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Abstract 

This paper explores the advancements and challenges in State of Charge (SOC) estimation 

techniques for lithium-ion batteries, particularly within the context of electric vehicles (EVs) 

and renewable energy systems. As the global demand for sustainable energy solutions grows, 

accurate SOC estimation becomes essential for optimizing battery performance, enhancing 

safety, and extending battery life. The paper categorizes various SOC estimation methods into 

three primary approaches: direct measurement techniques, model-based methods, and data-

driven algorithms. Direct measurement techniques, such as Coulomb counting and Open 

Circuit Voltage (OCV), are straightforward but often lack precision under dynamic conditions. 

Model-based methods, including Equivalent Circuit Models (ECM) and electrochemical 

models, provide detailed insights into battery behavior but can be computationally intensive. 

In contrast, data-driven approaches utilizing machine learning algorithms exhibit promising 

adaptability and accuracy, albeit relying heavily on large datasets. Despite these advancements, 

several limitations persist. Current SOC estimation methods are hindered by their dependence 

on accurate battery models and quality data, which can degrade over time. Furthermore, hybrid 
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methods, which combine strengths from various techniques, introduce complexity and demand 

substantial computational resources. The integration of SOC estimation techniques in EV 

applications poses additional challenges due to varying operational conditions, necessitating 

efficient processing of real-time data from multiple sensors. Emerging trends in Battery 

Management Systems (BMS) are also examined, highlighting the role of AI and machine 

learning in improving real-time SOC computations and predictive capabilities. Cloud-based 

BMS systems are identified as a significant development for remote monitoring and control, 

enhancing the overall reliability of battery systems. This paper aims to provide a 

comprehensive overview of SOC estimation techniques, identify ongoing challenges, and 

suggest future research directions to enhance the effectiveness of battery management 

strategies in the evolving landscape of energy systems. 

Key-words: State of Charge, State of Health, Battery Management, Electric Vehicles, Lithium-

ion Batteries. 

1. Introduction 

Gasoline and diesel, along with other fossil fuels, are extensively used in the global markets 

and that have contributed most to environmental challenges and climate issues. The use of these 

fossil fuels in automobiles, industries and for energy production leads to large emission of 

Carbon dioxide (CO2) and other greenhouse gases that are crucial causes of global warming. 

This warming causes climate change with serious implications for ecosystem, climatic changes 

and prudent health. For instance, in 2024, global oil demand was 1.6%, which led to 1.4% of 

CO2 emissions: relative to burning of fossil fuels demanding, a shift towards sustainable 

energy [1]. The pollution resulting from the use of the fossil fuels shows how timely efficiency 

is needed to address the problem of climatic change and move away from the use of the non-

renewable sources of energy. 

To these factors, much attention has been focused on trying to come up with and implement 

the use of renewable sources of energy. Technologies like solar energy, wind energy, and 

energy from water, are now being established as the solutions to the depletion of fossil energy 

and emission of greenhouse gases. This shift has not only helped in the reduction of the carbon 

footprints but has also ensured promotion of new related technologies and structures [2]. Some 

of the most remarkable novelties include electric vehicles and demand-side management based 

on electricity in its diversified usage rather than focusing merely on the internal combustion 

engines. This transition proves essential for the promotion of sustainable solutions as well as 

for managing global consequences connected with traditional approaches to energy 

organization. 
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Battery storage, batteries themselves, also remain critical in this change, as batteries are needed 

for electric vehicles, renewable energy systems and any other application that involves energy 

storage. Recent advancements in various fields highlight the importance of innovative 

approaches to enhance system reliability and sustainability. Rehman et al. (2024) discuss AI-

driven predictive maintenance for energy storage systems, emphasizing improvements in 

lifespan and reliability. Additionally, research on satellite selection algorithms aims to optimize 

receiver processing efficiency. Meanwhile, studies on food retailers' adoption of green supply 

chain practices in the U.S. reflect a growing commitment to sustainability in retail operations. 

These insights pave the way for further exploration in SOC estimation techniques [3], [4], [5]. 

Practical management of batteries is essential to ascertain improved and extended performance. 

Both SOC and SOH play a vital role in defining how the battery should perform, how safe it is 

and how efficient it is going to be. SOC stands for state of charge which conveys the amount 

of the capacity of a battery that is left while SOH is an all-encompassing parameter that conveys 

the battery health of a battery. Optimal control of these levels is critical to achieving the 

required power output together with durability of battery supported systems [6]. 

SOC estimation is one of the critical parameters of Battery Management Systems (BMS), 

which control charge-discharge cycles, energy consumption, and battery lifetime. SOC is an 

estimation of the amount of charge currently in a battery which is calculated by several 

parameters including cell voltage current and temperature. Many SOC estimation methods 

have been designed to address the requirements of specific battery types and uses. In one way 

or the other, these techniques can be said to be categorized into direct measurement techniques, 

model-based techniques and data driven techniques. 

The Coulomb Counting method [7], which involves a direct determination of SOC, and the 

Open Circuit Voltage (OCV) method [8] are two effective methods of SOC estimation. 

Coulomb Counting measures the cumulative charge from the battery while the OCV method 

infers SOC using voltage readings when the battery is static. However, these basic approaches 

often tend to overlook factors like the battery aging, or temperature, that are likely to skew the 

results. More detailed information can be obtained by model-based methods, like the 

Equivalent Circuit Models (ECM) [9] or Electrochemical Models [10] which calculate battery 

behavior according to mathematical models. These kinds of models can capture a large 

spectrum of internal and external influences of battery performance but can also be resource 

consuming. 

Over the past decade, the usage of data-based approaches has proven to be potential to estimate 

SOC stocks. These are methods that employ the use of the machine learning algorithms, neural 

networks and other computational methods [11], [12], [13], [14]. As these approaches use past 

and current data to update SOC, they can also develop models that accurately predict SOC. The 
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data driven methods are general and can accommodate interactions between battery 

parameters. But they need extensive data for learning and can be affected by changes in 

working environment. 

As much as research has advanced in SOC estimation, strengths of each the presented method 

come with their weakness and none of the methods on its own can be used. The techniques can 

be described as direct measurement methods, although invariable conditions may be inaccurate 

at certain instances. Despite performing more accurate simulations, model-based techniques 

can also be operationally expensive. Model-based approaches are quite accurate, as they 

depend on large amounts of Battery data; however, the methods are sensitive to changes in 

battery operating conditions. The type of battery and their use continues to change which means 

that such methods require constant validation to determine their efficiency or otherwise in 

estimating SOC. Such reviews are useful to provide innovations, to assess performances and 

to indicate further research avenues [15]. 

Consequently, this paper presents a review of SOC estimation techniques and takes a critical 

look at the methods used in quantitative evaluation and the directions that remain unexplored. 

The review covers all the different categories of methods some of that which ranges from 

simple direct measurement and estimation methods and extends to sophisticated model and 

data analytics-based methods. In so doing, this paper proposes an assessment of the advantages 

and the limitations of each of the mentioned methods to enable the author to provide a 

comprehensive review of the status prevalent in SOC estimation as well as the impact of such 

a platform on the battery management systems. 

The objectives of this paper are as follows: 

• Review and categorize various SOC estimation methods, including direct 

measurement, model-based, and data-driven techniques. 

• Analyze the strengths and weaknesses of each SOC estimation method in terms of 

accuracy, computational complexity, and real time capability. 

• Identify the challenges and limitations associated with existing SOC estimation 

techniques, focusing on areas such as computational demand, data requirements, and 

adaptability. 

• Suggest future research directions for SOC estimation methods, addressing gaps in the 

current literature and offering recommendations for improving battery management 

systems. 
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The outline of the paper is as follows: 

• Section 2: Outlines the methodology for selecting relevant papers, including the 

literature search strategy and selection criteria. 

• Section 3: Provides an overview of lithium-ion batteries, covering their basic principles 

and key characteristics, which made the primary technology for majority of the ongoing 

SOC estimation research efforts. 

• Section 4: Explores SOC estimation techniques, categorizing them based on their 

methodologies and applications. 

• Section 5: Presents a comparative analysis of these techniques, assessing their 

accuracy, computational complexity, and suitability for real time applications. 

• Section 6: Concludes this review paper by discussing the challenges and future 

directions in SOC estimation. 

Overall, it is our hope that this review is useful to battery management and SOC estimation 

researchers and practitioners alike to benefit from an evaluation of the state-of-the-art and 

remain motivated for further advancements in the future. 

2. Methodology for Paper Selection 

A systematic review of the literature was carried out, with purposive criteria from several 

academic databases being the defining criterion for relevance. Such a theoretical context was 

used for this review by selecting only full-text papers from leading databases such as Scopus®, 

IEEE Xplore®, ScienceDirect®, MDPI®, and others.  

The search was performed on 2nd June 2024 to capture the latest changes in the field of study 

in question. The search used a set of keywords such as “estimation”,” state of charge”, “state 

of health”, “lithium-ion battery”, “electric vehicle”, “battery management system”, “energy 

storage” and “machine learning”. These terms were selected wide enough to cover a range of 

investigations most related to SOC estimation for LIB for electric vehicles and energy storage 

application. Specifically, the keywords were chosen in a way that they encompass the basic 

heuristic approaches to down payment estimation alongside the latest methods relying on AI 

and ML. 

To achieve higher relevance of the articles chosen, the search was supplemented with keywords 

‘2014-Present’ as the search filter. Such timescale was chosen as a focus on the most recent 

trends and innovations, as achieved noticeable progress in SOC estimation within the last 

decade. The reviewed articles were then scrutinized in order to determine relevance to the topic 

of the evaluation of SOC estimation methods, sparing the final review of only the most 

appropriate articles. 
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This way, the integration of recent articles provided the evaluations of SOC estimation trends 

in recent years including the increasing use of machine learning and AI in BMS. 

Predominantly, this trend represents a transition toward increasingly better and more efficient 

estimation techniques, which are crucial to enhancing both the performance and durability of 

Li–ion batteries in contemporary applications like electric vehicles and renewable energy 

storage devices. It is noteworthy that SOC estimation has emerged as an important subproblem 

encompassed by the challenges of sustainable energy systems and battery management 

technologies. 

3. Li-ion Batteries  

3.1 Background  

Lithium-ion (Li-ion) batteries are a type of rechargeable batteries that works fundamentally in 

the basis of transferring Lithium ions [16]. These systems have come into use in recent decades 

because of their high energy density, light weight and low self-discharge rates. A common part 

of Li-ion battery is in the structure that involves cathode or positive terminal, the unfavorable 

anode, electrolyte, and the separator. Perhaps the most utilized cathode materials are LCO 

(Lithium Cobalt Oxide), LFP (Lithium Iron Phosphate) and NMC (Lithium Nickel Manganese 

Cobalt); for the anode, graphite is typically used [17]. 

 

(a)                                           (b) 

Figure 1 (a): Charging and (b): Discharging of Li-ion Batteries [18] 

The operation of a Li-ion battery is based on the movement of lithium ions between the cathode 

and anode during charging and discharging. When the battery is charged, lithium ions move 

from the cathode to the anode through the electrolyte, where they are intercalated into the anode 

material. Conversely, during discharge, the lithium ions move back to the cathode, releasing 
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electrical energy in the process. The chemical reactions occurring at each electrode can be 

represented by Equations (1) and (2). 

1. Charging Reaction (at the anode): 

𝐿𝑖+ +  𝑒− +  𝐶 ↔  𝐿𝑖𝐶6        (𝟏) 

2. Discharging Reaction (at the cathode): 

𝐿𝑖𝐶6 + 𝐶𝑜𝑂2 → 𝐿𝑖𝐶𝑜𝑂2 +  𝐶 + 𝑒−        (𝟐) 

3.2 Characteristics of Lithium Ion Batteries   

This charge-discharge cycle is reversible, allowing the battery to be reused multiple times. 

Several characteristics contribute to the popularity of Li-ion batteries in various applications, 

especially in consumer electronics and electric vehicles, as shown in Table 1: 

Table 1: Comparison of Characteristics of Popular Batteries [17], [19] 

Characteristic 
Lithium-Ion 

(Li-ion) 

Nickel-Cadmium 

(NiCd) 

Nickel-Metal 

Hydride 

(NiMH) 

Lead-Acid 

Energy Density 

High 

(150-250 

Wh/kg) 

Moderate  

(40-60 Wh/kg) 

Moderate  

(60-120 Wh/kg) 

Low  

(30-50 Wh/kg) 

Cycle Life 

Long  

(500-1500 

cycles) 

Moderate (1000 

cycles) 

Moderate  

(300-500 cycles) 

Short  

(200-300 cycles) 

Self-Discharge 

Rate 

Low  

(1-5% per 

month) 

High  

(20-30% per 

month) 

Moderate  

(15-20% per 

month) 

High  

(5-20% per 

month) 

Charging Time Fast (1-3 hours) 
Moderate  

(2-4 hours) 

Moderate  

(2-6 hours) 

Slow  

(6-12 hours) 

Temperature 

Range 

Wide  

(−20°C to 60°C) 

Limited  

(−20°C to 50°C) 

Moderate  

(0°C to 45°C) 

Moderate  

(−20°C to 50°C) 

Environmental 

Impact 
Moderate High  Moderate Low  
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Applications 

EVs, 

electronics, 

renewable 

energy 

Power tools, 

emergency lighting 

Hybrid vehicles, 

electronics 

Automotive, 

UPS, backup 

power 

Voltage (per cell) 3.2-4.2 V  1.2 V 1.2 V  2 V 

Cost 
Moderate to 

high 
Low Moderate Low 

Memory Effect None Yes Minimal None 

Safety 
Risk of thermal 

runaway 

Safe, but hazardous 

materials 
Generally safe 

Safe, but heavy 

and bulky 

From Table 1, we can surmise that the Li-ion batteries have the following advantages over 

competing electricity storing technologies:  

1. High Energy Density: Li-ion batteries provide higher energy density than the other 

rechargeable battery types such as nickel-cadmium or lead-acid batteries. This implies 

that the next generation batteries will be able to deliver more energy in a compact and 

lightweight batter, suitable for mobility as well as electric vehicles. 

2. Long Cycle Life: With proper management, Li-ion batteries can achieve several 

hundred to over a thousand charge-discharge cycles before significant capacity 

degradation occurs. This long cycle life makes them economically viable over extended 

periods. 

3. Low Self-Discharge Rate: Li-ion batteries also have a very low self-discharge rate, in 

a range of 1-5 % of the battery capacity per month. This characteristic makes certain 

that stored energy is available for longer duration at a given time when the battery is 

inactive. 

4. Rapid Charging: The problems of Li-ion batteries include low performance, capability 

to charge the batteries at higher rates causing quick recharging times than other 

chemistries. This feature proves especially useful in use case applications like electric 

vehicles, which require as less downtime as possible. 

5. Environmental Impact: However, there is an environmental problem with Li-ion 

batteries being related to mining lithium and other materials necessary for production, 

but in most cases, systems based on lithium-ion batteries are less environmentally 

unfriendly than systems based on lead-acid batteries, especially in terms of recycling 

and total emissions during the life cycle of the battery. 

6. Wide Application Range: Owing to the flexibility, Li-ion batteries can be used in all 

forms of applications, including mobile devices, notebooks, and electric cars. This 
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versatility critically points to the need to have accurate SOC estimation to suit the 

functionality of the SOC in different applications. 

7. Integration with Advanced Technologies: Battery Management Systems or BMS has 

evolved as a direct counterpart to the Li-ion technology. These systems apply complex 

methods of real-time tracking and management of SOC, which allows for the 

improvement of battery performance qualities and safety. 

8. High Demand for Electric Vehicles: The usage of electric cars has also led to the 

quest for realistic battery management system solutions. In addressing the issues of 

energy management, range estimation, and satisfaction of the user, the SOC estimation 

is a central point around which all these considerations are formed. Up-to-date 

knowledge on SOC enables the manufacturer and the user to appraise the battery utility 

and enhance the driving experience, respectively. 

High energy density, long cycle life, fast charging capabilities and low self-discharge rates 

that characterize Li-ion batteries make it the most suitable battery for SOC estimation 

techniques. The ever-expanding use of Electric vehicles and increased advocacy for clean 

electrification underlines the need for proper SOC determination to optimize battery 

performance and customers’ satisfaction. By continuing to study and refine the techniques 

used in this field, the authors’ methods will provide an indispensable contribution to the 

future of batteries and their uses. 

4. SOC Estimation of Lithium-Ion Batteries  

4.1 Overview of SOC 

One of the important indices when using the rechargeable Battery systems especially lithium-

ion battery is the State of Charge [20]. SOC stands for State of Charge which shows the present 

ability of a battery out of its total ability and is normally in percentages. The research 

performance can be defined mathematically as stated in equation 3 below. 

𝑆𝑂𝐶 =
𝑄(𝑡)

𝑄𝑚𝑎𝑥
× 100%        (3) 

Where 𝑄(𝑡) is the remaining charge at time 𝑡 and 𝑄𝑚𝑎𝑥 is the maximum capacity of the battery. 

Accurate SOC estimation is essential for optimizing battery performance, ensuring safety, and 

prolonging battery life. 
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Figure 2: State of Charge Cycle of a Cell [21] 

Hence, in some applications like EVs, estimation of SOC is crucial in determining the range of 

travel, controlling the energy consumption, and, most importantly, in providing information to 

the users at any one time. Poor SOC estimation can lead to unexpected battery depletion, 

potentially causing range anxiety among users, making it a significant area of research in 

battery management systems (BMS). 

4.2 Classifications of SOC Estimation Techniques 

Depending on the classification criteria, there are several methods of SOC estimation [22] used 

parameters, the nature of the approach, and the process flow. Every one of these categories has 

its own pros and cons depending on the situation, problem’s complexity or accuracy level 

needed. It is also important for an analyst to comprehend the type and nature of these techniques 

for the purpose of choosing an appropriate technique for a particular application that may be 

EVs, portable electronics or any other. 

4.2.1 Parameter Used in Technique 

SOC estimation techniques can be categorized based on the dominating parameter used in 

estimating the battery SOC, including voltage, current, temperature and internal resistances 

[23]. These parameters are usually assessed from outside the electrochemical cell even though 

some methods use internal chemical or electrochemical measurements as well. Other methods 

that are based on voltage include the Open Circuit Voltage (OCV) technique in which SOC is 

deduced with the help of terminal voltage-SOC characteristics. This relationship is different 

and exists depending on the kind of battery chemistry involved, which means that the 

characteristic curves that show how voltage varies with SOC under different conditions must 

be constructed. 



 
Received: 06-06-2024         Revised: 15-07-2024 Accepted: 28-08-2024 

 

 1016 Volume 48 Issue 3 (September 2024) 

https://powertechjournal.com 

 

On the other hand, current-based techniques, like Coulomb counting, use the integration of 

current over time to estimate the SOC. Since the amount of charge entering or leaving the 

battery directly affects SOC, this method is relatively simple but suffers from error 

accumulation over time. Temperature-based techniques are less common, though temperature 

can influence both voltage and resistance, thereby indirectly affecting SOC estimates. Internal 

resistance is another popular method for measuring battery SOC as it can be used in conjunction 

with model-based techniques, where the dynamic behavior of the battery's impedance provides 

a deeper understanding of the battery's state. 

The advantage of classifying SOC techniques by the parameters they use is the flexibility it 

offers in practical applications. Depending on the available sensors and the computational 

capacity of the Battery Management System (BMS), different combinations of parameters can 

be employed. However, the challenge lies in the complexity of accounting for all variables, 

especially when external conditions, such as temperature, vary significantly during operation. 

4.2.2 Based on Nature of Technique 

SOC estimation techniques can also be classified by their inherent nature, falling into three 

broad categories [24]: infrared diagnostics, direct measurements, analytical estimations, and 

data analysis methods. These four are Coulomb counting and OCV, which entail physical 

attributes of the battery such as current or voltage then finding their respective value of SOC. 

Though these techniques are relatively easier to deploy they can be less accurate particularly 

in dynamic operating environment. 

Nominal models include Equivalent Circuit Models (ECMs) and electrochemical models that 

transform the physical or electrochemical processes of the battery into mathematical models. 

These models can be very precise if the system parameters are accurately calibrated, but the 

detail of battery internal mechanisms is needed. Since the physical models require a lot of 

assumptions, machine learning and artificial neural networks don’t rely on these models as they 

are based on historical data. These methods may perform well for quantitative and even 

nonlinear relationships between measurable parameters and SOC but for this very reason, their 

true power and accuracy is highly dependent on the volumes of available training datasets. 

Each of these categories offers trade-offs in terms of computational complexity, 

implementation cost, and accuracy. Direct measurement techniques are quick and easy to 

deploy, but they often need to be complemented with model-based or data-driven approaches 

to compensate for their inherent limitations in real-time, dynamic environments. 
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4.2.3 Based on Process Flow (Open Loop vs. Closed Loop) 

As with other SOC estimation procedures, techniques can also be categorized by their open-

loop or closed-loop functionality [25]. In Coulomb counting, for instance, the algorithm is an 

open-loop technique since the measurements cannot be corrected using feedback. In these 

methods, the SOC is estimated by summing up the current in and out of the battery, thus giving 

a continuous record of the SOC. However small errors in current measurement may, with the 

passage of time, cause drift from the actual SOC value. 

Closed-loop techniques, in contrast, rely on feedback system that constantly updates the SOC 

estimate depending on the real value and estimate one. Such approaches include Kalman 

filtering and other observer-based methods have been categorized under this. The main 

advantage of closed-loop techniques is that it can take corrective action in response to error 

and uncertainty in the system. For example, if the noise and model error are considered, such 

as through a Kalman filter, the efficiency of SOC estimate will enhance through time. 

Nonetheless, the need for special computational methods for the implementation of a closed-

loop is often more complicated than in the open-loop case, as well as the design effort needed 

to incorporate the former. 

4.3 Review of Techniques 

4.3.1 Direct Measurement Methods 

The Two Direct measurement methods include Amp-hour displacement method, which 

involves determination of the current integrated through its path and the voltage integration 

method where the SOC of the battery is estimated through the voltage across or through the 

battery. These methods are very easy to apply, but in most cases, they may not be accurate 

enough for use in for instance a complex or dynamic environment. From the direct 

measurement approaches, Coulomb counting and the Open Circuit Voltage (OCV) method are 

widely used. 

4.3.1.1 Coulomb Counting 

Coulomb counting is another explicit type of SOC estimation also referred to as charge 

counting due to their basic approach to estimation. The technique involves summing the current 

proactively or runoff the battery to get the overall charge that has been used or stored [26]. The 

basic principle can be expressed by the following equation: 
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𝑆𝑂𝐶(𝑡1) = 𝑆𝑂𝐶(𝑡0) ±
1

𝐶𝑛
∫ 𝐼(𝑡)

𝑡1

𝑡0

𝑑𝑡                 (4) 

Where 𝐶𝑛 is the nominal battery capacity, 𝐼(𝑡) is the instantaneous current, and 𝑆𝑂𝐶(𝑡0) is the 

initial SOC. This method involves determination of SOC at the start of battery operation and 

further assumes that the nominal capacity does not vary with time. However, in real world 

conditions battery capacity decreases as result of its usage, thus without amendments, there 

will be errors. 

 

Figure 3: Typical Graph of SOC-Time Graph using Coulomb Counting 

Advantages: Coulomb counting is easy to calculate and can be easily embedded in real-time 

systems because of its simplicity. This yields continuous estimation of SOC and it is especially 

important in areas where current can be well quantities. Also, the method is effective when 

using battery under specific current condition like constant current charging or discharging. 

Limitations: The main disadvantage of Coulomb counting is that the calculation of the SOC 

increases with time cause of cumulative errors. Because they depend on current sampling 

and/or initial SOC estimation, various slight discrepancies, such as the inability to predict 

capacity loss, can significantly alter estimated SOC values. However, since Coulomb counting 

is not very accurate at determining the state of charge it is usually applied with other algorithms, 

such as Kalman filtering [27]. A second limitation is that Coulomb counting cannot consider 

self-discharge, that is charge loss in the absence of current. He added that it is not sufficient in 

long-term applications where the battery is on standby or dormant for a long time. 
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4.3.1.2 Open Circuit Voltage (OCV) Method 

The Open Circuit Voltage (OCV) method is another commonly used SOC estimation 

technique. In this method, the battery's terminal voltage is measured when it is in a fully relaxed 

state, meaning there is no load or charging current flowing through it. The SOC is then 

determined by correlating the measured voltage with an SOC-OCV characteristic curve, [5], 

which varies for different battery chemistries. The relationship between OCV and SOC can be 

expressed as: 

𝑆𝑂𝐶 = 𝐹(𝑂𝐶𝑉)           (5) 

Where 𝐹(𝑂𝐶𝑉) is the function or curve that defines the relationship between OCV and SOC 

for a particular battery. It gives a highly accurate reading when the battery is calmly charged 

or discharges but has a low chance of success when the battery is charging or discharging 

actively. The relaxation period may take several hours and thus the applicability of this method 

is in actual time scenarios very little. 

 

Figure 4: Typical OCV-SOC Graph showing how OCV Falls with Capacity Discharged  

Advantages: The OCV method is highly accurate under stable conditions, such as when the 

battery is at rest for an extended period. It is also a non-invasive technique, requiring no 

additional sensors beyond the voltage measurement. This makes it cost-effective and relatively 

easy to implement in systems where long periods of rest are available. 
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Limitations: The primary limitation of the OCV method is its dependency on the battery being 

in a relaxed state. In most real-world applications, such as electric vehicles, batteries are rarely 

idle for long enough to allow for accurate OCV measurements. Additionally, the OCV-SOC 

relationship is nonlinear, as shown in Figure 4, [28], especially at the extremes of SOC (near 

0% and 100%), making the method less accurate in those regions. Temperature variations also 

affect the OCV reading, requiring temperature compensation to improve accuracy. 

4.3.2 Model-Based Estimation Techniques 

Model-based estimation techniques involve constructing mathematical models that represent 

the physical and electrochemical processes inside the battery. These models are used to 

estimate SOC by solving equations that describe the battery's dynamic behavior. Two popular 

model-based approaches are Equivalent Circuit Models (ECMs) and electrochemical models. 

4.3.2.1 Equivalent Circuit Models (ECM) 

Equivalent Circuit Models (ECM) represent the battery as a combination of electrical 

components, such as resistors, capacitors, and voltage sources, which mimic the battery’s 

dynamic behavior. The simplest ECM is the Thevenin model [29], which consists of a voltage 

source representing the OCV, a series resistance accounting for internal resistance, and one or 

more RC networks modeling the battery's transient behavior.  

 

Figure 5: ECM Model of a Li-Ion Battery 

The Thevenin model can be described by the following equations: 

𝑉(𝑡) = 𝑂𝐶𝑉 − 𝐼(𝑡)𝑅𝑠 − 𝑉𝑅𝐶(𝑡)               (6) 
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Where, 𝑉(𝑡) is the terminal voltage, 𝑅𝑠 is the series resistance, 𝐼(𝑡) is the current, and 𝑉𝑅𝐶(𝑡) 

is the voltage across the RC network. The SOC can then be estimated by solving the model 

equations using measured current and voltage data, along with the known battery parameters. 

Advantages: As compared to other methods ECMs are computationally efficient and 

estimates, SOC under dynamic operating conditions with reasonable accuracy. They can be 

easily incorporated in real-time systems and are commonly utilized in EV applications as they 

are able to simulate both one-time and temporary cycles of the battery. ECMs also allow for 

the incorporation of temperature within the reaction kinetics which increases the performance 

of the bioreactors in environments of varying temperature. 

Limitations: While there are some drawbacks, the major drawback of the ECMs is that they 

are only as accurate as the parameters chosen, like resistance and capacitance. These 

parameters may be time variant because of aging, temperature, and other factors leading to 

deterioration of the model [30]. Another issue is that ECMs only represent the battery 

electrochemical behavior and therefore can be off in the reproduction of battery internal 

mechanisms. 

4.3.2.2 Electrochemical Models 

Electrochemical models are somewhat more accurate than the classical acoustic ones as being 

based on the description of the battery’s inner chemical processes such as lithium ions diffusion 

of within the electrodes and the electrolyte [31]. These parameterized models are derived from 

first principles, for example the Nernst equation [32] and Butler-Volmer equation [33] which 

characterize the electrochemical reactions that go on within the battery. 

One such electrochemical model is the DFN model developed by Doyle et al [34], which 

accounts for diffusion of lithium-ion concentration in the solid and liquid phase. The model 

entails finding the solution of coupled partial differential equations (PDEs), that describe the 

diffusion of Li ions and, the electrode processes. 

Advantages: Battery electrochemical models are accurate with high precision, which gives 

them an added advantage of interpreting the internal state of a battery including SOC, SOH 

and capacity fade. They are more exploitable in research & development applications that will 

require characterization of internal battery behavior. In the same respect, these models can also 

be applied in enhancing battery design with a view of enhancing performance in particular 

applications. 



 
Received: 06-06-2024         Revised: 15-07-2024 Accepted: 28-08-2024 

 

 1022 Volume 48 Issue 3 (September 2024) 

https://powertechjournal.com 

 

Limitations: However, this is the most complex drawback of all electrochemical models. Real-

time implementation of the real-time solution of the PDEs is very demanding and computer 

intensive. Also, with these models, there is an information requirement in terms of the battery 

material properties as well as the electrochemical characteristics, which may not be well known 

[35]. Consequently, electrochemical models are often combined with other models to maintain 

a good level of detail and at the same time, not demand excessive amounts of time and 

resources; for instance, with ECMs [36]. 

4.3.3 Data-Driven Estimation Techniques 

Data-Driven Estimation Techniques Despite technological advancement in evaluation and 

estimation techniques, the nature of actual situation constraint, timing factor, and a progressive 

risk pattern are some of the challenges which make data-driven estimation techniques 

applicable in a project. 

Consequently, data-driven SOC estimation schemes build the relationship between 

demonstrable parameters such as voltage, current and temperature, and SOC using historical 

data and machine learning methods [37]. Unlike some of the other techniques described above, 

these non-invasive techniques do not need a precise physical representation of the battery 

system and are therefore relatively versatile with respect to battery chemistry and conditions. 

4.3.3.1 Machine Learning Approaches 

This section focuses on the Machine Learning which can be used, classified and evaluated in 

the following subsections: 

Machine learning (ML) techniques entail use of algorithms that are fed with big data so as to 

identify dependency between input parameters and SOC, [38]. Methods, including decision 

trees [39], random forests [40], and gradient boosting [41], have been used in SOC estimation 

with reasonable accuracy. 

That is why, ML models are most effective in scenarios where the battery operates under 

condition changes, because it can describe relationships between variables in detail, [42]. 

Though these models are hit and correct, the accuracy of these models depends on the quality 

and diversification of the data used for training. Traditional ML techniques also need to be 

updated with fresh data after some time: to adjust for battery degradation or otherwise different 

operating conditions [43]. 
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Advantages: ML approaches offer high accuracy and adaptability without requiring detailed 

knowledge of the battery's internal processes. They can be used in various systems of different 

battery types and usages suitable for use in electric cars and renewable energy. Further, the 

conventional SOC can also be modelled while training the ML models for other battery 

conditions including SOH and state of power (SOP). 

Limitations: The major challenge of using ML approaches is that they greatly rely on large, 

high-quality data [43]. Depending on the richness of the training set, should it contain all 

possible running conditions, the model may decline in accuracy when the battery is in a new 

territory. In addition, the training of the models might be time consuming, and the models might 

possess high complexity in terms of computations, and thus, it may be necessary to apply 

hardware supports for real time implementation of the models. 

4.3.3.2 Neural Networks and Deep Learning 

Previous methodologies, such as, artificial neural networks (NNs), and the more recent DL 

techniques, have been preferred in SOC estimation because of their applicability to depict more 

intricate correlation systems of input parameters and SOC [44]. NNs have a number of 

connected layers which are called the nodes, or neurons that take the input and learn from it, 

thanks to backpropagation [45]. 

An extension to the neural network is made through deep learning where more layers and 

neuron are put in place to capture more features. CNNs and RNNs [46], [47] have been used 

for SOC estimation, especially where time series data needs to be incorporated such as in 

electric vehicles. 

Advantages: An NN and a DL model provide the best solution when it comes to finding 

outliers in large datasets. Because of this, the models can capture highly nonlinear dependence 

of SOC on input parameters, and thus are appropriate for application in complex and rapidly 

changing conditions. In corporately, DL models can directly learn the features without features 

extraction or engineering processes. 

Limitations: The main weakness of NNs and DL is that these models require vast amounts and 

large sets of data and quite extensive computation. Model training deeply is computationally 

resource consuming, and deploying models for real-time systems often may call for specialized 

architecture, namely GPUs [47]. Furthermore, NNs are often used as “black-box model”, [47], 

this means that they do not give any kind of information about physical mechanisms, which 

influence the battery’s behavior. 
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4.3.3.3 Fuzzy Logic 

The methods employing Fuzzy logic technique of SOC estimation incorporates linguistic 

variables to manage vagueness and imprecision of the SOC of the battery [48]. In fact, in this 

approach, SOC is defined as a combination of fuzzy rules that, with the help of the input 

parameters such as voltage, current and temperature describe SOC. These are global rules 

adopted by human beings who wish to estimate SOC given that the data collected is either 

inaccurate or noisy. 

Advantages: Fuzzy logic is most appropriate for use in zones that characterized battery 

functioning in highly unpredictable circumstances, including in marginal climates or when 

acquiring data from sensors. The method is also computationally efficient to implement and is 

therefore well suited for real time operation. In addition, fuzzy logic is also can be integrated 

with another paradigm of methods, for example, model-base methods for increasing the 

accuracy of systems. 

Limitations: Notably, the main issues to do with the use of fuzzy logic is that experts have to 

define the fuzzy rules [49]. However, the use of fuzzy logic models can be less precise 

compared to other model-based techniques when the battery works in various or stochastic 

regimes [50]. 

4.3.3.4 Support Vector Machine (SVM) 

Another learning algorithm that has been used for SOC estimation is Support Vector Machine 

(SVM). SVM is a type of supervised learning algorithm that creates a hyperplane that best 

defines the data to classify it into different sets [51]. By regarding state of charge SOC 

estimation, SVM can be applied in the classification of battery states from voltage current and 

temperature inputs [52]. 

Advantages: SVM provide reasonable accuracy and generalization across a range of 

applications and where the link between parameters and SOC is non-linear. He’s also fairly 

easy to complement and does not need as much computing resources as the deep learning 

methods. 

Limitations: The major weakness of Support Vector Machines is that their performance 

depends greatly on the kernel function that defines the shape of the hyperplane line [53]. 

Furthermore, analytically, SVM is considered an inflexible model compared to some other 

approaches of data mining techniques like neural networks; it maybe lacks efficacy specifically 

in intricate or fluctuating environments [54]. 
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4.3.4 Filter-Based Estimation Techniques 

Filter-based SOC estimation techniques use mathematical filters to process noisy sensor data 

and provide an accurate estimate of SOC [55]. These techniques are widely used in dynamic 

applications, such as electric vehicles, where real-time SOC estimation is critical. The most 

common filter-based methods are Kalman filtering, particle filtering, and H-infinity filtering. 

4.3.4.1 Kalman Filtering 

Kalman filtering, in general, is a recursive filter which estimates the state of a system for 

example SOC by employing a series of noisy measurements [56]. In detail, the Kalman filter 

uses a model to predict the system state and correct prediction with an error between the served 

and forecasted values. The algorithm gives real time variation to the SOC estimate, which 

makes it very efficient when operating in ever changing conditions [57]. 

Kalman filter is important in SOC estimation because it can accommodate noisy information 

from the sensors as well as uncertainties in the model [58]. It also gives a means for modeling 

battery aging and temperature changes, thereby enhancing the accuracy with which the SOC 

of the battery is estimated [59]. 

Advantages: Kalman filtering gives very good real time converging result and accustomed to 

noisy and uncertain data, so it is therefore very useful wherever the battery system operates in 

dynamic environment. Therefore, it is computationally efficient and may also be deployed in 

low power systems like Battery Management Systems (BMS). 

Limitations: The principal drawback of the Kalman filter is that its application involves 

constructing an accurate model of the battery dynamics. The filter not only depends on the 

model presented in this paper but also relies on the other samples in the database, so if the 

model used here is not well calibrated, the filter might give wrong SOC estimates [60]. 

Moreover, the applicability of Kalman filters is relatively low in cases of highly nonlinear 

battery conditions, e.g., at the low and high ends of SOC. 

4.3.4.2 Particle Filtering 

Particle filtering is a more sophisticated kind of filtering technique which utilizes samples, or 

particles to portray the potential states of the system [61]. The SOC is estimated according to 

the average of particles and each one of them is filtered with weight depending on how close 

the measured data fits [62]. The above approaches of particle filtering require more 
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computational effort as compared to the Kalman filtering; it is especially suitable for strongly 

nonlinear systems[63] 

Advantages: Particle filtering is a very versatile and can work with nonlinear and non-

Gaussian systems, and therefore can be applied to battery systems even though conventional 

filters do not hold. It also offers the possibility to predict not only SOC but also SOH and 

capacity fade as well. 

Limitations: The main disadvantage of particle filtering is a high computational cost 

associated with implementation of such a strategy. The algorithm is based on a need for a large 

number of particles to get good accuracy which can be time-consuming and in real-time 

forcing. Further, the efficiency of the particle filter is determined by the proposal distribution, 

according to which the particles are created. 

4.3.4.3 H-Infinity Filtering 

The second method employed in this research is H-infinity filtering, is a powerful estimation 

method via minimizing the maximum estimation error instead of assuming the error 

distribution is Gaussian as in the Kalman filter [64]. This makes H-infinity filtering most 

suitable for use where the battery operates under conditions of high uncertainty or when it is 

under attack, for instance, through fluctuations in temperature or high discharge rates [65] 

Advantages: The H-infinity filtering also presents great results in terms of model uncertainties 

and external disturbance and consequently, in those scenarios where the Battery is submitted 

to unfavorable conditions. It also helps in introducing a way to take care of the worst 

expectations of the human estimate that in turn enhances the quality of the SOC estimate. 

Limitations: The main disadvantage of H-infinity filtering is a high level of its complexity. 

The algorithm lends itself to a detailed understanding of the battery and can be very demanding 

and complex in real time systems [66]. Also, H-infinity filtering may give lower SOC accuracy 

than other algorithms in the situation when the system performs in the nominal mode [67]. 

4.3.5 Hybrid Estimation Techniques 

For the final SOC estimation, techniques are hybrid that encompass merits of various methods 

providing a unified solution to SOC estimation problem [68]. These methods propose to 

combine the advantages of one technique over the other to increase the efficiency, accuracy, 

reliability and flexibility of the solution. Hybrid methods are particularly useful in complex 
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and dynamic battery systems, such as those in electric vehicles (EVs), where a single technique 

might not provide the best performance across all conditions. 

4.3.5.1 Combination of Data-Driven and Model-Based Methods 

The data-driven and model-based techniques are used together and in this the characteristics of 

both the approaches are combined and thus advantageous of both approaches are achieved [69]. 

There is one type of approach, which involves the application of the ECM to capture the 

physical characteristics of the battery and the subsequent machine learning, for instance, a 

neural network or SVM to modify the estimate of SOC based on the model [70]. 

For example, an ECM can be employed for estimating the voltage and current of the battery 

and a neural network can adapt the value of SOC based on the past values about a learned 

pattern. This approach can enhance SOC estimation performance in various operating points, 

especially when model-based approaches may prove inadequate because of parameter changes 

and or unmodeled effects [71]. 

Advantages: The integration of conventional and model-based gives an improved estimate of 

SOC since it leverages on the model’s physical insights but supplements the shortcomings of 

a model with actual data. This method is not sensitive to the condition of the battery which 

include aging and temperature and is universal to all chemistries as well as configuration. 

Limitations: The main difficulty of the methods is the higher order compared to the first order 

when using hybrid methods. It should be noted that the model-based and data-driven portions 

of the proposed system can take considerable time to fine-tune and execute [72]. Moreover, 

each of the hybrid methods relies on the quality of the training data, as well as the accuracy of 

the models that are available; these are not always possible to achieve. 

4.3.5.2 Adaptive Filtering Techniques 

Adaptive filtering stands as an improved form of traditional filtering like Kalman filtering 

whereby the model parameters are adjusted with time due to changes in the battery operating 

conditions [73]. These techniques are developed to address the variance and variation inherent 

in real-world battery systems and more so in EV applications, where characteristics of batteries 

can evolve with time through aging, temperature change and different loading patterns [74]. 

These are the extended Kalman filters (EKF) [75], [76], [77], [78], Unscented Kalman Filter 

(UKF), [79], [80] and particle filters [81] of the adaptive filtering techniques. In these methods, 

the filter not only estimates SOC but also adjusts the parameters of the system model according 
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to registers received from the battery, thus keeping the SOC estimate always correct in 

accordance with the current state of the battery. For example, adaptive particle filters can 

change the number of particles or their importance depending on the battery’s behavior, which 

leads to the improvement of the accuracy of the SOC estimate. 

Advantages: Adaptive filtering is accurate and proven to be very robust in real-time dynamic 

application such as management of EV batteries. It also shows that these proposed techniques 

can mitigate changes in battery parameters and calculate a precise SOC even under the worst 

and highly fluctuating conditions. 

Limitations: This station enjoys numerous benefits, but adaptive filtering techniques do entail 

high computational cost in systems that are complex, including high-dimensional, high-volume 

systems [82]. Moreover, the filter’s filter performance also depends on the quality of the first 

model and the calibration of adaptable parameters, which poses problems in some processes. 

5. Comparative Analysis of SOC Estimation Techniques 

The SOC estimation techniques are therefore comprehensively reviewed to reveal accuracy, 

computational costs, and applicability to all types of batteries. Either of the methods has its 

characteristic advantages and drawbacks, and, in general, none of the methods suits all kinds 

of batteries. The type of chemistries used in the method implemented also determines the 

technique applied for a particular battery type and utilization whether in electric vehicles, 

portable electronics or grid storage systems, and the battery’s chemical type, usage conditions, 

and phase of its lifecycle [83]. As mentioned in Section 4, various approaches for SOC 

estimation are present here, and this section gives a detailed comparative study of the various 

techniques. The methods are assessed based on several key factors: 

1. Accuracy: How closely the technique estimates the actual SOC. 

2. Computational Complexity: The level of computational resources (e.g., processing 

power, memory) required to implement the method. 

3. Real-Time Capability: The ability to provide SOC estimates in real time, which is 

particularly important in dynamic applications like EVs. 

5.1 Accuracy Comparison 

Most of the SOC estimation techniques achieve varying results based on the technique 

employed, operating condition, and battery properties. The model-based techniques like 

equivalent circuit models (ECMs) are reasonable accurate in most cases although they are not 

highly accurate under dynamic conditions in view of parameter changes. The inclusion of 
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machine learning-based approaches show more promise for higher accuracy because the 

discovered relations can generalize from data samples and change when new conditions are 

encountered. However, van develop in complexity and need huge training set of data and are 

also affected by the quality of data fed to it. For example, Coulomb Counting is easy, 

theoretically accurate, accurate in stable environment, although it has accumulated errors, 

especially when the initial SOC assessment is inaccurate. On the other hand, Kalman filtering 

techniques such as EKF or UKF are more accurate when SOC is identified and calculated in 

real time using flowing data taking into consideration between noise and variable battery 

parameters. 

The highest accuracy is obtained when solutions from both model-based and data-driven 

approaches are used, most especially in mutable systems such as EVs, which undergo frequent 

changes in operation. These methods can improve significant random or systematic errors 

inaccuracy of the physical model when being applied in practice because of using the data-

oriented approach. 

5.2 Computational Complexity 

Practicality is also an essential consideration when evaluating a SOC estimation technique 

owing to resource limitations that characterize portables or embedded devices. Coulomb 

Counting, for example, is significantly less complex and will not drain battery power in a 

system, thus making it possible to work on low-powered systems. However, such methods 

cause improved errors if used for successive data sets. Electrochemical models and ECMs are 

relatively demanding as they solve differential equations of internal battery dynamics. These 

methods are typically applied in systems where computational capabilities do not represent an 

issue, for example in EVs or in stationary energy storage systems. 

Machine learning and deep learning specifically are computationally expensive to implement 

because of the training exercise as well as the eventual data analysis. Although these methods 

can give very high accuracy, they may be too computationally heavy for real-time applications 

and thus suffer when implemented in low end embedded systems. It is always seen that the 

hybrid cracks are more time-consuming than the other approaches as they incorporate the 

characteristics of both Model based and Data Driven approaches. Nonetheless, the use of these 

methods becomes improving generally due to development in hardware and optimization 

algorithms for real-time applications. 
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5.3 Real-Time Capability 

Real-time capability may be defined as the capacity of an SOC estimation method to update 

SOC information continuously and instantaneously during the dynamic use of the Battery. Of 

all the techniques described above, it is notable that Coulomb Counting is quite effective 

because it affords the monitoring of SOC in real time by way of integrating current 

continuously over time. This particular method provides a way for SOC estimate to changed 

instantaneously depending on current flowing into or out of the battery; useful in applications 

that demand responses. In contrast, the Open Circuit Voltage (OCV) Method fails in real-time 

application because its readings can only be taken when the battery is non-operational or at a 

standstill, this is not feasible during normal charging or discharging cycles. This limitation puts 

it out of bounds for dynamic systems where monitoring is continuously required. 

However, a parameter estimation solution together with suitable filters such as the Kalman-

PRLS filter as well as the error Kalman filter placed on the Equivalent Circuit Models (ECM) 

gives real time estimating proficiency. This allows them to respond to conditions fluctuating 

and obtain the correct SOC at times of power cycling. However, there is a high increase of the 

computational demands, accompanied by the increases in the complexity of the model. 

Electrochemical Models are not functional in real time. These models are more appropriate 

when used in research where precision is considered ultimate, but their computational needs 

make them unfit for real-time applications. 

Real-time SOC estimation has been applying Machine Learning techniques at a growing rate. 

Using this approach once a model has been trained it can learn from the data and make the 

estimates as and when needed as opposed to batch processes as required in dynamic models. 

However, they are computationally intensive, especially in the training process though they 

can be implemented readily. Nevertheless, Neural Networks also have real-time evaluation 

characteristics, one can have real SOC predictions as soon as the training is complete. However, 

like machine learning methods, they require a call for high computational resources and thus 

might be a problem in environments with limited resources. Among the identified Kalman 

Filters, the real-time performance of the constant gain Kalman Filter and the Extended Kalman 

Filter (EKF) can be attributed to recursive estimation. They can track and estimate SOC 

sufficiently while working under different conditions; however, they need an improved initial 

model to perform their work properly. Particle Filters are also capable of giving real-time 

estimation but are constrained by high computational burden. On one hand, their capability to 

address nonlinearities makes them useful in dynamic contexts, while on the other, the high 

level of implementation may limit it. Last, Hybrid Techniques, which integrate the features of 

several methods, let these methods provide SOC estimates in real-time successfully. However, 
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they are typically the most computationally intensive, as well as the most analytically complex, 

systems that call for complex synthesis of multiple methods for optimal performance. 

5.4 Summary of Comparison of Techniques  

The comparison of each technique is provided in Table 2. 

Table 2: Detailed Comparison of SOC Estimation Techniques 
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6. Conclusion 

In conclusion, the present paper has discussed how advanced the SOC estimation techniques 

have come in recent years, there are still few issues that hinder their performance as well as 

their practical usability. These challenges must be addressed to further improve the accuracy, 

robustness, and efficiency of SOC estimation methods, particularly in applications such as 

electric vehicles (EVs) and renewable energy systems. 

6.1 Limitations of Current Techniques 

It is important to realize that the current approaches to SOC estimation share some of the 

primary drawbacks of accurate battery models and quality data. Simulation-based methods are 

based on equivalent circuit models and electrochemical models, called ECM and ESM 

respectively, which in turn need accurate estimates of the battery parameters that can degrade 

with time and usage conditions of the battery. This means that SOC cannot be estimated 
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independently of SOH as discussed in [83], [84]. Because the internal resistance of a battery 

rises as the battery ages, its SOH deteriorates, and so does its maximum capacity or rating; if 

the battery models are not refreshed, the SOC estimates are contaminated with errors. 

It must be understood that data-driven methods including machine learning and neural 

networks highly rely on big, diverse data. The weakness of the training data is that other 

operating conditions possibly could be missed, so the model cannot give accurate SOC 

estimations when the battery works in conditions beyond the training range. Furthermore, these 

techniques demand high computational cost and may not be feasible when used in a low power 

device such as portable or embedded devices. 

Indeed, the hybrid methods, which provide better accuracy and flexibility, include more 

problems to implement and require more computational resources. These methods need to be 

tuned and calibrated with an aim of rationing the strengths between the model based and the 

data driven based approaches, which can be complex when designing real time systems. 

One of the main drawbacks is that few practical methods used for estimating SOC stock have 

been tested and validated. Sometimes they are optimal in certain conditions but decline in other 

conditions and therefore does not allow one to compare the efficiency of the various methods. 

There is a lack of metrological reference data and quantitative criteria for validating SOC 

estimation methods in terms of accuracy, stability, and computational cost for various 

chemistries of batteries and different working conditions. 

6.2 Integration of SOC Estimation Methods in EV Applications 

The problem of SOC estimation is more complex when integrating SOC estimation techniques 

for specific applications such as EV because of these varying operating conditions. SOC 

estimation is influenced by EV batteries high charging and discharging rates as well as 

temperatures as well as power requirements that they undergo regularly. Furthermore, the 

battery capacity decays over time hence impacts the accuracy of SOC estimation when using 

this kind of battery. 

To overcome these challenges, the SOC estimation methods engaged in EVs must be capable 

enough to deal with the real time data from the different sensors such as current sensor, voltage 

sensor, and temperature sensor. The estimation algorithms must also be efficient in terms of 

computational complexity because real-time BMS require a minimal and efficient 

computation. 
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Another area is the application of adaptive filters, including EKF or particle filters able to 

update SOC estimate according to the changes in battery usage conditions. Moreover, the 

combination of the model-based approach and data-driven approaches that allows achieving 

higher accuracy than purely model-based methods and yet being less computationally 

expensive is emerging in EV applications. 

There is therefore pressure on SOC estimation techniques that should accommodate new 

chemical configurations of EV batteries like solid structures, which boast of high energy 

relative densities and safety measures as compared to lithium-ion batteries. To advance SOC 

estimation for these new battery technologies, further research is required to support the 

reliability of the EV systems. 

6.3 Emerging Trends in Battery Management Systems (BMS) 

The emergence of advanced battery management systems (BMS) is of paramount significance 

to the enhanced performance and reliability of current battery systems in such applications as 

EVs and RECSs. One of the major issues of current and future BMS development is the 

combination of intricate SOC estimations with other functions that are typically incorporated 

into the BMS, including SOH and SOP monitoring. 

AI and machine learning have become crucial components of the state-of-the-art BMS since 

they allow for improved computation of the SOC of the battery in real time. Machine learning 

algorithms also improve battery management by predicting its future behavior from data 

received from the battery system without the need for physical samples. Other methods, 

including neural network as a tool of deep learning, are also being considered as promising for 

analysis of nonlinear dependency between SOC and other battery characteristics. 

Another new frontier is cloud BMS that can enable online supervising and regulating of battery 

systems at various sites. This approach allows for timely collection and evaluation of the data 

in real-time that would be useful for SOC estimation as well as for monitoring the health status 

of batteries and deciding on when to service or replace them. 

Next to Artificial Intelligence and Cloud Computing, progress in sensor technology extends 

the overall capacity of BMS to assess battery characteristics in real time. Temperature, voltage, 

and current sensor have high precision in SOC estimation, and new sensor technologies will 

provide better performance improvement to next generation BMS. 

The emerging trends of Li-ion battery SOC estimation research from 2015 to 2024 is 

summarized in Table 3. 
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Table 3: Summary of Emerging Trends for All Techniques 

SOC Estimation 

Technique 

Emerging Research 

Trends 
Challenges Benefits of Research Trend 

Coulomb 

Counting 

- Advanced current 

sensing techniques 

- Accurate current sensing 

is complex and expensive 
- Improved SOC accuracy 

- Adaptive Coulomb 

counting methods 

- High computational 

demand for real-time 

adjustment 

- Better compensation for 

capacity fade and self-discharge 

- Capacity degradation 

modeling 
  

OCV-Based 

Estimation 

- OCV-SOC 

relationship under 

dynamic conditions 

- OCV behavior varies 

with temperature and SOC 

dynamics 

- Enhanced SOC accuracy in 

dynamic and varying conditions 

- Effect of temperature 

on OCV-based 

estimation 

- Slow response in real-

time scenarios 

- More reliable real-time 

applications 

Equivalent 

Circuit Model 

(ECM) 

- Adaptive parameter 

identification for ECM 

- Identifying accurate 

model parameters in real-

time 

- Increased adaptability to 

operational conditions 

- Temperature 

compensation 

techniques 

- Temperature sensitivity 

in ECM accuracy 

- Improved accuracy over 

varying temperatures 

Electrochemical 

Models 

- Reduced-order 

electrochemical models 

- Simplification may 

sacrifice accuracy 

- Feasible real-time applications 

with reduced computation 

- Lithium-ion diffusion 

modeling 

- Complex diffusion 

modeling can be 

computationally intensive 

- Enhanced understanding of 

diffusion behavior 

Machine 

Learning-Based 

Methods 

- Transfer learning for 

SOC estimation 

- Data availability and 

variability across systems 

- Applicability to diverse 

systems 

- Ensemble learning 

techniques 

- Model complexity may 

increase training time 

- Improved estimation accuracy 

by leveraging multiple models 

Neural Networks 
- Explainable neural 

networks 
- High computational costs 

- Better understanding and 

control of SOC estimation 

models 
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SOC Estimation 

Technique 

Emerging Research 

Trends 
Challenges Benefits of Research Trend 

- Deep reinforcement 

learning for battery 

management systems 

- Lack of interpretability in 

black-box models 

- Enhanced learning and 

optimization for battery 

management 

Fuzzy Logic-

Based Techniques 

- Fuzzy logic in hybrid 

SOC techniques 

- Complex rule definition 

for large-scale systems 

- Flexibility in handling 

uncertain and imprecise data 

- Optimization of fuzzy 

rules for SOC 

estimation 

- Computational intensity 

for real-time applications 

- Improved hybrid SOC 

estimation accuracy 

Support Vector 

Machine (SVM) 

- SVM for SOC 

estimation in hybrid 

systems 

- Kernel function selection 

can be difficult 

- Robust SOC estimation in 

hybrid systems 

- Kernel optimization in 

SVM-based SOC 

estimation 

- High computational cost 

for large datasets 

- Higher accuracy with 

optimized kernel functions 

Kalman Filter-

Based Techniques 

- Extended Kalman 

filtering for nonlinear 

SOC estimation 

- Nonlinearities are 

difficult to model 

- Better SOC estimation in 

nonlinear systems 

- Adaptive Kalman 

filtering for battery 

aging 

- Battery aging behavior is 

hard to predict in real-time 

- Adaptive filters ensure 

longevity in SOC estimation 

Particle Filtering 

- Particle filtering for 

multi-parameter 

estimation 

- High computational costs 

for real-time applications 

- Accurate multi-parameter SOC 

estimation 

- Optimization of 

particle filter proposal 

distribution 

- Complex optimization of 

proposal distribution 

- Better estimation under 

uncertainty and noise 

H-Infinity 

Filtering 

- H-infinity filtering for 

robust SOC estimation 

- Complexity in tuning H-

infinity parameters 

- Improved robustness in 

extreme environments 

- Comparison of 

Kalman and H-infinity 

filtering 

- High computational 

demand 

- Better resilience to model 

uncertainties 

Hybrid 

Estimation 

Techniques 

- Hybrid machine 

learning and model-

based SOC techniques 

- Combining model-based 

and ML techniques 

increases complexity 

- Improved adaptability to 

changing conditions 
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SOC Estimation 

Technique 

Emerging Research 

Trends 
Challenges Benefits of Research Trend 

- Adaptive hybrid 

systems for dynamic 

environments 

- Difficult integration of 

multiple data sources 

- Enhanced accuracy by 

leveraging both models and 

data-driven techniques 

Adaptive Filtering 

- Adaptive Kalman 

filtering for battery 

aging 

- Computationally 

expensive to adapt in real-

time 

- More accurate SOC estimation 

for aging batteries 

- Particle filter-based 

adaptive SOC 

estimation for EVs 

- Requires continuous 

recalibration 

- Higher accuracy for EV 

applications with varying 

operational conditions 

 

6.4 Research Gaps and Opportunities 

Despite these advances in SOC estimation techniques, this research indicates that there are still 

five critical research gaps that have been identified that offers the potential for further study 

and improvement. A potential area of future study, therefore, relates to the determination of 

SOC in other types of batteries and more specifically in novel chemistries such as solid state 

and lithium-Sulphur batteries. These chemistries possess different electrochemical 

characteristics than conventional lithium-ion batteries; therefore, the current SOC quantization 

methodologies could be unsuitable. 

There is scope in future work to refine the SOC estimation techniques to incorporate 

consideration of battery degradation over the course of time. As batteries are utilized and age, 

their ability to hold charge reduces and the internal resistance rises if not corrected cause poor 

SOC measurement. What is required, in fact, are methods that can adjust to these changes in 

real time, for instance affine projection, or adaptive filtering technique, or machine learning 

algorithms, so that SOC estimation is accurate throughout the lifetime of a battery. 

The use of a variety of SOC estimation methods, multicomponent hybrid estimation studies 

that involve both model and data-driven approaches as well, also offer a clear avenue for future 

research. Such methods may use better traits of various methods to enhance outcomes and 

overcome shortcomings in changeable situations. 

Last but not the least, there is a lot of scope for standardizing and validating SOC estimation 

techniques. The creation of standards for comparing and critiquing methods will help 

proponents of various approaches to more effectively disseminate the best practices and 

methods to the rest of the industry. 
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