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Abstract:- Energy derived from renewable sources in modern times has paved the way
towards a sustainable and greener future. Although renewable energy is undisputedly the
answer towards decarbonisation, there are certain challenges that need to be overcome before
we can completely do away with the use of fossil fuels for power generation. Integrating
renewable energy sources into power systems introduces inherent variability to electricity
generation, creating a need for robust strategies to ensure system stability. This article
addresses one of these challenges by developing a customized security-constrained
probabilistic optimal power flow framework tailored for integrated renewable energy
systems. The model incorporates solar and wind energy resources through the Two Point
Estimate (2m-PEM) method, improving its accuracy and practicality. To enhance the
effectiveness of this framework, two advanced evolutionary algorithms, specifically the Fox
Inspired Optimization and Coronavirus Herd Immunity Optimizer, are utilized to identify
optimal parameter settings for specific objectives. The results demonstrate the model's ability
to maintain transient stability even in scenarios where fault clearing times are significantly
extended. This study makes a significant contribution to the secure integration of renewable
energy sources into power systems. It offers valuable insights into improving transient
stability by employing a sophisticated combination of probabilistic optimization and
evolutionary algorithms. These findings pave the way for a robust integration of renewable
energy while adhering to the stringent stability requirements of modern power systems.

Keywords: critical clearing time, optimal power flow, transient stability, renewable energy.

1. Introduction

Contemporary power systems are meticulously engineered to operate both efficiently and
economically. However, the ever-increasing demands on these systems, coupled with the
dynamic nature of network characteristics, can potentially introduce instability into the
existing infrastructure. To mitigate this challenge, optimal power flow (OPF) emerges as a
crucial tool in optimizing the utilization of the power system's capabilities.
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An OPF model is designed with the primary objective of minimizing operational costs while
adhering to various operational constraints. This entails identifying the optimal operating
conditions for generators within the system.

Nomenclature
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Phase angle difference
of voltages at the i*"
and j" buses of line i -

Total number of buses
in the system

Set of variables of the
deterministic OPF
problem

Rotor angle

Inertia constant

Number of generators

Locations (specified
values of random
variables in the input)

First moments of the
output variable

Second moments of the
output variable

Skewness

Standard locations

¢, Probability of hunting while
jumping in north eastern
direction with value 0.82

¢, Probability of hunting while
jumping in other direction with
value 0.18

M Minimum time variable

tt Minimum time average

a Variable used to control search
space

B Best solution

M Maximum number of iterations

f( Objective function or
immunity rate of individual

x Gene or decision variable in
CHIO

lb Lower and upper bounds of x

p CHIO population dimension
(number of control parameters)
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T  Transformer tap W, ; Weight factor H Population size of CHIO
setting
PQ Total number of Dist_S 1 Distance of sound  x* Infected case
load buses travel
PV  Total number of Sp_¢ Speed of sound in air S Status vector
generator buses
TL Total number of Tim Sound travel time, a x’ Susceptible case
transmission lines random number in the
range [0,1]
NC Total number of Dist_Fox_P: Distance of x' Immune case
compensators FOX from
prey
NT Total number of BestPositiol Best search ~ Aj Average of population
transformer taps agent immunity rates
k  Equality constraint it Number of M Maximum infected cases age
iterations
l Inequality Jump;, Jump height a, Cost coefficients of k™
constraint generator
G Conductance of t Average time of sound G, Conductance of line m
linei-j travel connecting two buses
B;; Susceptance of line  X;;.1 New position of red  @; Phase angle difference between
-] FOX two buses
VlTef Reference voltage magnitude at i™" load bus (1 p.u.)

In addition to cost minimization, the OPF problem also encompasses other vital objectives
such as the reduction of voltage deviation, transmission losses, and the enhancement of
voltage stability indices. These multifaceted goals collectively contribute to the effective and
secure operation of modern power systems. Addressing the optimal power flow (OPF)
problem through conventional methodologies proves to be intricate due to the nonlinearity

and lack of convexity exhibited by electrical power flow equations with respect to the

system's physical variables.
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Classical optimization techniques encounter limitations when dealing with objective
functions that lack differentiability and/or continuity within the problem's nonlinearity.
Considering the inherent nonlinearity of OPF, the adoption of metaheuristic algorithms
becomes crucial for adeptly navigating and optimizing this intricate problem [1 — 5].The
literature offers a host of heuristic algorithms that proficiently tackle the fundamental OPF
problem which are Differential Evolution, Hybrid Evolutionary Programming, Tabu Search,
Bacteria Foraging, Gravitational Search, and Particle Swarm Optimization [6 - 13].
Moreover, several Pareto-based multiobjective optimization strategies have demonstrated
efficacy in resolving multi-objective OPF (MOPF) issues. These approaches encompass
methods such as Quasi-Oppositional Teaching Learning Based Optimization, Biogeography-
Based Optimization, Harmony Search Algorithm, and Symbiotic Organisms Search
Algorithm, facilitating the identification of optimal solutions that strike a balance among
conflicting objectives [14 — 19].

As the power system evolves to accommodate the dynamic inputs from renewable sources,
the formulation of the probabilistic optimal power flow (POPF) problem gains complexity,
necessitating innovative approaches to ensure secure and efficient operation. The stochastic
variability of renewable generation necessitates the development of a probabilistic OPF
framework to appropriately account for uncertainties introduced by renewable energy sources
(RESSs). The confluence of renewable generation and power electronics technologies enables
effective integration, resulting in the emergence of diverse control strategies [20—21] and
optimization techniques [22—23] tailored to augment system stability and efficiency.

However, the seamless integration of renewable resources demands a deeper consideration of
system contingencies to ensure safe operation. Unforeseen disturbances, with regard to load
fluctuations, line switching, line-to-ground faults, and unexpected outages, can propel the
system into transient instability conditions, characterized by significant rotor angle
deviations. Addressing these challenges mandates not only the minimization of the objective
function but also the meticulous management of transient stability. While conventional OPF
strategies excel in maintaining voltage stability under normal conditions, they often fail in
guaranteeing transient stability during fault events. To effectively safeguard system stability
in the face of such adversities, it becomes imperative to introduce an additional constraint
pertaining to transient stability within the context of the probabilistic OPF formulation,
thereby giving rise to transient stability constrained probabilistic optimal power flow (TSC-
POPF) model. By amalgamating the probabilistic treatment of renewable uncertainty with the
consideration of transient stability, this research endeavours to holistically address the
multifaceted challenges arising from the integration of renewable energy sources within the
power system framework.
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Diverse methodologies have been proposed in the literature to tackle distinct aspects of
power system optimization. Specifically, the probabilistic optimal power flow (POPF)
problem and the transient stability-constrained optimal power flow (TSC-OPF) problem have
been addressed through separate approaches. Various techniques have emerged to address the
probabilistic OPF problem, including Monte Carlo simulation (MCS), point estimate
methods, first-order second moments, and the Cumulant method [24 - 30]. However, MCS
suffers from computational inefficiency due to prolong processing times. Meanwhile, the
Cumulant method becomes progressively intricate as the number of variables increases in
POPF analyses. To mitigate these challenges, a promising alternative is the Two-Point
Estimate Method (2m PEM).

The TSC-OPF problem has also attracted considerable attention in the literature [31 - 33].
One approach utilized the Chaotic Artificial Bee Colony algorithm [31], while another
introduced a single machine equivalent (SIME) technique [32] that efficiently managed
transient stability without involving complex sets of differential algebraic equations.

Research Gaps and Proposed Methodology

As observed in the literature, the SIME method's reliance on approximations and its inability
to optimize generation shifts limit its optimality. In this context, the transient stability
constraint (TSC) is quantified as rotor angle deviations from the center of inertia frame, using
Taylor series expansion of differential equations [34]. Particle swarm optimization (PSO) was
employed in [35] to minimize costs while satisfying TSC-OPF constraints. Additionally, [36]
presented two distinct techniques for TSC-OPF resolution: one involving the generators'
maximum relative rotor angle deviations (RRAD) as a constraint and another based on
generator power outputs. Metaheuristic algorithms, such as oppositional krill herd, chaotic
whale optimization, hybrid symbiotic search, and group search optimization, have
demonstrated promise in effectively addressing the TSC-OPF problem by adhering to system
constraints without compromising accuracy [38 - 43]. Notably, a strategy dividing the system
into coherent sections was proposed in [37] for faster TSC-OPF resolution.

In this paper, we introduce novel methodologies for addressing the TSC-OPF problem,
avoiding the limitations associated with the SIME method [43]. Our approach leverages the
RRAD constraint to enhance transient stability in the system. In this study, we introduce an
innovative TSC-OPF model with renewable energy integration. We leverage the 2PEM [44]
to effectively model the inherent uncertainty associated with renewable energy source (RES)
generation. To assess the performance and robustness of our model, we employ two cutting-
edge metaheuristic algorithms: Fox Inspired Optimization (FOX) [45] and Coronavirus Herd
Immunity Optimizer (CHIO) [46]. These algorithms are evaluated using the IEEE 30 bus
system [47], [48]. We benchmark our results against those presented in [50] to estimate the
annual savings in generation cost.
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Contributions of the Article

Our study formulates the probabilistic aspect of the OPF problem by employing 2m PEM.
This approach accounts for the uncertainties in RES outputs by representing each uncertain
variable with two deterministic values adjoining its mean value. Consequently, for every n
uncertain variable, we necessitate 2n runs of deterministic OPF.

The principal contributions of this paper encompass:
* The introduction of 2m PEM-based POPF model.
* The extension of the 2m PEM-based POPF model to incorporate TSC.

* The utilization of two state-of-the-art algorithms, FOX and CHIO, to solve the designed
problem.

Section 2 elucidates the formulation of the TSC-POPF problem and provides an abridged
explanation of the 2m PEM technique. Section 3 furnishes a comprehensive overview of the
FOX and CHIO algorithms as applied to the TSC-POPF problem. In Section 4, we define the
objective functions and delineate the test system in Section 5, while Section 6 presents an
exhaustive analysis of our results, followed by the conclusion.

The algorithms are tested using the IEEE 30 bus system, scrutinizing various objectives for
different fault clearing times. Our findings underscore the efficacy of the proposed TSC-
POPF model in achieving optimal outcomes while ensuring transient stability within the
system across all scenarios examined.

2. Mathematical Formulation

This section presents an exhaustive mathematical formulation of the proposed problem.
Formulation of the TSC-OPF Problem

A deterministic OPF model identifies the best settings for network parameters to minimize
certain objectives after meeting different equality and inequality criterions. The deterministic
OPF problem is mathematically formulated and described below:

min J(m,n) 1)
Subject to k(m,n) = 0 (2)
and [(m,n) = 0 3

m constitutes the slack bus power Pgen1, VLoad, Qaen, and SLoad @and can be stated as:

T _
m = [PGenli VLoadPQr QGenl' QGenPV: SLoadl; SLoadTL]
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n constitutes Pgen (except slack bus), Veen, Qcomp, Ti and can be stated as:

n’ = [P cen2s - Penpvy Veents - - Veenpvs Qcomps - - Qcompne T1s --TNT] (5)
Equality constraints’ set k denotes load flow equations, which are expressed as shown below:
Peeni — Proaai = Vi L1275 Vi(Gijcos0;; — Byjsind;;) (6)
where, i=1,2,3,.....NBUS.
Qceni — Qroaai = Vi XYEVSV;(Gyjcos6;; + Bijcosh;;) (7)
where, i=1,2,3,.... NBUS.

Inequality constraints’ set | is comprised of lower and upper limits on generator (considers
limits on PV bus voltages and Pg;,,, and Qg;.y), transformer (limits of the T), shunt reactive
compensator (limits on Q¢,mp) and security constraints (limit on the PQ bus voltages and the
line loadings) by the following equations:

—_

Viem: < Veeni < Vient (8)
pmin < p. . <PmaxX | j=12 ., PV (9)
Gemi < Qgeni < Qfent (10)
TR < T, < T {=12,..NT (11)
Qé’z?}lpi < Qcompi < Qompi 1 =12,..,NC (12)
Vivadi < Vioaai < Vioadi i=12,..,PQ (13)
S < Stoadi < Spa%; i=12,..,TL (14)

For the system to be able to handle fault conditions, we must incorporate TSC into our
OPF problem apart from constraints given by (8) — (11) and (13) — (14). TSC is defined as
modulus of the maximum allowed difference between rotor angles and initial centre of the
generators [31]:

100 < | — 9o, | < 180° (15)

NG, M,0,

Where, 6601 = (16

"fsne m,
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where, d, is rotor angle, M,, is inertia constant of p" generator.

RRADs must not go beyond180°, as per [34 — 35] in order to ensure a transiently stable
system.

Formulation of Wind and Solar Power Generation

The probability of wind speed in w m/s is obtained from the Weibull distribution for a
given shape factor k and scale factor c as follows [51]:

fww) = (S) (E)(k_l) e W/O* for 0<w < (17)

c

Mean of the Weibull distribution is obtained as:
Mean,,,; = c*T(1+1/k) (18)

Two identical wind generators are placed at bus 26 and 30. Details of wind generator are
provided in Table 1 below:

Table 1: Weibull probability distribution parameters for stochastic wind power generation.

Wind Rated Shape Scale
Power Bus No. Power Parameter  Parameter
Generator (kW) (k) (c)
1,2 26, 30 200 2 15

The power output (p,,,) of the wind turbines vary with wind speed and are according to the
following equation:

0 for w<wy, or w>wyy,;
W—Win
pw(w) = Pwr (m) for wip sw < w, (19)
T mn
pWT for WT' S w S Wout

The cut-in speed (w;,,) is 2.5 m/s, rated speed (w;.) is 11.5 m/s, cut-out speed (w,,,;) is 20
m/s, and rated power (p,,,-) is 200 kW according to the Hummer wind turbine model
datasheet of [53].

The solar irradiance (Gg) probability is represented using the Lognormal probability
distribution function [52] as shown:
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1 {—(ln Gs— u)z/ 2}
£(G) = (GSG m) e 20 for G, >0 (20)

Here u and o represent respectively the mean and standard deviation.
The probability parameters for solar units are given in Table 2:

Table 2: Solar parameters for Lognormal probability distribution.

Rated Standard
Solar PV Bus No. Power Mean (u) Deviation (c)
(MW)
1,2 10, 12 10 5.2 0.6

Solar irradiance gets converted to energy as per the following equation [53]:

2
Protar(6e) = Frotar * 6/ for 0 < Gy < Goort

standard * Gcert)

( solar S)/Gstandard for Gs > Gcert (21)
Here, Ggtanaara 1S SOlar irradiance under standard environmental considerations and is
1000 W /m?. G, is a particular irradiance point.

Modeling TSC-POPF Problem using 2m PEM Method

In addressing the formidable challenges posed by the probabilistic nature of renewable
energy generation, our chosen methodology involved the utilization of the 2m PEM. Initially
proposed by Rosenblueth [28], PEM serves as a valuable technique for approximating and
managing uncertainties within power systems. However, it is not without its limitations,
particularly when dealing with variables that exhibit symmetry. In response to this limitation,
Hong [29] introduced an enhanced variant of PEM. This upgraded approach significantly
enhances computational efficiency and expands its applicability, making it particularly adept
at handling probabilistic aspects effectively.

POPF function, denoted as Y, can be mathematically expressed as follows [26]:

Y =f(X)
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where, X constitutes the input variables. Uncertain variable set m consists of the outputs from
wind and solar sources. The equation presented above can be expressed in the following
form:

Y = f(¢,p1, D2 - Pm) (23)

Initial central moments, such as mean, variance, and skewness, provide the statistical data
needed in 2m PEM for the uncertain variables. We need to calculate (23) 2m times for each
of the moments in the following manner:

Y(n,h) = f(c, Hp1s Wp2s eesevs Py won wen e upm); where, h=1,2;, n=1,2...m (24)

Once the deterministic OPF solution is obtained, (24) is calculated, to obtain mean
(upn) and standard deviation (a,,,). Steps to calculate moments with 2m PEM for TSC-POPF
problem is demonstrated below:

Step 1: Randomly generate m input variables.
Step 2: Fix first, second moments of output variable to zero i.e, E(Y) = 0and E(Y?) = 0.

Step 3: For each p,, calculate ¢,, as follows:

— E[pn_ll-pn]
Pn,3 (Upn)g !

n=1273,..,m (25)

Step 4: Calculate two standard locations as follows:

Goun = 2222 4 (<17 [(m 4 (222)) (26)

Step 5: Compute two estimated locations (ELSs) of each variables:

Pk = Hp, T Spor Opy, ; h=1,2 27
Step 6: Compute deterministic OPF using (24) for these ELSs.

Step 7: Calculate two weighting factors for p,, as follows:

_1)h ¢
Wy = S _Prsh : h=12 (28)

m zpn,l _(Pn,z

Step 8: For output random variable, evaluate first, second moments as shown:
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k
EQ) =3y 53y (Wan - (Yan)") k=12 (29)
Step 9: Redo steps 3 — 8 for every uncertain parameter.

Step 10: Evaluate p and o as shown:
p=ExYYH o= E(Y?)—pu? (30)

This formulation enables us to effectively account for the probabilistic aspects of
renewable energy generation within the optimal power flow framework, thus contributing to
a more reliable and stable power system operation.

3. Application of Evolutionary Algorithms to the Proposed TSC-POPF Problem

Given the inherent limitation of classical optimization methods, characterized by their
susceptibility to converging towards local optima, our approach to tackling the TSC-POPF
problem involves the utilization of evolutionary algorithms. The primary motivation behind
this strategy is to enhance the likelihood of obtaining superior solutions. In this section, we
present a concise overview of the two evolutionary algorithms that have been employed to
tackle the TSC-POPF problem, focusing on their role in minimizing the objective function
values.

FOX optimization algorithm [45]

The FOX algorithm draws inspiration from the natural hunting behaviors of red foxes. This
bio-inspired algorithm is founded on the intricate techniques employed by red foxes in
estimating distances to their prey, ultimately ending in successful hunts. The hunting process
of red foxes in snowy environments serves as the foundational concept for the FOX
algorithm, which can be outlined as follows:

i.  Randomized Search Initiation: In response to the diminished visibility caused by snow
cover, red foxes initalize their search for prey in a random manner. This randomness
in the initial search pattern mirrors the exploratory phase of the FOX algorithm.

ii.  Prey Location Prediction: Red foxes employ their acute hearing capabilities to detect
and focus on the ultrasonic emissions emitted by their prey. This auditory data aids
them in predicting the probable location of the prey. In parallel, the FOX algorithm
incorporates this predictive aspect, seeking to approach the optimal solution.
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ii.  Distance Estimation via Echo: By actively listening to the reflected ultrasounds and
precisely measuring the time difference between emission and reception, the red fox
skillfully estimates its distance from the prey. This echolocation strategy serves as a
heuristic for the FOX algorithm to gauge the proximity to a potential solution.

iv.  Jump Calculation: Upon reaching a sufficiently close distance to the prey, the red fox
calculates the optimal jump required to effectively capture its target. In the
algorithmic context, this step corresponds to refining the search process as it
converges towards the solution.

v. Optimized Random Walk: The red fox performs random movements, precisely
calculated to optimize both time and positioning for the final pounce on the prey.
Similarly, the FOX algorithm incorporates a controlled randomization process to
iteratively refine its search, striving for improved solutions.

By imitating these inherent behaviors of red foxes, the FOX algorithm encapsulates a
nature-inspired approach to optimization, potentially overcoming the local optima issues
often encountered by classical optimization techniques.

In the literature [49], it has been empirically demonstrated that executing jumps in the
northeast direction significantly augments a Fox's probability of successfully capturing its
prey, resulting in an impressive success rate of 82%. Conversely, jumps in the opposite
direction have been observed to diminish this success rate to a mere 18%. To strike a balance
between the critical aspects of exploitation and exploration, the algorithmic iterations are
evenly partitioned. This strategic allocation of iterations serves as a preventative measure,
guarding against the algorithm becoming trapped in local optima.

The phases of the algorithm are described as follows:

Exploitation

The probability of achieving a successful kill is determined by a stochastic variable
denoted as p, which is constrained to the interval [0,1]. In scenarios where the calculated
value of p exceeds the threshold of 0.18, the red fox initiates a relocation process as shown in
the following steps:

Dist S T,y =Sp_S* Time_S_T;; (31)

where, Spg = BestPositionit/TimeST,t 3
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Distance of FOX from its prey is calculated as:
Dist_Fox_Prey;; = Dist_S_T;; * 0.5 (33)

After estimating the distance, the fox makes a jump to catch the prey. This jump is
calculated as follows:

Jump;; = 0.5 %9.81 * t2 (34)

The value 9.81 represents acceleration due to gravity. New position of red Fox when it
jumps in the north eastern direction is dictated by its probability of catching prey, which is 82
%. The new position is calculated as follows:

X(it+1) = Dist_Fox_Prey;, * Jump;; * ¢4 (35)

If the FOX jumps in other directions, the probability of catching prey drops to 18% and its
position is calculated as:

X(it+1) = Dist_Fox_Prey;; x Jump; * ¢, (36)
Exploration

In this phase, the fox walks randomly in search of prey in the search area based on the
latest best position obtained as follows:

X(it+1) = BestX;, * rand(1, dimension) x MinT * a (37)
where, MinT = Min(tt) (38)
where, tt = sum(Time_S_T;:(i,:))/dimension (39)

and, a = 2 * (it — (1/Max_it )) (40)

FOX algorithm applied to TSC-POPF

This section provides the flowchart representation of the FOX algorithm as applied to
TSCP-OPF problem in Fig. 1. Case studies done in this paper considered the following
parameter values:
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r=rand(0,1); p=rand (0,1); 0.19<¢; <1; 0<c¢; <0.18; Max;,
= 100; SearchAgents = 30.

Initialize the population

v

Calculate Fitness of the Search Agent

Yes

Update X using equation (35) ‘ ‘ Update X using equation (36) ‘

No

Yes

No ‘ Update X using equation (37) ‘

\ 4
‘ Check for constraint violations and modify X to limits. H—

v

‘ Evaluate fitness and return the best ‘

End

Fig. 1. Flowchart for FOX algorithm.
Coronavirus herd immunity optimization (CHIO) [46]:

CHIO stands as an evolutionary algorithm, crafted in response to the COVID-19 pandemic,
drawing inspiration from the principles of herd immunity and social distancing [46]. Herd
immunity characterizes a scenario wherein a substantial segment of the population attains
immunity against the disease, resulting in a notable reduction in transmission rates. The
achievement of herd immunity is intrinsically tied to factors encompassing the susceptible,
infected, and immune proportions within the population concerning COVID-19. The
population's dynamic evolution is fundamentally influenced by the strategic implementation
of social distancing measures.

The governing parameters within the CHIO framework incorporate the basic reproduction
rate, signifying the velocity of virus transmission amongst individuals, and the maximum age
of infected cases, which classifies these cases based on their recovery or fatality statuses.
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The following steps are involved in the designing of CHIO algorithm:
Initialization of CHIO parameters for the optimization problem
The CHIO problem is framed for a given objective function as follows [46]:
min f(x) : x; € [lb;, ub;] (41)
where, x; = (X1, X2, X3, cer ver o e Xp)
3.2.2. Generation of herd immunity population (HIP)

The HIP is generated as follows:

xll x21 cee x;
1 2 2
x x cee x
HIP = 2 z - r (42)
xHIS  xHIS x{)ﬂs

3.2.3. Herd immunity evolution

Here, the genes get updated based on three rules according to BR,- (basic reproduction rate)

as shown:
Xl (it +1) = x/(it) r > BR,
=c(f/a) o< r<(Y/3xBR) (Infected)
=N (x/ ) (Y3 x BR,) < r < (¥/3x BR,) (Susceptible)
=R(x/())  (%/3xBR,)<r< BR.  (Immune)
where, r is a random number lying in [0, 1]. (43)
¢ (/1)) = x (it + 7 x (x] (it) — x£ (i) (44)

xf (it) is selected at random from any infected case x¢ depending on S such that ¢ =
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N (x/ (i) = x/ (it) + 7 x (x/ (it) — 2 (it)) (45)
x{™(it) is selected randomly from any susceptible case x™ depending on S such that m =

{i|s; = 0}.
R (x{@6)) = x/ (it) + 7 x (] (it) — 27 (it)) (46)

x{ (it) is selected randomly from any immune case x” depending on S such that:

fG) =argj. min f() (47)

The age vector 4; is increased by 1if §; = 1.

S; gets updated in every case depending on herd immune threshold utilizing the equation:

S; = 1 (il + D) <2 A5 =0 nis

Af(x) Corona(xj (it+ 1))

- 2 f(xj(it+1))>%/\5j=1

(48)

where, is_Corona(x/(it + 1)) = 1 when x/(it + 1) gets a value from infected case and
Af (o) = X5 f () /HIS.

If this evolved population is well immune to COVID-19, then the herd attains immunity
threshold.

3.2.4. Fatality cases

In case, the immunity rate f (xf (it + 1)) of the present infected case does not get better

for some iterations, which is equal to value of Max_Age, (i.e., A; = Max_Age), then this
infected case is considered dead. This case is then generated again for all control parameters.

3.2.5. CHIO algorithm applied to TSCP-OPF problem
Case studies done in this paper considered the following parameter values:

BR, = 0.001,Max,4, = 100,HIS = 30, Max;; = 100.
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The flowchart of the CHIO algorithm is provided below in Fig. 2.

‘ Initialize CHIO parameters ‘

Generate HIP

N,
No

‘ Perform CHIO evolution ‘ l

Yes
Set X(it+1)= X(it) l

Update X using equation (44) ‘

<
<€

‘ Check Fatality condition

!

‘ Check for constraint violations and modify X to limits. ‘

v

‘ Evaluate fitness and return the best ‘

Iter = Maxiter

Yes

BRr/3 <r<2BRr/3

2BRr/3<r<BRr

‘ Update X using equation (45) ‘ End

Yes

h 4

‘ Update X using equation (46) ‘

»lg |
P

) 4
Update HIP ‘

Fig. 2. Flowchart for CHIO algorithm.

4. Obijective Functions of TSC-POPF Problem

This section presents the objective functions studied using the proposed system, to which,
FOX and CHIO are applied.

4.1.Generation Cost Minimization

The objective of minimizing electricity generation costs can be explicitly defined with respect
to the real component of the output power in the following manner:

0, = min(F(P))
= min (IR, F(Py)) = min(ERE (ay + b Py + ¢, PE))

Volume 48 Issue 2 (July 2024)
https://powertechjournal.com




-\ Power System Technology

/Y~ ISSN:1000-3673

Received: 06-04-2024 Revised: 15-05-2024 Accepted: 28-06-2024
4.2 Transmission loss minimization

The minimization of real power transmission losses can be explained as follows:
02 = mln(PL)
= min(Ehe: Gn(V7 + Vi — 2V;Vicos6;) (50)

4.3.Voltage deviation (VD) minimization
03 = min(VD) = min (314 (v, - v*/)) (51)

All the objective functions are minimized using FOX and CHIO algorithms subject to
satisfying the constraints of (8) — (11) and (13) — (15).

5. System Description

In this section, we present a concise representation of the system to which our proposed
model is applied. The primary focus lies in the minimization of objective functions through
the utilization of FOX and CHIO algorithms across various distinct scenarios. To facilitate
this process, custom codes were developed in the MATLAB programming environment, and
subsequent simulations were executed on a personal computer equipped with an Intel Core
13-3110M CPU, 4 GB of RAM, operating at a clock speed of 2.4 GHz.

IEEE 30 bus system

The system under investigation is the IEEE 30-bus system, as defined in reference [47].
This system comprises 30 buses, 6 generators, 41 transmission lines, and 4 tap-changing
transformers. The total load imposed on the system amounts to 189.2 MW and 107.2 MVAr.
To perform TSC-POPF operation, the following conditions were established:

1) Solar power injection was incorporated at buses 10 and 12, while wind power
injection was implemented at buses 26 and 30.

2) A single contingency analysis was executed considering a 3 phase fault close to bus
2 (at t=0), which was cleared after taking out line 2 — 5, similar to the studies
carried out in [31], [35] and [40] for the sake of comparison.
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6. Results and Discussion

This section presents results obtained after performing different studies on the system for
different cases/scenarios and their exhaustive analysis. The following cases were studied for
the system:

Case 1: A baseline investigation was carried out involving a normal OPF analysis without
the consideration of renewable generation or TSC.

Case 2: A probabilistic OPF analysis was performed without the presence of any
contingency events.

Case 3: TSC-OPF was conducted for the system, omitting renewable energy sources, with

a specified fault clearing time (CT) of 0.18 seconds.

Case 4: TSC-POPF analysis was conducted, considering a fault CT of 0.18 s.

Case 5: The fault CT was extended to 0.49 seconds, and TSC-POPF analysis was
subsequently undertaken.

For all cases, the maximum simulation duration was constrained to 5 seconds, with an
integration time step of 0.01 seconds. Additionally, RRAD was constrained to 150° for the
above cases.

Casel

In this case, TSC and renewable generation were not considered. For this case, when a 3
phase fault occurred close to bus 2 (at t = 0), and was cleared by taking out line 2 - 5,
maximum fault CT was observed as 0.1298 s, beyond which the system became unstable as
can be seen in Fig. 3. This is because the system was not subjected to satisfy the TSC in (15).

Table 3 shows the minimized values obtained for 0,,0,, and 05 for Case 1. It can be
noted that FOX algorithm performed superior to CHIO for all the objectives. It was able to
reduce the generation cost by 0.03%, transmission loss by 5.03% and VD by 11.07% when
compared to CHIO.

The convergence characteristics obtained using CHIO and FOX algorithms for all
objectives are depicted in Fig. 4. It can be noted that CHIO took lesser iterations to converge
as compared to FOX algorithm for all the objective functions. However, FOX was better in
minimizing the objective functions.
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Fig. 4. Convergence characteristics of (a) cost, (b) loss and (c) voltage deviation
minimization for Case 1 using CHIO and FOX algorithms.

Table 3: Objective function values using CHIO and FOX Algorithms.

Corresponding CHIO

values of

FOX

CHIO FOX

CHIO FOX

Loss

Cost Minimization

other objectives

Minimization

Voltage Deviation
Minimization

Cost($/h) 573374 ST315  g4q7g 63794
5 6 1

Transmission

Loss(MW) 2.1391 2.0818 15635 1.4886

Voltage 1.3756  1.9066 0.4288 0.7805

deviation(p.u.)

600.5971 610.1805
2.8921 2.9980
0.1344 0.1210
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Table 4: Comparative Study of Cost Minimization Objective Function for Casel.

Corresponding values of
DE[40] SOS[40] HSOS[40] CHIO FOX
other objectives

Cost($/h) 574.1681 574.0697 573.3098 573.3745 573.1564
Transmission Loss(MW)  2.2700 2.3328 2.1100 2.1391 2.0818
Voltage deviation(p.u.) 0.8821 0.7058 1.6330 1.3756 1.9066

From comparative study of cost minimization objective represented by Table 4, it can be
noted that FOX algorithm outperformed all other algorithms in minimizing the generation
cost.

Case 2

This case considers probabilistic generation from two solar and two wind generations at
bus no.s 10, 12, 26 and 30. Table 5 presents the minimized values for objective functions
considered. TSC was not added to this case. We can see great reduction in generation cost, to
the extent of 1.23 % for CHIO (annual savings of 61442.64 $) and 3.4% for FOX algorithm
(annual savings of 169039.0292 $) as compared to Case 1. For the present case, FOX
outperformed CHIO again in minimizing generation cost by 2.25%, transmission loss by
1.56% and voltage deviation by 6.12%.

Table 5. Minimization of all Objectives using CHIO and FOX Algorithms for Case 2.

Corresponding CHIO FOX CHIO FOX CHIO FOX
I f
Vales o Cost Loss Voltage Deviation
other objectives Minimization Minimization Minimization
Cost($/h) 566.36 553.859 625.280 626.962 661.3079 6890710
05 7 3 0
Transmission
22973 2.3324 13306 1.3102 5.5782 5.7733
Loss(MW)
Voltage

0.1535

s 19804 1.6172 19340 1.9953 0.1629
deviation(p.u.)
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Fig. 5.Convergence characteristics of (a) cost, (b) loss and (c) voltage deviation minimization
for Case 2 using CHIO and FOX algorithms.

Fig. 5 presents the convergence characteristics for all objectives using FOX and CHIO. For
this case too, CHIO converged slightly faster than FOX, but the latter provided better results.

Case3

For this case, no probabilistic generation was considered. Fault condition was same as in
Case 1. Time to clear the fault was considered as 0.18 s after incorporating TSC given in

(15).

Table 6. Minimization of all Objectives using CHIO and FOX Algorithms for Case 3.

Corresponding CHIO FOX CHIO FOX CHIO FOX
values of Cost Loss Voltage Deviation
other objectives Minimization Minimization Minimization
57455 57413 635.24 638.89
Cost($/h) 08 79 75 49 635.5991 692.1245
Transmission
Loss(MW) 24193 2.3276 14486 1.3742 5.8458 5.7505
Voltage
0.3695 0.4314 1.3829 1.6892 0.1682 0.1519

deviation(p.u.)
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Fig. 6. Annual cost of generation obtained by different algorithms as compared to case 3.

Table 7. Comparative Study of Cost Minimization Objective Function for Case 3.

Comparative sudy (tc=0.18s)

Corresponding
values of GA[35]
other objectives

PSO[35 ABC[3 CABC[3

HSOS CHIO  FOX
] 1 1]

585.62 585.17 577.78 577.630 574.22 57455 574.13

Cost($/h) 00 00 00 0 55 08 72
Transmission NA NA NA NA 235.58 24193 23276
Loss(p.u) 00

Voltage NA NA NA NA 04332 03695 0.4314

deviation(p.u.)

Table 6 presents the minimization of all objectives for this case and Table 7 presents the
comparative study for cost minimization objective. Similar observations regarding
performances of CHIO and FOX algorithms are seen for all the objectives with FOX
outperforming CHIO. Fig. 6 presents the annual cost of generation in $ obtained by FOX and
CHIO in comparison with other algorithms. It can be observed that application of FOX
resulted in the least annual generation cost. Annual savings obtained by FOX as compared to
other algorithms are shown in Table 8.

Table 8. Annual Savings in Generation Cost for Case 3.

Algorithm

i GA[35] PSO[35] ABC[31] CABC[31] HSOS[40] CHIO
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Fig. 7 presents the convergence characteristics for all objectives for case 3and Fig. 8
presents the relative rotor angle deviations after considering the TSC for CHIO and FOX
algorithms. We can see that both algorithms were able to maintain transient stability even
when the time to clear fault was increased from the maximum clearing time of 0.1298 s by
5.02% to 0.18 s. Maximum RRAD can be seen to lie well below 100° thereby signifying a
stable system.
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Case4

This is the TSC-POPF case that considered probabilistic generation as mentioned in Case 2
and had to satisfy the TSC of (15). Fault CT is considered to be 0.18 s for this case to check
the feasibility of the proposed model. Table 9 presents the control parameters for this case. It
can be observed that FOX performed better than CHIO for all objectives.
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Fig. 9. Convergence characteristics of (a) cost, (b) loss and (c) voltage deviation

minimization for Case 4 using CHIO and FOX algorithms.
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minimization, for Case 4 using CHIO and FOX algorithms.

Table 9. Minimmization of all Objectives using CHIO and FOX Algorithms for Case 4.

Corresponding  CHIO FOX CHIO FOX CHIO FOX
values of

other Cost Loss Voltage Deviation
objectives

Cost($/h) 561.0104 555.3704 623.2119 616.7389 636.4246 660.0332
Transmission

Loss(MW) 2.3250 2.4130 1.4086 1.3647 5.3008 5.7019

Voltage

o 0.9032 1.0272 1.5844 1.5379 0.2012 0.1625
deviation(p.u.)
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Fig. 11.Comparative annual cost of generation obtained by FOX and CHIO in Case 4 as
compared to other algorithms of Case 3.

Table 10. Annual Savings in Generation Cost for Case 5.

Q'Sgo”th GA[38] PSO[38] ABC[34] CAB]C[34 HSOS CHIO  FOX
Q:\:‘r*]a's 26498 261,044 196308. 194994 165170. 168,02 164397
o 9 64060 4960 0960 0960 0000 030 .17

Since there are no data reported in the literature to do a comparative study for this case, we
compared the results obtained using FOX algorithm with those of Case 3 to detect the annual
savings in generation cost and presented them in Table 10. Fig. 9 presents the convergence
characteristics of CHIO and FOX. RRADs of this case are depicted in Fig. 10. Fig. 11
represents the annual cost obtained by FOX and CHIO after renewable energy integration as
compared to those without renewables in Case 3.

It can be observed from Fig. 10 that transient stability was maintained for all objectives
and the maximum RRAD was much below the threshold 150°, which signifies a transiently
stable system. From Table 10 and Fig. 11, it is evident that renewable integration to the
transient stability constrained system resulted in great annual savings on employing the FOX
algorithm.

Case 5

The fault CT was increased to 0.49 s, while all other conditions were kept same as Case 4.
Table 11 presents control parameters for this case. We can see that FOX obtained better
results for all objectives as compared to CHIO. Also, the annual savings in generation cost as
compared to CHIO is 12046.36 $.
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Table 11. Minimization of all Objectives using CHIO and FOX Algorithms for Case 5.

Corresponding values of  CHIO FOX CHIO FOX CHIO FOX

other objectives Cost Loss Voltage Deviation
569.371 555.610 601.413 610.647 627.188 637.646

Cost($/h) A 4 0 L 5 1

Transmission

Loss(MW) 2.3043  2.0725  1.7323 1.3321 5.1380  5.3763

Voltage deviation(p.u.) 0.7407 09063  1.7182  1.9853  0.2073  0.1696
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Fig. 13. RRAD:s for: a(i), a(ii)- cost, b(i), b(ii)- loss, and c(i), c(ii)-voltage deviation
minimization, for Case 5 using CHIO and FOX algorithms.

The initial values attained as well as the number of iterations required to converge using
FOX algorithm are higher for almost all the cases as compared to CHIO signifying better
exploration capability of FOX algorithm over CHIO as evident from Fig. 12. Although,
convergence is slightly slower in case of FOX, it is able to deliver better results. It can be a
viable option in cases where effect of computation times will not be very significant. Fig. 13
presents the RRADs for an increase in fault CT to 0.49s, which is an increase by 36.02%
from the maximum fault CT of 0.1298s. It can be observed that none of the generators are
swinging outside the maximum limit of 150° In fact, the maximum RRAD amongst all
objectives was 140° for voltage deviation minimization objective using CHIO while all other
RRADs were well below 100°.

Results obtained from the case studies establish feasibility of the proposed TSC-POPF
model in ensuring transient stability of the system with sufficient stability margin.

7. Statistical Significance of Test Results

A statistical evaluation is conducted on 50 trial datasets to evaluate the effectiveness of the
FOX and CHIO algorithms.

Table 12. Statistical analysis of QRSOS for single objectives using Wilcoxon signed rank
test against 50 trials.

No. of
hits  to
Test Avera minimum Standard
Algorithm cases Minimum Maximum ge solution  deviation p-value

FOX ‘ casel  573.1564 573.59 573.28 35 0.2026
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case2 553.8597 5514'92 5i4'05 41 0.41 3.66E-11

case3 574.1372 5734'85 524'28 40 0.2893 4.61E-11

cased 555.3704 5555'57 5i5'41 40 0.083 4.61E-11

case5 555.6104 5535'88 5565'67 38 0.1177 6.92E-11

casel  573.3745 5727'48 5;4'85 32 19916 1.57E-10

case2  566.3605 520'21 527'36 37 1.71  8.25E-11

CHIO case3 574.5508 5737'92 5775'96 29 1.6811 1.95E-10
case4 561.0104 523'25 521'77 33 1.073  1.43E-10

caseS 569.3714 5;2'35 5;0'20 36 1.3546  9.68E-11

In this analysis, a single sample dataset generated by the proposed algorithm is subjected to
the Wilcoxon signed rank test. A p-value, representing the probability value, below 0.05 is
interpreted as strong evidence against the null hypothesis.

The resulting p-values from this test for cases 1-5, for cost minimization, along with the
corresponding minimum, maximum, average values, and standard deviation, are presented
above in Table 12. It is evident that both algorithms exhibited strong and consistent
performance, with FOX demonstrating superior results characterized by lower standard
deviation and more favourable p-values.

8. Conclusion

This research has introduced a TSC-POPF model, based on the 2m PEM method. The
primary objective of this study was to evaluate the practicality and effectiveness of this model
in preserving transient stability within a power system, especially in the presence of
stochastic renewable energy generation. To address this challenge, two powerful evolutionary
algorithms, FOX and CHIO, were harnessed to minimize the objective functions associated
with the TSC-POPF problem. A comprehensive set of case studies was meticulously
conducted to thoroughly assess the performance of these algorithms under various scenarios
The outcomes of these case studies are promising. They illustrate that the proposed T
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POPF model is adept at ensuring transient stability, even when the fault CT is significantly
extended. Moreover, the RRAD values observed in these studies consistently fell within the
range of 50° to 100°, signifying a substantial margin of stability. This underscores the model's
capacity to effectively manage substantial disturbances while upholding a secure level of
stability.

To the best of our knowledge, the application of the 2m PEM approach to construct a
TSC-POPF model as presented here is unprecedented in the existing literature. This model,
when applied, has consistently demonstrated its ability to maintain a robust stability margin
in the face of system disturbances. This research advances the understanding and application
of TSC-POPF modelling, providing a valuable tool for enhancing the stability and efficiency
of power systems incorporating stochastic renewable energy sources. The findings herein
contribute to the on-going efforts to create resilient and sustainable power networks in the
face of increasing renewable energy integration. It also presents an exhaustive comparative
analysis of two very recent evolutionary algorithms FOX and CHIO, in tackling the
challenges faced by a power system network.
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