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 Abstract:-  Geometric Function Theory (GFT) primarily concerns itself with the theory of 

analytic functions, particularly focusing on analytic univalent functions that are normalized 

within this framework. The study defines analytic classes based on the Bohr inequality and 

explores various geometric properties of these classes using Bohr-type radii and inequalities 

within the unit disc via Salagean operator. It includes comparisons between established and 

recent findings, and examines alternating series of Bohr-type radii for the Taylor series of 

analytic functions. 
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1. Introduction 

Geometric Function Theory (GFT) is a relatively modern field within complex analysis that 

investigates the geometric properties of functions in the unit disk, initially proposed towards 

the end of the 18th century, Function Theory gained momentum with the contributions of 

Nilsson and Koebe [1], who introduced concepts of univalent and multivalent functions, 

marking a significant advancement. Bohr [2], notably discovered crucial equivalences in this 

area, contributing to its foundational development.        
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Geometric Function Theory (GFT) primarily concerns itself with the theory of analytic 

functions, particularly focusing on analytic univalent functions that are normalized within this 

framework. The study defines analytic classes based on the Bohr inequality and explores 

various geometric properties of these classes using Bohr-type radii and inequalities within the 

unit disc. It includes comparisons between established and recent findings, and examines 

alternating series of Bohr-type radii for the Taylor series of analytic functions Bohr originally 

established the inequality for 
6

1
, later demonstrated to be sharp at 

3

1
 by Wiener, Riesz, and 

Schur [3],[4]. Further supporting evidence can be found in [5, 6]. Dixon [7] established a 

connection between this inequality and its characterization in Banach algebras satisfying Von 

Neumann’s inequality, which drew attention from operator algebraists. Recently, extensive 

research has focused on generalizing Bohr’s theorem across various types of analytic 

functions [9]. For example, Aytuna and Djakov examined the Bohr phenomenon [10], while 

Aizenberg et al [11] explored its implications for holomorphic functions, and Ali et al [12] 

discovered the Bohr radius in 2016 for star-like logarithmic mappings. Additionally, Ali and 

Ng [13] expanded the classical Bohr inequality in the Poincaré disc model of the hyperbolic 

plane. Bayart et al [14] discovered an inequality concerning bounded analytic functions on 

the closed unit disc D  in the complex plane, marking a significant development in the field. 

This inequality was subsequently modified by Wiener, Riesz, and Schur. Muhanna et al [15] 

explored the Bohr radius in relation to star-like and harmonic mappings within ,D  

underscoring ongoing interest in this classical result. The Bohr radius continues to be a focal 

point across various branches of mathematics, as evidenced by the extensive body of work in 

recent years [16-20].  

The exact Bohr-type radius was shown by Liu et al [21], and when we substitute ( )zf  or its 

higher order derivatives for the coefficient of Bohr’s inequality, we can deduce that the Bohr-

type radius that results is less than the Bohr radius. This article’s primary goal is to 



 
Received: 06-05-2024         Revised: 15-06-2024 Accepted: 28-07-2024 

 

 
2121 Volume 48 Issue 2 (July 2024) 

https://powertechjournal.com 

 

investigate the Bohr inequality for the class of Analytic functions defined in the complex 

plain that are generally simply connected domains. 

Salagean [22] introduced a distinct operator, referred to as the Salagean operator. Janowski 

[23] introduced additional classes. Kuroki, Owa, and Srivastava [24, 25-35] discussed the 

extension of Janowski function. We study a new family of analytic functions in the open unit 

disc using the Salagean operator, deriving several inclusion relations from the Hadamard 

product. This operator allows us to create new classes of analytic functions based on various 

lemmas. Several features of these classes are explored, along with numerous sharp results. 

Suppose that ( )zG  is Halomophic function and is defined by Salagean operator as 

                                              ( ) ( ) ( ) ( )zGDzGDzG nn 11 ++−=  ,                                        (3) 
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n

m +−= ,1  .    
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2. Main Results  

We initially present a result involving the Bohr-type radius. Equation (10), (11) and 

(12) represents Salagean operator equations which are utilized in Analytic functions, yielding 

the Bohr-type radius. 

In this context, the Salagean operator is employed to determine the Bohr-type radius 

of certain Analytic functions. 

Theorem 2.1 Suppose ( ) m

m
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By applying Salagean operator 
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Corollary 2.1 Consider the function,  
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The expression >1 if and only if, 
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 is analytic in U and ( ) 1zG  in U. Then 

using Salagean operator.  
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By using equations ( ) ( ) ( )20810 toand yields the corresponding equality.  
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This demonstrates that the radius 13 −=r  is optimally feasible. 

The corresponding alternating series (1.1) was defined by Ali et al [25], as: 
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Where the given inequality obtained by simple calculation. 
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Inserting the Salagean operator (10) and lemma (8) into (39), we obtain; 
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by simplifying,  
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Equation (61) is greater then zero. This prove is sharpness and 
NRr  . This prove 

represents sharpness. 

In the presented paper, the majority of outcomes derived from the specified equality 

exhibit a high degree of precision. 

We extracted most of the approximately sharp results with Bohr Inequality by applying 

Salagean operator. 

 

3. Application 

The Bohr inequality, named after Danish mathematician Harald Bohr, is a significant result in 

complex analysis and number theory. It provides bounds on the absolute values of Dirichlet 

series within specific regions. Specifically, the Bohr inequality addresses the convergence of 

Dirichlet series and power series in the context of bounded holomorphic functions. Bohr 

inequality has several important applications. The Bohr inequality is utilized to study the 

behavior of holomorphic functions (complex functions differentiable in a neighborhood of 

every point in their domain) and Dirichlet series. It aids in understanding uniform 
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convergence and in bounding the values of these series within specific regions of the complex 

plane. In functional analysis, the Bohr inequality helps analyze the properties of various 

functional spaces. It aids in bounding function norms and understanding the compactness and 

boundedness of operators acting on these spaces. In complex analysis, the Bohr inequality 

aids in investigating the properties of power series. It can be used to derive results concerning 

the radius of convergence and the maximum modulus of these series within specific disks in 

the complex plane. 

The Salagean operator is a pivotal concept within geometric function theory, particularly in 

the examination of univalent and analytic functions. Named after Gheorghe S. Salagean, this 

operator finds extensive applications across different realms of mathematical analysis. It 

plays a crucial role in areas such as Univalent Function Theory, Subordination, Differential 

Subordinations, Geometric Properties, Coefficient Problems, and Operator Theory. In the 

study of univalent functions, the Salagean operator is instrumental in generating new classes 

of functions that are injective within the unit disk and other domains. It facilitates the 

construction of functions with specific geometric and analytical properties. Moreover, in 

operator theory, the Salagean operator is utilized to define and explore other operators acting 

on spaces of analytic functions, contributing to a deeper understanding of these function 

spaces’ structural characteristics. By harnessing the Salagean operator, researchers can 

systematically investigate various facets of analytic functions, leading to novel insights and 

advancements in complex analysis. 

 

4. Conclusion 

By strategically employing the Salagean operator, we achieve a precise determination of the 

Bohr-type radius. Our thorough analysis not only outlines the method for accurately 

calculating this radius but also emphasizes the importance of integrating various lemmas into 

this approach. This multifaceted strategy enhances our comprehension and establishes a 

robust framework for investigating the Bohr-type radius with enhanced accuracy and depth. 
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