑂𝐼 =
∑ 𝑀𝑝𝜕𝑝

𝑁𝐺
𝑝=1

∑ 𝑀𝑝
𝑁𝐺
𝑝=1

⁄                 (16) 
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where, 𝜕𝑝 is rotor angle, 𝑀𝑝 is inertia constant of pth generator.  

RRADs must not go beyond180°, as per [34 – 35] in order to ensure a transiently stable 

system.  

Formulation of Wind and Solar Power Generation 

The probability of wind speed in w m/s is obtained from the Weibull distribution for a 

given shape factor k and scale factor c as follows [51]: 

𝑓𝑤(𝑤) = (
𝑘

𝑐
) (

𝑤

𝑐
)

(𝑘−1)

𝑒−(𝑤/𝑐)𝑘
    for   0 < 𝑤 < ∞           (17) 

Mean of the Weibull distribution is obtained as: 

 𝑀𝑒𝑎𝑛𝑤𝑏𝑙 = 𝑐 ∗ ℾ(1 + 1/𝑘)                   (18) 

Two identical wind generators are placed at bus 26 and 30. Details of wind generator are 

provided in Table 1 below: 

Table 1: Weibull probability distribution parameters for stochastic wind power generation. 

Wind 

Power 

Generator 

Bus No. 

Rated 

Power 

(kW) 

Shape 

Parameter 

(k) 

Scale 

Parameter 

(c) 

1, 2 26, 30 200 2 15 

The power output (𝑝𝑤) of the wind turbines vary with wind speed and are according to the 

following equation: 

                                      0                                𝑓𝑜𝑟  𝑤 < 𝑤𝑖𝑛    𝑜𝑟     𝑤 > 𝑤𝑜𝑢𝑡 

 𝑝𝑤(𝑤) =           𝑝𝑤𝑟 (
𝑤−𝑤𝑖𝑛

𝑤𝑟−𝑤𝑖𝑛
)                    𝑓𝑜𝑟   𝑤𝑖𝑛 ≤ 𝑤 ≤ 𝑤𝑟             (19) 

                                    𝑝𝑤𝑟                                𝑓𝑜𝑟   𝑤𝑟 ≤ 𝑤 ≤ 𝑤𝑜𝑢𝑡 

The cut-in speed (𝑤𝑖𝑛) is 2.5 m/s, rated speed (𝑤𝑟) is 11.5 m/s, cut-out speed (𝑤𝑜𝑢𝑡) is 20 

m/s, and rated power (𝑝𝑤𝑟) is 200 kW according to the Hummer wind turbine model 

datasheet of [53].  

The solar irradiance (𝐺𝑠) probability is represented using the Lognormal probability 

distribution function [52] as shown: 
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𝑓𝑠(𝐺𝑠) = (
1

𝐺𝑠𝜎√2𝜋
) 𝑒

{
−(𝑙𝑛 𝐺𝑠− 𝜇)2

2𝜎2⁄ }
        for   𝐺𝑠 > 0          (20) 

Here 𝜇 and 𝜎 represent respectively the mean and standard deviation. 

 The probability parameters for solar units are given in Table 2: 

Table 2: Solar parameters for Lognormal probability distribution. 

Solar PV  Bus No. 

Rated 

Power 

(MW) 

Mean (𝜇) 
Standard 

Deviation (𝜎) 

1, 2 10, 12 10 5.2 0.6 

Solar irradiance gets converted to energy as per the following equation [53]: 

𝑃𝑠𝑜𝑙𝑎𝑟(𝐺𝑠) =
(𝑃𝑠𝑜𝑙𝑎𝑟 ∗ 𝐺𝑠

2)
(𝐺𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 ∗ 𝐺𝑐𝑒𝑟𝑡)⁄        for   0 < 𝐺𝑠 < 𝐺𝑐𝑒𝑟𝑡      

    
=  (𝑃𝑠𝑜𝑙𝑎𝑟 ∗ 𝐺𝑠)

𝐺𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑
⁄             for  𝐺𝑠 ≥ 𝐺𝑐𝑒𝑟𝑡   (21) 

Here, 𝐺𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 is solar irradiance under standard environmental considerations and is 

1000 𝑊/𝑚2. 𝐺𝑐𝑒𝑟𝑡 is a particular irradiance point. 

Modeling TSC-POPF Problem using 2m PEM Method  

In addressing the formidable challenges posed by the probabilistic nature of renewable 

energy generation, our chosen methodology involved the utilization of the 2m PEM. Initially 

proposed by Rosenblueth [28], PEM serves as a valuable technique for approximating and 

managing uncertainties within power systems. However, it is not without its limitations, 

particularly when dealing with variables that exhibit symmetry. In response to this limitation, 

Hong [29] introduced an enhanced variant of PEM. This upgraded approach significantly 

enhances computational efficiency and expands its applicability, making it particularly adept 

at handling probabilistic aspects effectively. 

POPF function, denoted as Y, can be mathematically expressed as follows [26]:  

𝑌 = 𝑓(𝑋)                                       (22) 
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where, X constitutes the input variables. Uncertain variable set m consists of the outputs from 

wind and solar sources. The equation presented above can be expressed in the following 

form: 

𝑌 = 𝑓(𝑐, 𝑝1, 𝑝2 … . 𝑝𝑚)                                     (23) 

Initial central moments, such as mean, variance, and skewness, provide the statistical data 

needed in 2m PEM for the uncertain variables. We need to calculate (23) 2m times for each 

of the moments in the following manner: 

𝑌(𝑛, ℎ) = 𝑓(𝑐, µ𝑝1, µ𝑝2, … . . , 𝑝𝑛,ℎ, … … . . , µ𝑝𝑚);    where, ℎ = 1,2;  𝑛 = 1,2. . . 𝑚        (24) 

Once the deterministic OPF solution is obtained, (24) is calculated, to obtain mean 

(µ𝑝𝑛) and standard deviation (𝜎𝑝𝑛). Steps to calculate moments with 2m PEM for TSC-POPF 

problem is demonstrated below: 

Step 1: Randomly generate m input variables. 

Step 2: Fix first, second moments of output variable to zero i.e, 𝐸(𝑌)  =  0 and 𝐸(𝑌2) = 0. 

Step 3: For each  𝑝𝑛, calculate 𝜑𝑝𝑛  as follows: 

𝜑𝑝𝑛,3
=

𝐸[𝑝𝑛−𝜇𝑝𝑛]

(𝜎𝑝𝑛)
3  ; 𝑛 = 1,2,3, … , 𝑚                     (25) 

Step 4: Calculate two standard locations as follows: 

𝜁𝑝𝑛,ℎ
=

𝜑𝑝𝑛,3

2
+ (−1)3−ℎ√(𝑚 + (

𝜑𝑝𝑛,3

2
)

2
)                                        (26) 

Step 5: Compute two estimated locations (ELs) of each variables: 

𝑝𝑛,ℎ = 𝜇𝑝𝑛
+ 𝜁𝑝𝑛,ℎ

∙ 𝜎𝑝𝑛
 ; ℎ = 1,2                                       (27) 

Step 6: Compute deterministic OPF using (24) for these ELs.  

Step 7: Calculate two weighting factors for 𝑝𝑛 as follows: 

𝑊𝑛,ℎ =
(−1)ℎ

𝑚
∙

𝜁𝑝𝑛,3−ℎ

𝜁𝑝𝑛,1−𝜁𝑝𝑛,2

 ; ℎ = 1,2                                   (28) 

Step 8: For output random variable, evaluate first, second moments as shown: 
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𝐸(𝑌𝑘) = ∑ ∑ (𝑊𝑛,ℎ ∙ (𝑌𝑛,ℎ)
𝑘

)2
ℎ=1

𝑚
𝑛=1   ; 𝑘 = 1,2                          (29) 

Step 9: Redo steps 3 – 8 for every uncertain parameter. 

Step 10: Evaluate µ and 𝜎 as shown: 

𝜇 = 𝐸(𝑌1) ; 𝜎 = √𝐸(𝑌2) − 𝜇2                                   (30) 

 

This formulation enables us to effectively account for the probabilistic aspects of 

renewable energy generation within the optimal power flow framework, thus contributing to 

a more reliable and stable power system operation. 

3. Application of Evolutionary Algorithms to the Proposed TSC-POPF Problem 

Given the inherent limitation of classical optimization methods, characterized by their 

susceptibility to converging towards local optima, our approach to tackling the TSC-POPF 

problem involves the utilization of evolutionary algorithms. The primary motivation behind 

this strategy is to enhance the likelihood of obtaining superior solutions. In this section, we 

present a concise overview of the two evolutionary algorithms that have been employed to 

tackle the TSC-POPF problem, focusing on their role in minimizing the objective function 

values. 

FOX optimization algorithm [45] 

The FOX algorithm draws inspiration from the natural hunting behaviors of red foxes. This 

bio-inspired algorithm is founded on the intricate techniques employed by red foxes in 

estimating distances to their prey, ultimately ending in successful hunts. The hunting process 

of red foxes in snowy environments serves as the foundational concept for the FOX 

algorithm, which can be outlined as follows: 

 

i. Randomized Search Initiation: In response to the diminished visibility caused by snow 

cover, red foxes initalize their search for prey in a random manner. This randomness 

in the initial search pattern mirrors the exploratory phase of the FOX algorithm. 

 

ii. Prey Location Prediction: Red foxes employ their acute hearing capabilities to detect 

and focus on the ultrasonic emissions emitted by their prey. This auditory data aids 

them in predicting the probable location of the prey. In parallel, the FOX algorithm 

incorporates this predictive aspect, seeking to approach the optimal solution. 
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iii. Distance Estimation via Echo: By actively listening to the reflected ultrasounds and 

precisely measuring the time difference between emission and reception, the red fox 

skillfully estimates its distance from the prey. This echolocation strategy serves as a 

heuristic for the FOX algorithm to gauge the proximity to a potential solution. 

 

iv. Jump Calculation: Upon reaching a sufficiently close distance to the prey, the red fox 

calculates the optimal jump required to effectively capture its target. In the 

algorithmic context, this step corresponds to refining the search process as it 

converges towards the solution. 

 

v. Optimized Random Walk: The red fox performs random movements, precisely 

calculated to optimize both time and positioning for the final pounce on the prey. 

Similarly, the FOX algorithm incorporates a controlled randomization process to 

iteratively refine its search, striving for improved solutions. 

 

By imitating these inherent behaviors of red foxes, the FOX algorithm encapsulates a 

nature-inspired approach to optimization, potentially overcoming the local optima issues 

often encountered by classical optimization techniques. 

 

In the literature [49], it has been empirically demonstrated that executing jumps in the 

northeast direction significantly augments a Fox's probability of successfully capturing its 

prey, resulting in an impressive success rate of 82%. Conversely, jumps in the opposite 

direction have been observed to diminish this success rate to a mere 18%. To strike a balance 

between the critical aspects of exploitation and exploration, the algorithmic iterations are 

evenly partitioned. This strategic allocation of iterations serves as a preventative measure, 

guarding against the algorithm becoming trapped in local optima.  

The phases of the algorithm are described as follows: 

Exploitation 

 

The probability of achieving a successful kill is determined by a stochastic variable 

denoted as p, which is constrained to the interval [0,1]. In scenarios where the calculated 

value of p exceeds the threshold of 0.18, the red fox initiates a relocation process as shown in 

the following steps: 

𝐷𝑖𝑠𝑡_𝑆_𝑇𝑖𝑡  = 𝑆𝑝_𝑆 ∗   𝑇𝑖𝑚𝑒_𝑆_𝑇𝑖𝑡                    (31) 

where, 𝑆𝑝𝑆 = 𝐵𝑒𝑠𝑡𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖𝑡 𝑇𝑖𝑚𝑒𝑆𝑇𝑖𝑡
⁄          (32) 
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Distance of FOX from its prey is calculated as: 

𝐷𝑖𝑠𝑡_𝐹𝑜𝑥_𝑃𝑟𝑒𝑦𝑖𝑡 = 𝐷𝑖𝑠𝑡_𝑆_𝑇𝑖𝑡  ∗ 0.5                            (33) 

After estimating the distance, the fox makes a jump to catch the prey. This jump is 

calculated as follows: 

𝐽𝑢𝑚𝑝𝑖𝑡 = 0.5 ∗ 9.81 ∗ 𝑡2                                    (34) 

The value 9.81 represents acceleration due to gravity. New position of red Fox when it 

jumps in the north eastern direction is dictated by its probability of catching prey, which is 82 

%. The new position is calculated as follows: 

𝑋(𝑖𝑡+1) = 𝐷𝑖𝑠𝑡_𝐹𝑜𝑥_𝑃𝑟𝑒𝑦𝑖𝑡 ∗ 𝐽𝑢𝑚𝑝𝑖𝑡 ∗ 𝑐1                             (35) 

If the FOX jumps in other directions, the probability of catching prey drops to 18% and its 

position is calculated as: 

𝑋(𝑖𝑡+1) = 𝐷𝑖𝑠𝑡_𝐹𝑜𝑥_𝑃𝑟𝑒𝑦𝑖𝑡 ∗ 𝐽𝑢𝑚𝑝𝑖𝑡 ∗ 𝑐2                    (36) 

Exploration 

 

In this phase, the fox walks randomly in search of prey in the search area based on the 

latest best position obtained as follows: 

𝑋(𝑖𝑡+1) = 𝐵𝑒𝑠𝑡𝑋𝑖𝑡 ∗ 𝑟𝑎𝑛𝑑(1, 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛) ∗ 𝑀𝑖𝑛𝑇 ∗ 𝑎              (37) 

where, 𝑀𝑖𝑛𝑇 = 𝑀𝑖𝑛(𝑡𝑡)                                                (38) 

where,  𝑡𝑡 = 𝑠𝑢𝑚(𝑇𝑖𝑚𝑒_𝑆_𝑇𝑖𝑡(𝑖, : )) 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛⁄                             (39) 

and, 𝑎 = 2 ∗ (𝑖𝑡 − (1/𝑀𝑎𝑥_𝑖𝑡 ))                                   (40) 

FOX algorithm applied to TSC-POPF 

 

This section provides the flowchart representation of the FOX algorithm as applied to 

TSCP-OPF problem in Fig. 1. Case studies done in this paper considered the following 

parameter values: 
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𝒓 = 𝒓𝒂𝒏𝒅(𝟎, 𝟏);  𝒑 = 𝒓𝒂𝒏𝒅 (𝟎, 𝟏);  𝟎. 𝟏𝟗 < 𝒄𝟏 < 𝟏; 𝟎 < 𝒄𝟐 ≤ 𝟎. 𝟏𝟖;  𝑴𝒂𝒙𝒊𝒕  

= 𝟏𝟎𝟎;  𝑺𝒆𝒂𝒓𝒄𝒉𝑨𝒈𝒆𝒏𝒕𝒔 = 𝟑𝟎. 

Initialize the population

Start

Calculate Fitness of the Search Agent

If r ≥ 0.5
Yes

If p > 0.18

Update X using equation (35)

Yes

Update X using equation (36)

No Update X using equation (37)

No

Check for constraint violations and modify X to limits.

Evaluate fitness and return the best

End
 

Fig. 1. Flowchart for FOX algorithm. 

Coronavirus herd immunity optimization (CHIO) [46]: 

CHIO stands as an evolutionary algorithm, crafted in response to the COVID-19 pandemic, 

drawing inspiration from the principles of herd immunity and social distancing [46]. Herd 

immunity characterizes a scenario wherein a substantial segment of the population attains 

immunity against the disease, resulting in a notable reduction in transmission rates. The 

achievement of herd immunity is intrinsically tied to factors encompassing the susceptible, 

infected, and immune proportions within the population concerning COVID-19. The 

population's dynamic evolution is fundamentally influenced by the strategic implementation 

of social distancing measures. 

The governing parameters within the CHIO framework incorporate the basic reproduction 

rate, signifying the velocity of virus transmission amongst individuals, and the maximum age 

of infected cases, which classifies these cases based on their recovery or fatality statuses. 
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The following steps are involved in the designing of CHIO algorithm: 

Initialization of CHIO parameters for the optimization problem 

The CHIO problem is framed for a given objective function as follows [46]: 

𝑚𝑖𝑛 𝑓(𝑥)  ∶ 𝑥𝑖 ∈ [𝑙𝑏𝑖 , 𝑢𝑏𝑖]                                 (41) 

where, 𝑥𝑖 = (𝑥1, 𝑥2, 𝑥3, … … … … . . 𝑥𝑝) 

3.2.2. Generation of herd immunity population (HIP) 

The HIP is generated as follows: 

𝐻𝐼𝑃 = ||

𝑥1
1       𝑥2

1    ⋯   𝑥𝑝
1  

𝑥2
1       𝑥2

2    ⋯   𝑥𝑝
2

⋯       ⋯       ⋮      ⋯
𝑥1

𝐻𝐼𝑆       𝑥2
𝐻𝐼𝑆    ⋯ 𝑥𝑝

𝐻𝐼𝑆

||         (42) 

3.2.3. Herd immunity evolution 

Here, the genes get updated based on three rules according to 𝐵𝑅𝑟 (basic reproduction rate) 

as shown: 

𝑥𝑖
𝑗(𝑖𝑡 + 1) =  𝑥𝑖

𝑗(𝑖𝑡)             𝑟 ≥ 𝐵𝑅𝑟  

                     = 𝐶 (𝑥𝑖
𝑗(𝑖𝑡))         0 <  𝑟 < (1

3⁄ × 𝐵𝑅𝑟)                (Infected)          

                     = 𝑁 (𝑥𝑖
𝑗(𝑖𝑡)) (1

3⁄ × 𝐵𝑅𝑟) <  𝑟 < (2
3⁄ × 𝐵𝑅𝑟)   (Susceptible) 

                     = 𝑅 (𝑥𝑖
𝑗(𝑖𝑡))        (2

3⁄ × 𝐵𝑅𝑟) <  𝑟 <   𝐵𝑅𝑟          (Immune)     

where, r is a random number lying in [0, 1].                    (43) 

𝐶 (𝑥𝑖
𝑗(𝑖𝑡)) = 𝑥𝑖

𝑗(𝑖𝑡) + 𝑟 × (𝑥𝑖
𝑗(𝑖𝑡) − 𝑥𝑖

𝑐(𝑖𝑡))                           (44) 

𝑥𝑖
𝑐(𝑖𝑡) is selected at random from any infected case 𝑥𝑐 depending on S such that 𝑐 =

{𝑖|𝑆𝑖 = 1}. 



 
Received: 06-04-2024         Revised: 15-05-2024 Accepted: 28-06-2024 

 

 1253 Volume 48 Issue 2 (July 2024) 

https://powertechjournal.com 

 

𝑁 (𝑥𝑖
𝑗(𝑖𝑡)) = 𝑥𝑖

𝑗(𝑖𝑡) + 𝑟 × (𝑥𝑖
𝑗(𝑖𝑡) − 𝑥𝑖

𝑚(𝑖𝑡))                (45) 

𝑥𝑖
𝑚(𝑖𝑡) is selected randomly from any susceptible case 𝑥𝑚 depending on S such that 𝑚 =

{𝑖|𝑆𝑖 = 0}. 

𝑅 (𝑥𝑖
𝑗(𝑖𝑡)) = 𝑥𝑖

𝑗(𝑖𝑡) + 𝑟 × (𝑥𝑖
𝑗(𝑖𝑡) − 𝑥𝑖

𝑣(𝑖𝑡))                    (46) 

𝑥𝑖
𝑣(𝑖𝑡) is selected randomly from any immune case 𝑥𝑣 depending on S such that: 

 𝑓(𝑥𝑣) = 𝑎𝑟𝑔𝑗~  𝑚𝑖𝑛
{𝑘|𝑆𝑘=2}

𝑓(𝑥𝑗)                 (47) 

The age vector 𝐴𝑗 is increased by 1 if 𝑆𝑗 = 1. 

𝑆𝑗 gets updated in every case depending on herd immune threshold utilizing the equation: 

   𝑆𝑗 =              1          𝑓 (𝑥𝑗(𝑖𝑡 + 1)) <
𝑓(𝑥)𝑗(𝑖𝑡+1)

∆𝑓(𝑥)
 ∧ 𝑆𝑗 = 0 ∧ 𝑖𝑠

𝐶𝑜𝑟𝑜𝑛𝑎(𝑥𝑗(𝑖𝑡+1))
 

        =              2            𝑓 (𝑥𝑗(𝑖𝑡 + 1)) >
𝑓(𝑥)𝑗(𝑖𝑡+1)

∆𝑓(𝑥)
∧ 𝑆𝑗 = 1       ⬚                

(48) 

where, 𝑖𝑠_𝐶𝑜𝑟𝑜𝑛𝑎(𝑥𝑗(𝑖𝑡 + 1)) = 1 when  𝑥𝑗(𝑖𝑡 + 1) gets a value from infected case and 

 ∆𝑓(𝑥) = ∑ 𝑓(𝑥𝑖)𝐻𝐼𝑆
𝑖=1 /𝐻𝐼𝑆.  

If this evolved population is well immune to COVID-19, then the herd attains immunity 

threshold. 

3.2.4. Fatality cases 

In case, the immunity rate  𝑓 (𝑥𝑗(𝑖𝑡 + 1)) of the present infected case does not get better 

for some iterations, which is equal to value of 𝑀𝑎𝑥_𝐴𝑔𝑒, (i.e., 𝐴𝑗 ≥ 𝑀𝑎𝑥_𝐴𝑔𝑒), then this 

infected case is considered dead. This case is then generated again for all control parameters. 

3.2.5. CHIO algorithm applied to TSCP-OPF problem 

Case studies done in this paper considered the following parameter values: 

 𝑩𝑹𝒓 = 𝟎. 𝟎𝟎𝟏, 𝑴𝒂𝒙𝑨𝒈𝒆 = 𝟏𝟎𝟎, 𝑯𝑰𝑺 = 𝟑𝟎, 𝑴𝒂𝒙𝒊𝒕 = 𝟏𝟎𝟎. 



 
Received: 06-04-2024         Revised: 15-05-2024 Accepted: 28-06-2024 

 

 1254 Volume 48 Issue 2 (July 2024) 

https://powertechjournal.com 

 

The flowchart of the CHIO algorithm is provided below in Fig. 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Flowchart for CHIO algorithm. 

 

4. Objective Functions of TSC-POPF Problem 

This section presents the objective functions studied using the proposed system, to which, 

FOX and CHIO are applied. 

4.1.Generation Cost Minimization  

The objective of minimizing electricity generation costs can be explicitly defined with respect 

to the real component of the output power in the following manner: 

     𝑂1 = 𝑚𝑖𝑛(𝐹(𝑃)) 

  = 𝑚𝑖𝑛 (∑ 𝐹(𝑃𝑘)) = 𝑚𝑖𝑛(∑ (𝑎𝑘 + 𝑏𝑘𝑃𝑘 + 𝑐𝑘𝑃𝑘
2)𝑁𝐺

𝑘=1 )𝑁𝐺
𝑘=1                (49) 

Initialize CHIO parameters

Start

Generate HIP

iter=0
r ≥ BRrYes

Update X using equation (44)

Update X using equation (46)

Check for constraint violations and modify X to limits.

Evaluate fitness and return the best

End

Set X(it+1)= X(it)

 0< r < BRr/3

BRr/3 < r < 2BRr/3

2BRr/3 < r < BRr

Yes
No

Update X using equation (45)

Yes No

No

Yes

Perform CHIO evolution

Update HIP

Check Fatality condition

Iter = Maxiter

Yes

No
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4.2.Transmission loss minimization 

The minimization of real power transmission losses can be explained as follows: 

 

     𝑂2 = 𝑚𝑖𝑛(𝑃𝐿) 

    = 𝑚𝑖𝑛(∑ 𝐺𝑚(𝑉𝑖
2 + 𝑉𝑘

2 − 2𝑉𝑖𝑉𝑘𝑐𝑜𝑠𝜃𝑖𝑘)𝑇𝐿
𝑚=1 )               (50) 

4.3.Voltage deviation (VD) minimization 

      𝑶𝟑 = 𝒎𝒊𝒏(𝑽𝑫) = 𝒎𝒊𝒏 (∑ (𝑽𝒊 − 𝑽𝒊
𝒓𝒆𝒇

)𝑻𝑳
𝒊=𝟏 )                   (51) 

All the objective functions are minimized using FOX and CHIO algorithms subject to 

satisfying the constraints of (8) – (11) and (13) – (15). 

 

5. System Description 

In this section, we present a concise representation of the system to which our proposed 

model is applied. The primary focus lies in the minimization of objective functions through 

the utilization of FOX and CHIO algorithms across various distinct scenarios. To facilitate 

this process, custom codes were developed in the MATLAB programming environment, and 

subsequent simulations were executed on a personal computer equipped with an Intel Core 

i3-3110M CPU, 4 GB of RAM, operating at a clock speed of 2.4 GHz. 

IEEE 30 bus system 

The system under investigation is the IEEE 30-bus system, as defined in reference [47]. 

This system comprises 30 buses, 6 generators, 41 transmission lines, and 4 tap-changing 

transformers. The total load imposed on the system amounts to 189.2 MW and 107.2 MVAr. 

To perform TSC-POPF operation, the following conditions were established: 

1) Solar power injection was incorporated at buses 10 and 12, while wind power 

injection was implemented at buses 26 and 30. 

2) A single contingency analysis was executed considering a 3 phase fault close to bus 

2 (at t=0), which was cleared after taking out line 2 – 5, similar to the studies 

carried out in [31], [35] and [40] for the sake of comparison. 
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6. Results and Discussion 

This section presents results obtained after performing different studies on the system for 

different cases/scenarios and their exhaustive analysis. The following cases were studied for 

the system: 

Case 1: A baseline investigation was carried out involving a normal OPF analysis without 

the consideration of renewable generation or TSC. 

Case 2: A probabilistic OPF analysis was performed without the presence of any 

contingency events. 

Case 3: TSC-OPF was conducted for the system, omitting renewable energy sources, with 

a specified fault clearing time (CT) of 0.18 seconds. 

Case 4: TSC-POPF analysis was conducted, considering a fault CT of 0.18 s. 

Case 5: The fault CT was extended to 0.49 seconds, and TSC-POPF analysis was 

subsequently undertaken. 

For all cases, the maximum simulation duration was constrained to 5 seconds, with an 

integration time step of 0.01 seconds. Additionally, RRAD was constrained to 150⁰ for the 

above cases. 

Case1 

In this case, TSC and renewable generation were not considered. For this case, when a 3 

phase fault occurred close to bus 2 (at 𝑡 = 0), and was cleared by taking out line 2 –  5, 

maximum fault CT was observed as 0.1298 s, beyond which the system became unstable as 

can be seen in Fig. 3. This is because the system was not subjected to satisfy the TSC in (15). 

Table 3 shows the minimized values obtained for 𝑂1, 𝑂2, and 𝑂3 for Case 1. It can be 

noted that FOX algorithm performed superior to CHIO for all the objectives. It was able to 

reduce the generation cost by 0.03%, transmission loss by 5.03% and VD by 11.07% when 

compared to CHIO. 

The convergence characteristics obtained using CHIO and FOX algorithms for all 

objectives are depicted in Fig. 4. It can be noted that CHIO took lesser iterations to converge 

as compared to FOX algorithm for all the objective functions. However, FOX was better in 

minimizing the objective functions. 
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Fig. 3. RRADs for Case 1 

 
(a) 

 
                                  (b) 

 
(c) 

Fig. 4. Convergence characteristics of (a) cost, (b) loss and (c) voltage deviation 

minimization for Case 1 using CHIO and FOX algorithms. 

 

Table 3: Objective function values using CHIO and FOX Algorithms. 

Corresponding 

values of 

other objectives 

CHIO FOX  CHIO FOX   CHIO FOX 

Cost Minimization 
 Loss 

Minimization 

  Voltage Deviation 

Minimization 

Cost($/h) 
573.374

5 

573.15

6 

 
640.76

1 

637.94

2 

  

600.5971 610.1805 

Transmission 

Loss(MW) 
2.1391 2.0818 

 
1.5635 1.4886 

  
2.8921 2.9980 

Voltage 

deviation(p.u.) 
1.3756 1.9066 

 
0.4288 0.7805 

  
0.1344 0.1210 



 
Received: 06-04-2024         Revised: 15-05-2024 Accepted: 28-06-2024 

 

 1258 Volume 48 Issue 2 (July 2024) 

https://powertechjournal.com 

 

Table 4: Comparative Study of Cost Minimization Objective Function for Case1. 

Corresponding values of 

other objectives 
DE[40] SOS[40] HSOS[40] CHIO FOX 

Cost($/h) 574.1681 574.0697 573.3098 573.3745 573.1564 

Transmission Loss(MW) 2.2700 2.3328 2.1100 2.1391 2.0818 

Voltage deviation(p.u.) 0.8821 0.7058 1.6330 1.3756 1.9066 

From comparative study of cost minimization objective represented by Table 4, it can be 

noted that FOX algorithm outperformed all other algorithms in minimizing the generation 

cost. 

Case 2 

This case considers probabilistic generation from two solar and two wind generations at 

bus no.s 10, 12, 26 and 30. Table 5 presents the minimized values for objective functions 

considered. TSC was not added to this case. We can see great reduction in generation cost, to 

the extent of 1.23 % for CHIO (annual savings of 61442.64 $) and 3.4% for FOX algorithm 

(annual savings of 169039.0292 $) as compared to Case 1. For the present case, FOX 

outperformed CHIO again in minimizing generation cost by 2.25%, transmission loss by 

1.56% and voltage deviation by 6.12%. 

Table 5. Minimization of all Objectives using CHIO and FOX Algorithms for Case 2. 

Corresponding 

values of 

other objectives 

CHIO FOX CHIO FOX CHIO FOX 

Cost 

Minimization 

Loss 

Minimization 

Voltage Deviation 

Minimization 

Cost($/h) 
566.36

05 

553.859

7 

625.280

3 

626.962

0 
661.3079 689.0710 

Transmission 

Loss(MW) 
2.2973 2.3324 1.3306 1.3102 5.5782 5.7733 

Voltage 

deviation(p.u.) 
1.9804 1.6172 1.9340 1.9953 0.1629 0.1535 
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(a) 

 
(b) 

 
(C) 

Fig. 5.Convergence characteristics of (a) cost, (b) loss and (c) voltage deviation minimization 

for Case 2 using CHIO and FOX algorithms. 

Fig. 5 presents the convergence characteristics for all objectives using FOX and CHIO. For 

this case too, CHIO converged slightly faster than FOX, but the latter provided better results. 

Case3 

For this case, no probabilistic generation was considered. Fault condition was same as in 

Case 1. Time to clear the fault was considered as 0.18 s after incorporating TSC given in 

(15). 

Table 6. Minimization of all Objectives using CHIO and FOX Algorithms for Case 3. 

Corresponding 

values of 

other objectives 

CHIO FOX CHIO FOX CHIO FOX 

Cost 

Minimization 

Loss 

Minimization 

Voltage Deviation 

Minimization 

Cost($/h) 

574.55

08 

574.13

72 

635.24

75 

638.89

49 
635.5991 692.1245 

Transmission 

Loss(MW) 
2.4193 2.3276 1.4486 1.3742 5.8458 5.7505 

Voltage 

deviation(p.u.) 
0.3695 0.4314 1.3829 1.6892 0.1682 0.1519 
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Fig. 6. Annual cost of generation obtained by different algorithms as compared to case 3. 

Table 7.  Comparative Study of Cost Minimization Objective Function for Case 3. 

Comparative sudy (tc=0.18s) 

Corresponding 

values of 

other objectives 

GA[35] 
PSO[35

] 

ABC[3

1] 

CABC[3

1] 
HSOS CHIO FOX 

Cost($/h) 
585.62

00 

585.17

00 

577.78

00 

577.630

0 

574.22

55 

574.55

08 

574.13

72 

Transmission 

Loss(p.u) 
NA NA NA NA 

235.58

00 
2.4193 2.3276 

Voltage 

deviation(p.u.) 
NA NA NA NA 0.4332 0.3695 0.4314 

Table 6 presents the minimization of all objectives for this case and Table 7 presents the 

comparative study for cost minimization objective. Similar observations regarding 

performances of CHIO and FOX algorithms are seen for all the objectives with FOX 

outperforming CHIO. Fig. 6 presents the annual cost of generation in $ obtained by FOX and 

CHIO in comparison with other algorithms. It can be observed that application of FOX 

resulted in the least annual generation cost. Annual savings obtained by FOX as compared to 

other algorithms are shown in Table 8. 

Table 8. Annual Savings in Generation Cost for Case 3. 

Algorithm

s 
GA[35] PSO[35] ABC[31] CABC[31] HSOS[40] CHIO 

4950000 5000000 5050000 5100000 5150000

GA[35]

PSO[35]

ABC[31]

CABC[31]

HSOS[40]

CHIO

FOX

Annual Cost($)

Annual Cost($)
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Annual 

Savings 

($) 

1,00,589.328

0 

96,647.328

0 

31,910.000

0 

30,596.000

0 

9,533.508

0 

3,623.136

0 

Fig. 7 presents the convergence characteristics for all objectives for case 3and Fig. 8 

presents the relative rotor angle deviations after considering the TSC for CHIO and FOX 

algorithms. We can see that both algorithms were able to maintain transient stability even 

when the time to clear fault was increased from the maximum clearing time of 0.1298 s by 

5.02% to 0.18 s. Maximum RRAD can be seen to lie well below 100⁰ thereby signifying a 

stable system. 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 7. Convergence characteristics of (a) cost, (b) loss and (c) voltage deviation 

minimization for Case3 using CHIO and FOX. 

C
H

IO
 

 
a(i) 

 
b(i) 

 
c(i) 
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F
O

X
 

 
a(ii) 

 
b(ii) 

 
c(ii) 

Fig. 8. RRADs for: a(i), a(ii)- cost, b(i), b(ii)- loss, and  c(i), c(ii)-voltage deviation  

minimization, for Case 3 using CHIO and FOX algorithms. 

Case4 

This is the TSC-POPF case that considered probabilistic generation as mentioned in Case 2 

and had to satisfy the TSC of (15). Fault CT is considered to be 0.18 s for this case to check 

the feasibility of the proposed model. Table 9 presents the control parameters for this case. It 

can be observed that FOX performed better than CHIO for all objectives. 

 

 
(a) 

 
(b)  

(c) 

Fig. 9. Convergence characteristics of (a) cost, (b) loss and (c) voltage deviation 

minimization for Case 4 using CHIO and FOX algorithms. 
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H

IO
 

 
a(i) 

 
b(i) 

 
                c(i) 

F
O

X
 

 
a(ii) 

 
b(ii) 

 
                                 c(ii) 

Fig. 10. RRADs for: a(i), a(ii)- cost, b(i), b(ii)- loss, and       c(i), c(ii)-voltage deviation  

minimization, for Case 4 using CHIO and FOX algorithms. 

Table 9. Minimmization of all Objectives using CHIO and FOX Algorithms for Case 4. 

Corresponding 

values of 

other 

objectives 

CHIO FOX CHIO FOX CHIO FOX 

Cost Loss Voltage Deviation 

Cost($/h) 561.0104 555.3704 623.2119 616.7389 636.4246 660.0332 

Transmission 

Loss(MW) 
2.3250 2.4130 1.4086 1.3647 5.3008 5.7019 

Voltage 

deviation(p.u.) 
0.9032 1.0272 1.5844 1.5379 0.2012 0.1625 
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Fig. 11.Comparative annual cost of generation obtained by FOX and CHIO in Case 4 as 

compared to other algorithms of Case 3. 

Table 10. Annual Savings in Generation Cost for Case 5. 

Algorith

ms 
GA[38] PSO[38] ABC[34] 

CABC[34

] 
HSOS CHIO  FOX 

Annual 

Savings 

($) 

2,64,98

6.4960 

2,61,044.

4960 

1,96,308.

0960 

1,94,994.

0960 

1,65,170.

0000 

1,68,02

0.30 

164397

.17 

 

Since there are no data reported in the literature to do a comparative study for this case, we 

compared the results obtained using FOX algorithm with those of Case 3 to detect the annual 

savings in generation cost and presented them in Table 10. Fig. 9 presents the convergence 

characteristics of CHIO and FOX. RRADs of this case are depicted in Fig. 10. Fig. 11 

represents the annual cost obtained by FOX and CHIO after renewable energy integration as 

compared to those without renewables in Case 3.  

It can be observed from Fig. 10 that transient stability was maintained for all objectives 

and the maximum RRAD was much below the threshold 150⁰, which signifies a transiently 

stable system. From Table 10 and Fig. 11, it is evident that renewable integration to the 

transient stability constrained system resulted in great annual savings on employing the FOX 

algorithm. 

Case 5 

The fault CT was increased to 0.49 s, while all other conditions were kept same as Case 4. 

Table 11 presents control parameters for this case. We can see that FOX obtained better 

results for all objectives as compared to CHIO. Also, the annual savings in generation cost as 

compared to CHIO is 12046.36 $. 

4700000 4800000 4900000 5000000 5100000 5200000

GA[35]

PSO[35]

ABC[31]

CABC[31]

HSOS[40]

CHIO

FOX

Annual Cost($)

Annual Cost($)
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(a) 

 
(b) 

 
(c) 

Fig. 12. Convergence characteristics of (a) cost, (b) loss and (c) voltage deviation 

minimization for Case 5 using CHIO and FOX algorithms. 

Table 11. Minimization of all Objectives using CHIO and FOX Algorithms for Case 5. 

C
H

IO
 

 
a(i) 

 
b(i) 

 
c(i) 

Corresponding values of 

other objectives 

CHIO FOX CHIO FOX CHIO FOX 

Cost Loss Voltage Deviation 

Cost($/h) 
569.371

4 

555.610

4 

601.413

0 

610.647

1 

627.188

6 

637.646

1 

Transmission 

Loss(MW) 
2.3043 2.0725 1.7323 1.3321 5.1380 5.3763 

Voltage deviation(p.u.) 0.7407 0.9063 1.7182 1.9853 0.2073 0.1696 
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F
O

X
 

 
a(ii) 

 
b(ii) 

 
c(ii) 

Fig. 13. RRADs for: a(i), a(ii)- cost, b(i), b(ii)- loss, and   c(i), c(ii)-voltage deviation  

minimization, for Case 5 using CHIO and FOX algorithms. 

 

The initial values attained as well as the number of iterations required to converge using 

FOX algorithm are higher for almost all the cases as compared to CHIO signifying better 

exploration capability of FOX algorithm over CHIO as evident from Fig. 12. Although, 

convergence is slightly slower in case of FOX, it is able to deliver better results. It can be a 

viable option in cases where effect of computation times will not be very significant. Fig. 13 

presents the RRADs for an increase in fault CT to 0.49s, which is an increase by 36.02% 

from the maximum fault CT of 0.1298s. It can be observed that none of the generators are 

swinging outside the maximum limit of 150⁰. In fact, the maximum RRAD amongst all 

objectives was 140⁰ for voltage deviation minimization objective using CHIO while all other 

RRADs were well below 100⁰. 

Results obtained from the case studies establish feasibility of the proposed TSC-POPF 

model in ensuring transient stability of the system with sufficient stability margin. 

7. Statistical Significance of Test Results 

A statistical evaluation is conducted on 50 trial datasets to evaluate the effectiveness of the 

FOX and CHIO algorithms.  

Table 12.  Statistical analysis of QRSOS for single objectives using Wilcoxon signed rank 

test against 50 trials. 

Algorithm 

Test 

cases Minimum Maximum 

Avera

ge 

No. of 

hits to 

minimum 

solution 

Standard 

deviation p-value 

FOX case 1 573.1564 573.59 573.28 35 0.2026 1.12E-10 
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4 8 

case2 553.8597 
554.92

1 

554.05

1 
41 0.41 3.66E-11 

case3 574.1372 
574.85

3 

574.28

0 
40 0.2893 4.61E-11 

case4 555.3704 
555.57

5 

555.41

1 
40 0.083 4.61E-11 

case5 555.6104 
555.88

3 

555.67

6 
38 0.1177 6.92E-11 

CHIO 

case 1 573.3745 
577.48

2 

574.85

3 
32 1.9916 1.57E-10 

case2 566.3605 
570.21

6 

567.36

3 
37 1.71 8.25E-11 

case3 574.5508 
577.92

3 

575.96

7 
29 1.6811 1.95E-10 

case4 561.0104 
563.25

2 

561.77

3 
33 1.073 1.43E-10 

case5 569.3714 
572.35

8 

570.20

8 
36 1.3546 9.68E-11 

 

In this analysis, a single sample dataset generated by the proposed algorithm is subjected to 

the Wilcoxon signed rank test. A p-value, representing the probability value, below 0.05 is 

interpreted as strong evidence against the null hypothesis.  

The resulting p-values from this test for cases 1-5, for cost minimization, along with the 

corresponding minimum, maximum, average values, and standard deviation, are presented 

above in Table 12. It is evident that both algorithms exhibited strong and consistent 

performance, with FOX demonstrating superior results characterized by lower standard 

deviation and more favourable p-values. 

8. Conclusion 

This research has introduced a TSC-POPF model, based on the 2m PEM method. The 

primary objective of this study was to evaluate the practicality and effectiveness of this model 

in preserving transient stability within a power system, especially in the presence of 

stochastic renewable energy generation. To address this challenge, two powerful evolutionary 

algorithms, FOX and CHIO, were harnessed to minimize the objective functions associated 

with the TSC-POPF problem. A comprehensive set of case studies was meticulously 

conducted to thoroughly assess the performance of these algorithms under various scenarios. 

The outcomes of these case studies are promising. They illustrate that the proposed TSC-
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POPF model is adept at ensuring transient stability, even when the fault CT is significantly 

extended. Moreover, the RRAD values observed in these studies consistently fell within the 

range of 50⁰ to 100⁰, signifying a substantial margin of stability. This underscores the model's 

capacity to effectively manage substantial disturbances while upholding a secure level of 

stability. 

 To the best of our knowledge, the application of the 2m PEM approach to construct a 

TSC-POPF model as presented here is unprecedented in the existing literature. This model, 

when applied, has consistently demonstrated its ability to maintain a robust stability margin 

in the face of system disturbances. This research advances the understanding and application 

of TSC-POPF modelling, providing a valuable tool for enhancing the stability and efficiency 

of power systems incorporating stochastic renewable energy sources. The findings herein 

contribute to the on-going efforts to create resilient and sustainable power networks in the 

face of increasing renewable energy integration. It also presents an exhaustive comparative 

analysis of two very recent evolutionary algorithms FOX and CHIO, in tackling the 

challenges faced by a power system network. 

 

Statements and Declarations 

Acknowledgements 

This research is supported by the Ratchadapisek Somphot Fund for Postdoctoral 

Fellowship and Chulalongkorn University, and Thailand Science Research and Innovation 

Fund Chulalongkorn University.  

Data Availability 

Data will be made available on request. 

Declaration of competing interests 

The authors declare that they have no competing interests to influence the work reported in 

this paper. 

References 

[1] Momoh, A. J., El-Hawary, M. E., & Ramababu, A. (1999). A review of selected optimal 

power flow literature to 1993. II. Newton, linear programming and interior point 

methods. IEEE Transactions on Power Systems, 14(1), 105-111. 

[2] Santos, A. Jr., & Da Costa, G. R. M. (1995). Optimal-power-flow solution by Newton's 

method applied to an augmented Lagrangian function. IEE Proceedings-Generation, 

Transmission and Distribution, 142(1), 33-36. 



 
Received: 06-04-2024         Revised: 15-05-2024 Accepted: 28-06-2024 

 

 1269 Volume 48 Issue 2 (July 2024) 

https://powertechjournal.com 

 

[3] Zhang, S., & Irving, M. R. (1994). Enhanced Newton-Raphson algorithm for normal, 

controlled and optimal power flow solutions using column exchange techniques. IEE 

Proceedings-Generation, Transmission and Distribution, 141(6), 647-657. 

[4] Huneault, M., & Galiana, F. D. (1991). A survey of the optimal power flow literature. 

IEEE Transactions on Power Systems, 6(2), 762-770. 

[5] Burchett, R. C., Happ, H. H., & Vierath, D. R. (No publication date provided). 

Quadratically convergent optimal power flow. IEEE Transactions on Power Apparatus 

and Systems, 11, 3267-3275. 

[6] Swain, A. K., & Morris, A. S. (2000). A novel hybrid evolutionary programming method 

for function optimization. In Proceedings of the 2000 Congress on Evolutionary 

Computation. CEC00 (Cat. No. 00TH8512) (Vol. 1, pp. 699-705). IEEE. 

[7] Abou El Ela, A. A., Abido, M. A., & Spea, S. R. (2010). Optimal power flow using 

differential evolution algorithm. Electric Power Systems Research, 80(7), 878-885. 

[8] Abido, M. A. (2002). Optimal power flow using tabu search algorithm. Electric Power 

Components and Systems, 30(5), 469-483. 

[9] Tripathy, M., & Mishra, S. (2007). Bacteria foraging-based solution to optimize both real 

power loss and voltage stability limit. IEEE Transactions on Power Systems, 22(1), 240-

248. 

[10] Khazali, A. H., & Kalantar, M. (2011). Optimal reactive power dispatch based on 

harmony search algorithm. International Journal of Electrical Power & Energy Systems, 

33(3), 684-692. 

[11] Roy, P. K., Mandal, B., & Bhattacharya, K. (2012). Gravitational search algorithm based 

optimal reactive power dispatch for voltage stability enhancement. Electric Power 

Components and Systems, 40(9), 956-976. 

[12] Basu, M. (2014). Teaching–learning-based optimization algorithm for multi-area 

economic dispatch. Energy, 68, 21-28. 

[13] Abido, M. A. (2011). Multiobjective particle swarm optimization for optimal power flow 

problem. In Handbook of swarm intelligence (pp. 241-268). Springer. 

[14] Mandal, B., & Roy, P. K. (2014). Multi-objective optimal power flow using quasi-

oppositional teaching learning based optimization. Applied Soft Computing, 21, 590-

606. 

[15] Roy, P. K., Ghoshal, S. P., & Thakur, S. S. (2010). Multi-objective optimal power flow 

using biogeography-based optimization. Electric Power Components and Systems, 

38(12), 1406-1426. 

[16] Bhattacharya, A., & Chattopadhyay, P. K. (2011). Application of biogeography-based 

optimisation to solve different optimal power flow problems. IET Generation, 

Transmission & Distribution, 5(1), 70-80. 



 
Received: 06-04-2024         Revised: 15-05-2024 Accepted: 28-06-2024 

 

 1270 Volume 48 Issue 2 (July 2024) 

https://powertechjournal.com 

 

[17] Hernandez, Y. R., & Hiyama, T. (2009). Minimization of voltage deviations, power 

losses and control actions in a transmission power system. In 2009 15th International 

Conference on Intelligent System Applications to Power Systems (pp. 1-5). IEEE. 

[18] Swarup, S., & Swarup, K. S. (2011). Multi-objective harmony search algorithm for 

optimal power flow problem. International Journal of Electrical Power & Energy 

Systems, 33(3), 745-752. 

[19] Duman, S. (2017). Symbiotic organisms search algorithm for optimal power flow 

problem based on valve-point effect and prohibited zones. Neural Computing and 

Applications, 28(11), 3571-3585. 

[20] Von Appen, J., Stetz, T., Braun, M., & Schmiegel, A. (2014). Local voltage control 

strategies for PV storage systems in distribution grids. IEEE Transactions on Smart Grid, 

5(2), 1002-1009. 

[21] Jahangiri, P., & Aliprantis, D. C. (2013). Distributed Volt/VAr control by PV inverters. 

IEEE Transactions on Power Systems, 28(3), 3429-3439. 

[22] Dall’Anese, E., Dhople, S. V., & Giannakis, G. B. (2014). Optimal dispatch of 

photovoltaic inverters in residential distribution systems. IEEE Transactions on 

Sustainable Energy, 5(2), 487-497. 

[23] Samadi, A., Eriksson, R., Söder, L., Rawn, B. G., & Boemer, J. C. (2014). Coordinated 

active power-dependent voltage regulation in distribution grids with PV systems. IEEE 

Transactions on Power Delivery, 29(3), 1454-1464. 

[24] Miranda, V., & Saraiva, J. P. (1992). Fuzzy modelling of power system optimal load 

flow. IEEE Transactions on Power Systems, 7(2), 843-849. 

[25] Zhang, H., & Li, P. (2010). Probabilistic analysis for optimal power flow under 

uncertainty. IET Generation, Transmission & Distribution, 4(5), 553-561. 

[26] Verbic, G., & Canizares, C. A. (2006). Probabilistic optimal power flow in electricity 

markets based on a two-point estimate method. IEEE Transactions on Power Systems, 

21(4), 1883-1893. 

[27] Schellenberg, A., Rosehart, W., & Aguado, J. (2005). Cumulant-based probabilistic 

optimal power flow (P-OPF) with Gaussian and gamma distributions. IEEE Transactions 

on Power Systems, 20(2), 773-781. 

[28] Rosenblueth, E. (1975). Point estimates for probability moments. Proceedings of the 

National Academy of Sciences, 72(10), 3812-3814. 

[29] Hong, H. P. (1998). An efficient point estimate method for probabilistic analysis. 

Reliability Engineering & System Safety, 59(3), 261-267. 

[30] Raychaudhuri, S. (2008). Introduction to Monte Carlo simulation. In 2008 Winter 

simulation conference (pp. 91-100). IEEE. 



 
Received: 06-04-2024         Revised: 15-05-2024 Accepted: 28-06-2024 

 

 1271 Volume 48 Issue 2 (July 2024) 

https://powertechjournal.com 

 

[31] Ayan, K., Kılıç, U., & Baraklı, B. (2015). Chaotic artificial bee colony algorithm based 

solution of security and transient stability constrained optimal power flow. International 

Journal of Electrical Power & Energy Systems, 64, 136-147. 

[32] Pizano-Martinez, A., Fuerte-Esquivel, C. R., & Ruiz-Vega, D. (2009). Global transient 

stability-constrained optimal power flow using the SIME method. In 2009 IEEE Power 

& Energy Society General Meeting (pp. 1-8). IEEE. 

[33] Xu, Y., Dong, Z. Y., Xu, Z., Zhang, R., & Wong, K. P. (2012). Power system transient 

stability-constrained optimal power flow: A comprehensive review. 2012 IEEE Power 

and Energy Society General Meeting (pp. 1-7). IEEE. 

[34] Alam, A., & Makram, E. B. (2006). Transient stability constrained optimal power flow. 

In 2006 IEEE Power Engineering Society General Meeting (pp. 6-pp). IEEE. 

[35] Mo, N., Zou, Z. Y., Chan, K. W., & Pong, T. Y. G. (2007). Transient stability 

constrained optimal power flow using particle swarm optimization. IET Generation, 

Transmission & Distribution, 1(3), 476-483. 

[36] Ahmadi, H., Ghasemi, H., Haddadi, A. M., & Lesani, H. (2013). Two approaches to 

transient stability-constrained optimal power flow. International Journal of Electrical 

Power & Energy System, 47, 181-192. 

[37] Tu, X., Dessaint, A. L. A., & Kamwa, I. (2014). Fast approach for transient stability 

constrained optimal power flow based on dynamic reduction method. IET Generation, 

Transmission & Distribution, 8(7), 1293-1305. 

[38] Mukherjee, A., Roy, P. K., & Mukherjee, V. (2016). Transient stability constrained 

optimal power flow using oppositional krill herd algorithm. International Journal of 

Electrical Power & Energy Systems, 83, 283-297. 

[39] Xu, Y., Yang, Y. Z., Dong, K. Meng, J. H. Zhao, and K. P. Wong (2012). A hybrid 

method for transient stability-constrained optimal power flow computation. IEEE 

Transactions on Power Systems, 27(4), 1769-1777. 

[40] Saha, A., Bhattacharya, A., Das, P., & Chakraborty, A. K. (2020). HSOS: a novel hybrid 

algorithm for solving the transient-stability-constrained OPF problem. Soft Computing, 

24(10), 7481-7510. 

[41] Prasad, D., Mukherjee, A., & Mukherjee, V. (2017). Transient stability constrained 

optimal power flow using chaotic whale optimization algorithm. In Handbook of neural 

computation (pp. 311-332). Academic Press. 

[42] Prasad, D., Mukherjee, A., Shankar, G., & Mukherjee, V. (2017). Application of chaotic 

whale optimization algorithm for transient stability constrained optimal power flow. IET 

Science, Measurement & Technology, 11(8), 1002-1013. 

[43] Xia, S., Luo, X., Chan, K. W., Zhou, M., & Li, G. (2016). Probabilistic Transient 

Stability Constrained Optimal Power Flow for Power Systems With Multiple Correlated 



 
Received: 06-04-2024         Revised: 15-05-2024 Accepted: 28-06-2024 

 

 1272 Volume 48 Issue 2 (July 2024) 

https://powertechjournal.com 

 

Uncertain Wind Generations. IEEE Transactions on Sustainable Energy, 7(3), 1133-

1144. 

[44] Rosenblueth, E. (1981). Two-point estimates in probabilities. Applied Mathematical 

Modelling, 5(5), 329-335. 

[45] Mohammed, H., & Rashid, T. (2022). FOX: a FOX-inspired optimization algorithm. 

Applied Intelligence, 1-21. 

[46] Al-Betar, M. A., et al. (2021). Coronavirus herd immunity optimizer (CHIO). Neural 

Computing and Applications, 33(10), 5011-5042. 

[47] Matpower. (No publication date provided). Case 30: Polish system (Poland, 330 buses). 

Retrieved from https://matpower.org/docs/ref/matpower5.0/case30.html. 

[48] Zimmerman, R. D., & Murillo-Sanchez, C. E. (2011). Matpower 4.1 user’s manual. 

Power Systems Engineering Research Center (PSERC). 

[49] Červený, J., Begall, S., Koubek, P., Nováková, P., & Burda, H. (2011). Directional 

preference may enhance hunting accuracy in foraging foxes. Biology Letters, 7(3), 355-

357. 

[50] Saha, A., Bhattacharya, A., Das, P., & Chakraborty, A. K. (2019). A novel approach 

towards uncertainty modeling in multiobjective optimal power flow with renewable 

integration. International Transactions on Electrical Energy Systems, 29(12), e12136. 

[51] Biswas, P. P., Suganthan, P. N., & Amaratunga, G. A. J. (2017). Optimal power flow 

solutions incorporating stochastic wind and solar power. Energy Conversion and 

Management, 148, 1194-1207. 

[52] Biswas, P. P., et al. (2018). Multiobjective economic-environmental power dispatch with 

stochastic wind-solar-small hydro power. Energy, 150, 1039-1057. 

[53] Wind Turbine Models. Hummer H25.0 (200 kW) Wind Turbine. Retrieved from 

https://en.wind-turbine-models.com/turbines/1681-hummer-h25.0-200kw#datasheet. 


