Commutativity Results for Rings with Potent K-Engel Elements

Dr. Madana Mohana Reddy.Y

K.V.Subba Reddy College Of Engineering, Kurnool-518001, Mail: madanamohanareddy5@gmail.com

Abstract:-

Let R be a ring. First we show that if : (P) For each a, b \in R there exist positive integers n = n(a, b) > 1, m = m(a, b) ≥ 1 and k = k(a, b) ≥ 1, such that [amb, a]n = [amb, a]k, and Nr(R) = 0, then R is commutative. Furthermore, we prove that any s-unital ring satisfying(P)must have a nil commutator ideal. Finally we show that an s-unital ring R is commutative if: (P') For each a,b ∈ R there exists positive integer n = n(a,b) > 1 such that (b-br)([xmy, a]-[amb, a]n) = 0, where r > 1 and m ≥ 1 are fixed positive integers, and (Ir) the commutator ideal of R is r!-torsion free.

Keywords: Ring, commutator ideal, s-unital, nil radical, Jacobson radical, potent, k-engel, semi-simple, nilpotent, commutative

1. Introduction

For an associative ring R, let J(R), N (R) stand for the Jacobson radical, the nil radical of R respectively. Also, let Nr(R) denote the sum of all nil right ideals of R. It is wellknown that Nr(R) is thus a two-sided ideal of R. Also C(R) denote the center of

any $a \in R$, is said to be a potent element if a = an for some integern > 1.If $(ai)i \in N$ is a sequence of elements of R and k is a positive integer, we define $[a1, a2, \ldots, ak+1]$ inductively as follows: [a1, a2] = a1a2 - a2a1

[a1, ..., ak, ak+1] = [[a1, ..., ak], ak+1)If a1 = a and a2 = ... = ak+1 = b, we write [a1, ..., ak+1] = [a, b]k, and [a, b]k is called an k-engel element.

A ring R is called left (resp. right) s-unital if for each $a \in R$, $a \in Ra \cap aR$. If R is an s-unital ring, then for any finite subset F of R, there exists an element $e \in R$ such that ea = xa = a for all $a \in F$ (see [5]).

Well-known results due to Jacobson and Herstein assert that a ring R with any of the following conditions must be commutative.

(i) For every $a \in R$, there exists an integer n = n(a) > 1 such that a = a, and (ii) For every $a, b \in R$, there exists an integer n = n(a,b) > 1 such that [a, b]n = [a, b]. Recently it has been proved that [6], if for each $a,b \in R$ there exists an integer n = n(a,b) > 1 such that (ab)n = (ab), then R is commutative. Also, Giamburno, Goncalves and Mandel, in [2, Theorem 2.7] have shown that if Nr(R) = 0, then R is commutative if for every $a,b \in R$, there exist integers n = n(a,b) > 1, $m = m(a,b) \ge 1$ and $k = k(a,b) \ge 1$ such that [a, bm]n = [a, bm]k.

In this paper, we extend the results of [6] by showing that if R is a left s-unital ring and for every $a,b \in R$, there exist integers n = n(a,b) > 1 and $m = m(a,b) \ge 1$ such that (am[b, a])n = am[b,a], then R is commutative.

In order to prove and be able to generalize this result, in Section 1, we investigate the commutativity behavior of the rings satisfying the following condition:

```
(P) For each a,b \in R there exist positive integers n = n(a,b) > 1, m(a,b) \ge 1 and k = k(a,b) \ge 1, such that [amb, a]n = [amb, a]k,
```

and we get some modification of the results of [2].

Finally in Section 2, combining the Jacobson's condition with a spe- cial case of condition (P), we prove that:

Any left s-unital ring is commutative if for fixed integers r > 1 and $m \ge 1$ we have

(P') For each
$$a,b \in R$$
 there exists a positive integer $n = n(a,b) > 1$ such that $(b - br)([amb, a] - [amb, a]n) = 0$;

and

(Ir) The commutator ideal of R is r!-torsion free.

2. Rings with Potent k-Engel Elements

In preparation for the proof of the main theorems we start with following lemmas. Lemma 2 is obvious and the proof of Lemma 3 can be found in [5].

Lemma 1. Let R be a division ring with the center C. If for each $a,b \in R$ there exist positive integers $m = m(a,b) \ge 1$ and $k = k(a,b) \ge 1$ such that [amb, a]k = 0, then R is commutative.

Proof. Since [amb, a]k = am[b, a]k, this lemma is an immediate consequence of [4].

Lemma 2. Let $b \in R$ and $a \in J(R)$. If ba = b, then b = 0.

Lemma 3. Let R be a left s-unital ring. If for e, $a,b \in R$, ea = a, eb = b and amb = (a + e)mb = 0, then b = 0.

Theorem 1. Let R be a division ring with center C which satisfies condition (P). Then R is commutative.

Proof. Suppose that R is not commutative, and let $a \in R - C$. Then by Lemma 1 there exists $b \in R - C$ such that, for all integers $m \ge 1$ and $k \ge 1$, [amb, a]k+1 /= 0, i.e., [amb, a]k

 $/\in$ C. But by (P), there exist integers m0, k0, n + 1 such that [am0 b, a]n+1 = [am0 b, a]k. Therefore,

k0 0

u = [am0 b, a]k0 is an n-th root of unity which is not in C.

Let r be a positive integer relatively prime to n. By the Noether- Skolem theorem there exists $b \in R*$ such that, the inner automorphism

 $\psi(u) = bub-1$ restricted to C(u) gives $\psi : C(u) \to C(u)$ such that $\psi(u) = ur$. Since dimC $C(u) < \infty$, there exists a positive integer l such that $\psi l = 1$. Now let P be the prime field of C. As it is shown in theorem in [2] we can assume that R is finite-dimensional over C.

We claim that P is finite and bl is algebraic over P.

Suppose not, we can construct a nontrivial nonarchimedean valua- tion on C. Assuming $R \to Mt(C)$, where Mt(C) is the full $t \times t$ matrix ring over C. We can define the norm

```
||A|| = \max |aij|, for A = aij \in Mt(C)
i,j
```

whose restriction to C is | |.

Again, as we started the proof, assume that a,b are element of R such that, for every $m \ge 1$ and $k \ge 1$, $[amb, a]k \ne C$. Now we can choose $\lambda \in C$ such that $|\lambda| \|a\| < 1$ and $|\lambda| \|b\| \|a\| < 1$. Let us set $a = \lambda a$. But $\|ba\| \le \|b\| \|xa\| = \|b\| \|\lambda a < 1$. Therefore by an easy computation we have $\|[b,a]\| < 1$. (1.1)

Hence, if k > 1, $m \ge 1$ and n + 1 > 1 are integers depending on x^- , y such that [xamb, xa]n = 1_k in view of (1.1) we have

 $1 > \|xa\|m\|[b, xa]k\| = \|[xamb, xa]k\| = 1$.

This contradiction shows that R is a finite noncommutative division ring, which is contradiction.

Now we prove the main theorem for semisimple rings and prime rings with charR = p and N(R) = 0.

Theorem 2. Let R be a ring satisfying (P). Then R is commutative, under any of the following conditions:

(i) R is semisimple. (ii) R is prime, charR = p > 0 and N (R) = 0.

Proof. Suppose that R satisfies condition (i). In this case either $R \approx D$, for some division ring D-in which case would deduce that R is commutative by use of Theorem 1, or for some k > 1, Dk is a ho- momorphic image of a subring of R. We wish to show that this latter possibility does not arise. If it did, Dk as a homomorphic image of a

subring of R would inherit the property (P). This is seen to be patently false by considering the elements a = E11 and y = E12, for these satisfy

[amb, a] $k = \pm E12 = \pm y$, for any $m \ge 1$ and $k \ge 1$.

Thus, if R is semisimple it must be commutative.

Now let R satisfies condition (ii). Let x, y \in R, then by (P) there exist positive integers k = $k(a,b) \ge 1$, $m(a,b) \ge 1$ and n = n(a,b) > 1 such that

[amb, a]k = [amb, a]n

=[amb, a]k[amb, a]n-1.

But part (i) shows that R/J(R) is commutative, hence $[\stackrel{k}{a}mb, a]n-1 \in J(R)$ and therefore by Lemma 2, [amb, a]k = 0. Since charR = p > 0 this implies that, for each a, b, r \in R there are positive integers

Theorem 3. Let R be a ring satisfying condition (P). If Nr(R) = 0 then R is commutative.

Proof. We claim that R has no nonzero nilpotent elements. Let $a \in R$ be such that a2 = 0. Let $x \in R$, $k = k(ax, a) \ge 1$, $m = m(ax, a) \ge 1$ and n = n(ax, a) > 1 be such that

[(ax)ma, ax]n = [(ax)ma, ax]k.

we have

$$(-1)^k (ax)^{m+k} a = [(ax)^m a, ax]_k$$

= $[(ax)^m a, ax]^n$

= (-1)kn((ax)m+ka)n

=0,

i.e. (-1)k(ax)k+m+1=0.

Therefore aR is a nil right ideal and since Nr(R) = 0, it follows that

a = 0. Therefore R has no nilpotent elements, as desired.

In view of [4, Theorem 12.7], and the fact that condition (P) holds for homomorphic images, we may assume that R is a domain. If J(R)=0 or charR = p>0, then the commutativity of R follows from Theorem

2, so we may assume that J(R) 0 and charR = 0. Repeating the argument of Theorem 2 (ii) easily shows that for each $a,b \in R$, am[b,a]k = [amb, a]k = 0

for some $m \ge 1$ and $k \ge 1$, which implies that [b,a]k = 0, since R is a domain. Therefore R is a commutative ring, by [1, Theorem 3].

We can now prove the main result of this section as follows:

Theorem 4. Let R be a left s-unital ring, which satisfies condition (P), then the commutator ideal of R is nil.

Proof. Repeating the argument of Theorem 2 (ii) shows that for each $a,b \in R$, am[b, a]k = [amb, a]k = 0 for some $m \ge 1$ and $k \ge 1$. Now replacing a by a + e, where $e \in R$ is such that ea = ae = a and eb = be = b, we conclude that

(a + e)m[b, a]k = 0 = am[b, a]k

and thus [b,a]k = 0 by Lemma 3. Therefore the commutator ideal of R is nil, by [1].

Corollary 1. Let R be a left s-unital ring, and for each $a,b \in R$ there exist $m = m(a,b) \ge 1$ and n = n(a,b) > 1 such that (am[b, a])n = am[b,a], then R is commutative.

Proof. By letting k = 1 in (P), the proof of Theorem 4 implies that R is commutative.

3. Commutativtiy Theorems and Conclusive remarks

Theorem 5. Let R be a division ring. If for each $a,b \in R$ there exist positive integers r = r(a,b) > 1, $n = n(a,b) \ge 1$, $m = m(a,b) \ge 1$ and $k = k(a,b) \ge 1$ such that

(b - br)([amb, a]k - [amb, a]n) = 0. (2.1) Then R is commutative.

Proof. By Theorem 1, it is enough to show that if there exist $a,b \in R$ such that

[amb, a] [amb, a]n for all $n \ge 1$, (2.2)

Theorem 6. Let R be an s-unital ring and r > 1 and $m \ge 1$ be fixed positive integers. If R satisfies condition (P') and (Ir), then R is commutative.

Proof. We prove Theorem 6, by dividing its proof into several steps.

Step 1. Clearly Theorem 6 is true for any division ring (by Theorem 5).

Step 2. Theorem 6 is true for any semisimple ring.

As in the proof of Theorem 2 (i) choosing a = E22 and y = E21, we see that (b - br)([amb, a] - [amb, a]n) = -E12 /= 0,

Step 3. Any ring R satisfying the hypotheses of Theorem 6 is com- mutative. Let $a,b \in R$, then by (P') we have

(b-br)[amb, a] = (b-br)[amb, a]n

= (b - br)[amb, a][amb, a]n-1.

In view of Step 2, [amb, a] $n-1 \in J(R)$, therefore

(b - br)[amb,a] = 0, (2.4)

by Lemma 2. Since R is an s- unital ring we can replace b by b+e in (2.4), where $e \in R$, ea = ae = a, ye = eb = b. As in the proof of [7, Theorem 3], we can deduce that r![amb, a] = 0 and therefore [amb, a] = 0 by (Ir).

Now replacing a by a+ e we conclude that

(a + e)m[b,a] = 0 = am[b,a]and thus [b,a] = 0 by Lemma 3. Therefore R is commutative, as desired

References

1. Chen Lian Chuang, On a conjecture by Herstein, Journal of Alge- bra, 126 (1989), 119-138.

- 2. A. Giambruno, J.Z. Goncalves, A. Mandel, Rings with algebraic n-engel elements, Communication in Algebra, 22, No. 5 (1994), 1685-1701.
- 3. I.N. Herstein, Commutativity theorem, Journal of Algebra, 38 (1979), 112-118.
- 4. T.Y. Lam, A First Course in Noncommutative Rings, Springer-Verlag (1990).
- 5. E. Psomopolous, H. Tominaga, A. Yaqub, Some commutativity the- orems for n-torsion free rings, Math. J. Okayama Univ., 23 (1981), 37-391.
- 6. M.O. Seaciod, D. Machale, Two elementary generalization of boolean ring, American Mathematical Monthly, 93 (1986), 121-122.
- 7. A.H. Yamini, Sh. Sahebi, Rings satisfying the generalized polynomial identity (x xn)([x, y]k [x, y]m) = 0, Riv. Mat. Univ. Parma, 6, No. 2 (1989), 11-18.

k